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RNA sequencing (RNA-seq) technology

RNA-seq data

full length RNA isoforms
AACGUCGUUG GCUGGU CCGGAGG AAUCAAGAACUAUAC

RNA-seq
experiments

AACGUCGUUG GCUGGU CCGGAGG AAUCAAGAACUAUAC

statistical
inference

AACGUCGUUG GCUGGU CCGGAGG

AACGUCGUUG GCUGGU CCGGAGG
(unknown)

(observed)

AACGTCGTTG GCTGGT CCGGAGG AATCAAGAACTATAC
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RNA sequencing (RNA-seq) experiment

AACGUCGUUG GCUGGU CCGGAGG AAUCAAGAACUAUACfull length RNA isoforms
(1712 bp on average)

fragmentation

AACGUCGUUG GCUGGU CCGGAGG AAUCAAGAACUAUAC

AGG AAUCAAGAACUAUAC

AACGUCGUUG GCUGGU CCGGAGG AAUC

AACGUCG UUG GCUGGU CCGG

AAGAACUAUAC

RNA fragments
(< 600 bp)
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RNA sequencing (RNA-seq) experiment
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processing sequencing

TCC TTAGTTCTTGATATG

TTGCAGCAAC CGACCA GGCCTCC TTAG

TTGCAGC AAC CGACCA GGCC

TTCTTGATATG

AGG AATCAAGAACTATACAACGTCG TTG GCTGGT CCGG
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Mapping RNA-seq reads to the reference genome

AACGTCGTTG GCTGGT CCGGAGG AATCAAGAACTATAC

full length RNA isoforms
(1712 bp on average) AACGUCGUUG GCUGGU CCGGAGG AAUCAAGAACUAUAC

processing sequencing

AACGRNA-seq reads
(< 300 bp)

CAGC TTG GGCCG AGG TATGA

AACG CAAC GCTG TTAG AAGA TATG

AACGUCGUUG GCUGGU CCGGAGG AAUCAAGAACUAUAC

mapping (alignment)

RNA-seq reads
aligned to genome
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Reference-based RNA-seq data analysis

1. Align RNA-seq reads to a reference genome

2. Analyze aligned reads at three levels

gene-level:

exon-level:

transcript-level:

DNA
mRNA

RNA-seq reads

ambiguous

n

n1

n2

gi = n

�i =
n1

n1 + n2

↵1

↵2

a

b

c
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Single-cell (sc) vs. bulk RNA-seq at the gene level

Tissue

scRNA-seq bulk RNA-seq

genes

cells tissue
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Bulk RNA-seq: transcript/isoform discovery &

quantification



isoform-level

AIDE: annotation-assisted isoform discovery
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Isoform discovery: which isoforms are expressed?

• More than 90% genes undergo alternative splicing in mammals

[Hooper, Human Genomics, 2014].

• At least 35% genetic diseases involve abnormal splicing

[Manning et al., Nature Reviews Mol. Cell Biol. 2017].

AACGTCGT GCTG CCG AATCAAgene

isoforms

alternative splicing

AACGUCGU GCUG CCG AAUCAA AACGUCGU CCG AAUCAA

isoform A isoform B
(exon 2 included) (exon 2 excluded)
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Isoform discovery: which isoforms are expressed?

AACGTCGT GCTG CCG AATCAAgene

isoforms AACGUCGU GCUG CCG AAUCAA

AACGUCGU

genome

RNA-seq data

GCUG AACGUCGU CCG AACGUCGU AAUCAA

AACGUCGU GCUG CCG GCUG CCG AAUCAA

Which isoforms are expressed?

statistical modeling 
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Challenge 1: large number of candidate isoforms

Variable size (# of candidate isoforms) = 2# of exons − 1

AACGTCGT GCTG CCG AATCAAgene

isoforms AACGUCGU GCUG CCG AAUCAA

AACGUCGU

genome

RNA-seq data

GCUG AACGUCGU CCG AACGUCGU AAUCAA

AACGUCGU GCUG CCG GCUG CCG AAUCAA

Which isoforms are expressed?

statistical modeling 

For this 4-exon gene, 24 − 1 = 15 candidate isoforms
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Challenge 2: great information loss

• RNA-seq reads are very short compared with full-length

isoforms.

• Most RNA-seq reads do not uniquely map to a single isoform.

?
gene

isoform 1

isoform 4

isoform 2

isoform 3

• Technical biases introduced into RNA-seq experiments.
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Existing isoform discovery methods

State-of-the-art methods for isoform discovery:

• SIIER [Jiang et al., Bioinformatics, 2009]

• Cufflinks [Trapnell et al., Nature Biotechnology, 2010]

• SLIDE [Li et al., Proc. Natl. Acad. Sci. 2011]

• StringTie [Pertea et al., Nature Biotechnology, 2015]

• · · ·

Limitations:

1. Low accuracy for genes with complex splicing structures.

2. Difficult to improve isoform-level performance.

[Kanitz et al., Genome Biology, 2015]

3. Usage of annotations results in false positives.
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Usage of annotations results in false positives

Annotated isoforms are experimentally validated:

1

1

2

3

4

gene

annotated isoforms

• Ensembl database: 203, 903 isoforms

[Zerbino et al., Nucleic Acids Research, 2017]

annotated 
isoforms

expressed isoforms in normal brain

expressed isoforms in
Parkinson's brain

expressed isoforms in
Alzheimer's brain
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False positives → false discoveries

Number of drugs per billion US$ R&D spending

0

1

10

100

1950 1960 1970 1980 1990 2000 2010

[Scannell et al., Nat. Rev. Drug Discov. 2012] 13



Highlights of the AIDE method

1. Selectively leverage annotation information to increase the

precision and robustness of isoform discovery.

2. Practical probabilistic model to account for technical biases.

3. Conservatively identify isoforms that make statistically

significant contributions to explaining the observed RNA-seq

reads.

4. First method to control false discoveries by employing a

statistical testing procedure.

Expressed isoforms RNA-seq reads

Annotation

AIDE model Identi�ed isoforms(unobserved, truth)

(prior knowledge, inaccurate)

(observed, with noises)

(precise)
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The stepwise selection in AIDE: two stages

annotated isoforms: non-annotated isoforms:

Stage 1: candidates are annotated isoforms only

Initialization Forward step Backward step
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The stepwise selection in AIDE: two stages

annotated isoforms: non-annotated isoforms:

Stage 1: candidates are annotated isoforms only

Initialization Forward step Backward step

output

Stage 2: candidates are all possible isoforms

Initialization Forward step Backward step
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AIDE outperforms state-of-the-art methods

• Human embryonic stem cells

• Input: Illumina RNA-seq data

• Evaluation: PacBio and Nanopore ONT RNA-seq data
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AIDE effectively reduces false discoveries in real data

• Data: breast cancer RNA-seq samples
• Six genes:

• isoforms identified only by Cufflinks but not by AIDE

• experimental validation (PCR)

• Four genes:

the isoforms uniquely predicted by Cufflinks were false

positives

MTHFD2
1

1

2

NPC2
1

RBM7
1

1

CD164
1

1

ZFAND5

MTHFD2-201
MTHFD2-203

NPC2-207
NPC2-205

RBM7-203

RBM7-208
CD164-003
CD164-210

PCR  AIDE Cufflinks

+
-

+
-

+
+

PCR  AIDE Cufflinks

+
-

+
-

+
+

PCR  AIDE Cufflinks

+
-

+
-

+
+

PCR  AIDE Cufflinks

+
-

+
-

+
+

a b

c d

e f

18



AIDE effectively reduces false discoveries in real data

• Data: breast cancer RNA-seq samples
• Six genes:

• isoforms identified only by Cufflinks but not by AIDE

• experimental validation (PCR)

• Four genes:

the isoforms uniquely predicted by Cufflinks were false

positives

MTHFD2
1

1

2

NPC2
1

RBM7
1

1

CD164
1

1

ZFAND5

MTHFD2-201
MTHFD2-203

NPC2-207
NPC2-205

RBM7-203

RBM7-208
CD164-003
CD164-210

PCR  AIDE Cufflinks

+
-

+
-

+
+

PCR  AIDE Cufflinks

+
-

+
-

+
+

PCR  AIDE Cufflinks

+
-

+
-

+
+

PCR  AIDE Cufflinks

+
-

+
-

+
+

a b

c d

e f
18



AIDE discovers isoforms with biological significance

FGFR1
1 PCR  AIDE Cufflinks

+ + -
gene
isoform

MCF-7 
sample

BT549 
sample

control experiments (suppress expression of the isoform) 
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Summary of the AIDE method

• The first isoform discovery method that directly controls false

discoveries by implementing the statistical model selection

principle.

• Software: https://github.com/Vivianstats/AIDE

• Manuscript:

In press at Genome Research.

20
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Isoform quantification: what are the isoform expression levels?

• More than 90% genes undergo alternative splicing in mammals

[Hooper, Human Genomics, 2014].

• At least 35% genetic diseases involve abnormal splicing

[Manning et al., Nature Reviews Mol. Cell Biol. 2017].

AACGTCGT GCTG CCG AATCAAgene

isoforms

alternative splicing

AACGUCGU GCUG CCG AAUCAA AACGUCGU CCG AAUCAA

isoform A isoform B
(exon 2 included) (exon 2 excluded)
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Motivation: multiple human ESC RNA-seq samples

chr1; gene:TPR
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How to combine multiple RNA-seq samples?

Given D RNA-Seq (technical or biological) replicate samples and

gene annotations, how to estimate the abundance of each

annotated isoform for every gene?

• Apply a single-sample method to each sample separately and
then average the estimated isoform abundance across multiple
samples?

• This does not fully use the multi-sample information to reduce

the variance in estimating isoform abundance

• Apply a single-sample method to a pooled sample from the D
samples?

• The estimated isoform abundance may be biased by outlier

samples

23
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MSIQ

Joint Modeling of Multiple RNA-seq Samples for Accurate Isoform

Quantification

24



Summary

• It is necessary to consider the heterogeneity of different

samples to make robust isoform quantification

• MSIQ is able to identify a consistent group of samples that

are most representative of the biological condition

• MSIQ increases the accuracy of isoform quantification by

incorporating the information from multiple samples

• Our proposed hierarchical model is an umbrella framework

that are generalizable to incorporate more delicate

consideration of read generating mechanisms
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Paper and Software

MSIQ: joint modeling of multiple RNA-seq samples for

accurate isoform quantification

by Wei Vivian Li, Anqi Zhao, Shihua Zhang, and Jingyi Jessica Li

Annals of Applied Statistics 12(1):510–539

R package MSIQ

http://github.com/Vivianstats/MSIQ
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Single-cell RNA-seq: dropout imputation &

experimental design



scRNA-seq vs. bulk RNA-seq at the gene level

Tissue

scRNA-seq bulk RNA-seq

genes

cells tissue
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Dropout events in scRNA-seq

from [Kharchenko et al., Nature methods, 2014] 28



Dropout events in scRNA-seq

• A dropout event occurs when a transcript is expressed in a cell

but is entirely undetected in its mRNA profile

• Dropout events occur due to low amounts of mRNA in

individual cells

• The frequency of dropout events depends on scRNA-seq
protocols

• Fluidigm C1 platform: ∼ 100 cells, ∼ 1 million reads per cell

• Droplet microfluidics: ∼ 10, 000 cells, ∼ 100K reads per cell

[Zilionis et al., Nature Protocols, 2017]

• Trade-off: given the same budget, more cells, more dropouts
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Genome-wide explicit imputation for dropouts

Why do we need genome-wide explicit imputation methods?

Downstream analyses relying on the accuracy of gene expression

measurements:

• differential gene expression analysis

• identification of cell-type-specific genes

• reconstruction of differentiation trajectory

It is important to adjust/correct the false zero expression values

due to dropouts
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Genome-wide explicit imputation for dropouts

Key points to consider:

• It is not ideal to impute all gene expressions

• imputing expressions unaffected by dropout would introduce

new bias

• could also eliminate meaningful biological variation

• It is inappropriate to treat all zero expressions as missing
values

• some zero expressions may reflect true biological

non-expression

• zero expressions can be resulted from gene expression

stochasticity

How to determine which values are affected by the dropout events?
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values

• some zero expressions may reflect true biological

non-expression
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Our method: scImpute

1. For each gene, to determine which expression values are most

likely affected by dropout events

2. For each cell, to impute the highly likely dropout values by

borrowing information from the same genes’ expression in

similar cells

cell j selected cells other cells

…

…

gene set A

gene set B
… …

… …

imputation
with selected cells

cell j

zero

high
expression

j

j

32



scImpute steps

1. Detection of cell subpopulations and outlier cells

2. Identification of dropout values
condition 1 condition 2 condition 3

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

log10(read count+1)

de
ns

ity

gene 1

gene 2

gene 3
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scImpute steps

3. Imputation of gene expression cell by cell

cell j

…

…

gene set A

gene set B
…

…

zero

high
expressionj

j

(missing)

(non-missing)

34



Example 1: ERCC spike-ins

scImpute recovers the true expression of the ERCC spike-in

transcripts, especially low abundance transcripts that are impacted

by dropout events

• 3, 005 cells from the mouse somatosensory cortex region

• 57 ERCC transcripts
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Example 2: cell clustering

4, 500 peripheral blood mononuclear cells (PBMCs) from

high-throughput droplet-based system 10x genomics [Zheng et al.,

Nature communications, 2017]

Proportion of zero expression is 92.6%
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Example 3: gene expression dynamics

Bulk and single-cell time-course RNA-seq data profiled at 0, 12,

24, 36, 72, and 96 h of the differentiation of embryonic stem cells

into definitive endorderm cells [Chu et al., Genome biology, 2016]

time point 00h 12h 24h 36h 72h 96h total

scRNA-seq (cells) 92 102 66 172 138 188 758

bulk RNA-seq (replicates) 0 3 3 3 3 3 15
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Example 3: gene expression dynamics

Correlation between gene expression in single-cell and bulk data
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Example 3: gene expression dynamics

Imputed read counts reflect more accurate gene expression

dynamics along the time course
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Conclusions

• scImpute is a flexible and easily interpretable statistical

method that addresses the dropout events prevalent in

scRNA-seq data

• scImpute focuses on imputing the missing expression values of

dropout genes, while retaining the expression levels of genes

that are largely unaffected by dropout events

• scImpute is compatible with existing pipelines or downstream

analysis of scRNA-seq data, such as normalization, differential

expression analysis, clustering and classification

• scImpute scales up well when the number of cells increases

40



Paper and software

An accurate and robust imputation method scImpute for

single-cell RNA-seq data

by Wei Vivian Li and Jingyi Jessica Li

Nature Communications 9:997

R package scImpute

https://github.com/Vivianstats/scImpute
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Real vs. semi-synthetic data

Huang et al., Nature Methods (2018)
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Real vs. semi-synthetic data
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Benchmark standard

0 1 2 3 4 5 6

CA1-Pyramidal	 442 20 289 1 4 42 40

S1-Pyramidal	 2 273 1 1 0 32 11

Oligodendrocytes	 0 0 0 282 0 62 2

Interneurons	 5 7 2 0 220 6 1

Endothelial	 0 0 0 0 1 0 14

Microglia	 0 0 0 0 0 0 6

Mural	 0 1 0 0 0 0 0

Ependymal	 0 0 0 0 0 0 7

Astrocytes	 0 1 0 2 0 1 20

labels	used	in	Huang	et	al .
la
be

ls	
re
po

rt
ed

	in
	Z
ei
se
l	e
t	a

l.
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scDesign: statistical simulator for experimental design

Simulation-based scRNA-seq experimental design

Advantages of scDesign:

• Protocol-adaptive and data-adaptive: learn from

• Public scRNA-seq data

• Pilot-study data

• Generate synthetic data that well mimic real data under a
pre-specified experimental setting

• Assist experimental design & method development

• Flexible in accommodating user-specific analysis needs

• No experimental cost
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Generative framework of scDesign
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Experimental design for gene differential expression

Astrocytes vs. Oligodendrocytes (Fluidigm C1)
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scDesign paper
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Summary

Bulk RNA-seq

• Isoform identification: AIDE

• Isoform quantification: MSIQ

Single-cell RNA-seq

• Dropout imputation: scImpute

• Simulator & experimental design: scDesign
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