

## Jingyi Jessica Li

Associate Professor Department of Statistics University of California, Los Angeles

http://jsb.ucla.edu

## RNA sequencing (RNA-seq) technology



## RNA sequencing (RNA-seq) experiment



## RNA sequencing (RNA-seq) experiment



## RNA sequencing (RNA-seq) experiment



 $\# \text{ of RNA-seq} \ \text{reads} \quad \propto \quad \text{isoform abundance} \ \times \ \text{isoform length}$ 

## Mapping RNA-seq reads to the reference genome



- 1. Align RNA-seq reads to a reference genome
- 2. Analyze aligned reads at three levels



## Single-cell (sc) vs. bulk RNA-seq at the gene level



## Bulk RNA-seq: transcript/isoform discovery & quantification

## AIDE: annotation-assisted isoform discovery



## Isoform discovery: which isoforms are expressed?

- More than 90% genes undergo alternative splicing in mammals [Hooper, *Human Genomics*, 2014].
- At least 35% genetic diseases involve abnormal splicing [Manning et al., *Nature Reviews Mol. Cell Biol.* 2017].



## Isoform discovery: which isoforms are expressed?



## Challenge 1: large number of candidate isoforms

Variable size (# of candidate isoforms) =  $2^{\# \text{ of exons}} - 1$ 



For this 4-exon gene,  $2^4 - 1 = 15$  candidate isoforms

## Challenge 2: great information loss

- RNA-seq reads are very short compared with full-length isoforms.
- Most RNA-seq reads do not uniquely map to a single isoform.



• Technical biases introduced into RNA-seq experiments.

## Existing isoform discovery methods

State-of-the-art methods for isoform discovery:

- SIIER [Jiang et al., Bioinformatics, 2009]
- Cufflinks [Trapnell et al., Nature Biotechnology, 2010]
- SLIDE [Li et al., Proc. Natl. Acad. Sci. 2011]
- StringTie [Pertea et al., Nature Biotechnology, 2015]

• • • •

Limitations:

- 1. Low accuracy for genes with complex splicing structures.
- 2. Difficult to improve isoform-level performance. [Kanitz et al., *Genome Biology*, 2015]
- 3. Usage of annotations results in false positives.

## Usage of annotations results in false positives

Annotated isoforms are experimentally validated:



• Ensembl database: 203,903 isoforms [Zerbino et al., Nucleic Acids Research, 2017]



### False positives $\rightarrow$ false discoveries



Number of drugs per billion US\$ R&D spending



13

## Highlights of the AIDE method

1. Selectively leverage annotation information to increase the precision and robustness of isoform discovery.

## Highlights of the AIDE method

- 1. Selectively leverage annotation information to increase the precision and robustness of isoform discovery.
- 2. Practical probabilistic model to account for technical biases.
- Conservatively identify isoforms that make statistically significant contributions to explaining the observed RNA-seq reads.

## Highlights of the AIDE method

- 1. Selectively leverage annotation information to increase the precision and robustness of isoform discovery.
- 2. Practical probabilistic model to account for technical biases.
- Conservatively identify isoforms that make statistically significant contributions to explaining the observed RNA-seq reads.
- 4. First method to control false discoveries by employing a statistical testing procedure.





Stage 1: candidates are annotated isoforms only Initialization → Forward step → Backward step

# annotated isoforms: non-annotated isoforms:













#### Stage 1: candidates are annotated isoforms only

Initialization --> Forward step Backward step











#### non-annotated isoforms:





#### annotated isoforms:



#### non-annotated isoforms:







#### Stage 1: candidates are annotated isoforms only



#### Stage 2: candidates are all possible isoforms



## AIDE outperforms state-of-the-art methods

- Human embryonic stem cells
- Input: Illumina RNA-seq data
- Evaluation: PacBio and Nanopore ONT RNA-seq data



## AIDE effectively reduces false discoveries in real data

- Data: breast cancer RNA-seq samples
- Six genes:
  - isoforms identified only by Cufflinks but not by AIDE
  - experimental validation (PCR)

## AIDE effectively reduces false discoveries in real data

- Data: breast cancer RNA-seq samples
- Six genes:
  - isoforms identified only by Cufflinks but not by AIDE
  - experimental validation (PCR)
- Four genes:

the isoforms uniquely predicted by Cufflinks were false positives



## AIDE discovers isoforms with biological significance



## Summary of the AIDE method

- The first isoform discovery method that directly controls false discoveries by implementing the statistical model selection principle.
- Software: https://github.com/Vivianstats/AIDE
- Manuscript:



THE PREPRINT SERVER FOR BIOLOGY

AIDE: annotation-assisted isoform discovery and abundance estimation from RNA-seq data

Wei Vivian Li, Shan Li, <sup>(D)</sup> Xin Tong, Ling Deng, <sup>(D)</sup> Hubing Shi, Jingyi Jessica Li doi: https://doi.org/10.1101/437350

In press at Genome Research.

## Isoform quantification: what are the isoform expression levels?

- More than 90% genes undergo alternative splicing in mammals [Hooper, *Human Genomics*, 2014].
- At least 35% genetic diseases involve abnormal splicing [Manning et al., *Nature Reviews Mol. Cell Biol.* 2017].


# Motivation: multiple human ESC RNA-seq samples

chr1; gene: TPR



• Apply a single-sample method to each sample separately and then average the estimated isoform abundance across multiple samples?

- Apply a single-sample method to each sample separately and then average the estimated isoform abundance across multiple samples?
  - This does not fully use the multi-sample information to reduce the variance in estimating isoform abundance

- Apply a single-sample method to each sample separately and then average the estimated isoform abundance across multiple samples?
  - This does not fully use the multi-sample information to reduce the variance in estimating isoform abundance
- Apply a single-sample method to a pooled sample from the *D* samples?

- Apply a single-sample method to each sample separately and then average the estimated isoform abundance across multiple samples?
  - This does not fully use the multi-sample information to reduce the variance in estimating isoform abundance
- Apply a single-sample method to a pooled sample from the *D* samples?
  - The estimated isoform abundance may be biased by outlier samples

# 

• It is necessary to consider the heterogeneity of different samples to make robust isoform quantification

- It is necessary to consider the heterogeneity of different samples to make robust isoform quantification
- MSIQ is able to identify a consistent group of samples that are most representative of the biological condition

- It is necessary to consider the heterogeneity of different samples to make robust isoform quantification
- MSIQ is able to identify a consistent group of samples that are most representative of the biological condition
- MSIQ increases the accuracy of isoform quantification by incorporating the information from multiple samples

- It is necessary to consider the heterogeneity of different samples to make robust isoform quantification
- MSIQ is able to identify a consistent group of samples that are most representative of the biological condition
- MSIQ increases the accuracy of isoform quantification by incorporating the information from multiple samples
- Our proposed hierarchical model is an umbrella framework that are generalizable to incorporate more delicate consideration of read generating mechanisms

# MSIQ: joint modeling of multiple RNA-seq samples for accurate isoform quantification

by Wei Vivian Li, Anqi Zhao, Shihua Zhang, and Jingyi Jessica Li Annals of Applied Statistics 12(1):510–539

R package MSIQ

http://github.com/Vivianstats/MSIQ

# Single-cell RNA-seq: dropout imputation & experimental design

# scRNA-seq vs. bulk RNA-seq at the gene level





from [Kharchenko et al., Nature methods, 2014] 28

- A dropout event occurs when a transcript is expressed in a cell but is entirely undetected in its mRNA profile
- Dropout events occur due to low amounts of mRNA in individual cells
- The frequency of dropout events depends on scRNA-seq protocols
  - + Fluidigm C1 platform:  $\sim$  100 cells,  $\sim$  1 million reads per cell
  - Droplet microfluidics:  $\sim$  10,000 cells,  $\sim$  100K reads per cell [Zilionis et al., *Nature Protocols*, 2017]
- Trade-off: given the same budget, more cells, more dropouts

### Why do we need genome-wide explicit imputation methods?

Downstream analyses relying on the accuracy of gene expression measurements:

- differential gene expression analysis
- identification of cell-type-specific genes
- reconstruction of differentiation trajectory

It is important to adjust/correct the false zero expression values due to dropouts  $% \left( {{{\left[ {{{\left[ {{\left[ {{\left[ {{\left[ {{{c}} \right]}} \right]_{{\left[ {{\left[ {{\left[ {{\left[ {{\left[ {{{c}} \right]}} \right]_{{\left[ {{c} \right]}} \right]_{{\left[ {{c} \right]}}}} \right]} } \right]} } \right]} } \right]} } } } } \right)$ 

#### Key points to consider:

- It is not ideal to impute all gene expressions
  - imputing expressions unaffected by dropout would introduce new bias
  - could also eliminate meaningful biological variation
- It is inappropriate to treat all zero expressions as missing values
  - some zero expressions may reflect true biological non-expression
  - zero expressions can be resulted from gene expression stochasticity

#### Key points to consider:

- It is not ideal to impute all gene expressions
  - imputing expressions unaffected by dropout would introduce new bias
  - could also eliminate meaningful biological variation
- It is inappropriate to treat all zero expressions as missing values
  - some zero expressions may reflect true biological non-expression
  - zero expressions can be resulted from gene expression stochasticity

How to determine which values are affected by the dropout events?

# Our method: scImpute

- 1. For each gene, to determine which expression values are most likely affected by dropout events
- For each cell, to impute the highly likely dropout values by borrowing information from the same genes' expression in similar cells



### scImpute steps

- 1. Detection of cell subpopulations and outlier cells
- 2. Identification of dropout values



### 3. Imputation of gene expression cell by cell





scImpute recovers the true expression of the ERCC spike-in transcripts, especially low abundance transcripts that are impacted by dropout events

- 3,005 cells from the mouse somatosensory cortex region
- 57 ERCC transcripts



# Example 2: cell clustering

4,500 peripheral blood mononuclear cells (PBMCs) from high-throughput droplet-based system 10x genomics [Zheng et al., *Nature communications*, 2017]

Proportion of zero expression is 92.6%



Bulk and single-cell time-course RNA-seq data profiled at 0, 12, 24, 36, 72, and 96 h of the differentiation of embryonic stem cells into definitive endorderm cells [Chu et al., *Genome biology*, 2016]

| time point                | 00h | 12h | 24h | 36h | 72h | 96h | total |
|---------------------------|-----|-----|-----|-----|-----|-----|-------|
| scRNA-seq (cells)         | 92  | 102 | 66  | 172 | 138 | 188 | 758   |
| bulk RNA-seq (replicates) | 0   | 3   | 3   | 3   | 3   | 3   | 15    |

Correlation between gene expression in single-cell and bulk data



Imputed read counts reflect more accurate gene expression dynamics along the time course



- scImpute is a flexible and easily interpretable statistical method that addresses the dropout events prevalent in scRNA-seq data
- scImpute focuses on imputing the missing expression values of dropout genes, while retaining the expression levels of genes that are largely unaffected by dropout events
- scImpute is compatible with existing pipelines or downstream analysis of scRNA-seq data, such as normalization, differential expression analysis, clustering and classification
- scImpute scales up well when the number of cells increases

# An accurate and robust imputation method scImpute for single-cell RNA-seq data

by Wei Vivian Li and Jingyi Jessica Li

Nature Communications 9:997

R package scImpute

https://github.com/Vivianstats/scImpute

### Real vs. semi-synthetic data



Huang et al., *Nature Methods* (2018)

### Real vs. semi-synthetic data



# Benchmark standard

|                                          |                  | labels used in Huang et al . |     |     |     |     |    |    |
|------------------------------------------|------------------|------------------------------|-----|-----|-----|-----|----|----|
|                                          |                  | 0                            | 1   | 2   | 3   | 4   | 5  | 6  |
| labels reported in Zeisel <i>et al</i> . | CA1-Pyramidal    | 442                          | 20  | 289 | 1   | 4   | 42 | 40 |
|                                          | S1-Pyramidal     | 2                            | 273 | 1   | 1   | 0   | 32 | 11 |
|                                          | Oligodendrocytes | 0                            | 0   | 0   | 282 | 0   | 62 | 2  |
|                                          | Interneurons     | 5                            | 7   | 2   | 0   | 220 | 6  | 1  |
|                                          | Endothelial      | 0                            | 0   | 0   | 0   | 1   | 0  | 14 |
|                                          | Microglia        | 0                            | 0   | 0   | 0   | 0   | 0  | 6  |
|                                          | Mural            | 0                            | 1   | 0   | 0   | 0   | 0  | 0  |
|                                          | Ependymal        | 0                            | 0   | 0   | 0   | 0   | 0  | 7  |
|                                          | Astrocytes       | 0                            | 1   | 0   | 2   | 0   | 1  | 20 |

# scDesign: statistical simulator for experimental design

#### Simulation-based scRNA-seq experimental design

Advantages of scDesign:

- Protocol-adaptive and data-adaptive: learn from
  - Public scRNA-seq data
  - Pilot-study data
- Generate synthetic data that well mimic real data under a pre-specified experimental setting
  - Assist experimental design & method development
- Flexible in accommodating user-specific analysis needs
- No experimental cost

## Generative framework of scDesign



#### Astrocytes vs. Oligodendrocytes (Fluidigm C1)



Bioinformatics, 35, 2019, i41–i50 doi: 10.1093/bioinformatics/btz321 ISMB/ECCB 2019

OXFORD

# A statistical simulator scDesign for rational scRNA-seq experimental design

Wei Vivian Li<sup>1</sup> and Jingyi Jessica Li D <sup>1,2,\*</sup>

<sup>1</sup>Department of Statistics, University of California, Los Angeles, CA 90095-1554, USA and <sup>2</sup>Department of Human Genetics, University of California, Los Angeles, CA 90095-7088, USA

\*To whom correspondence should be addressed.
### Bulk RNA-seq

- Isoform identification: AIDE
- Isoform quantification: MSIQ

#### Single-cell RNA-seq

- Dropout imputation: scImpute
- Simulator & experimental design: scDesign

## Dr. Wei Vivian Li

former PhD student @UCLA currently Assistant Professor @Rutgers

#### **Collaborators:**

Dr. Hubing Shi (Sichuan University)

- Dr. Xin Tong (USC)
- Dr. Shihua Zhang (CAS)
- Dr. Anqi Zhao (NUS)











# Website: http://jsb.ucla.edu