

scDesign

A statistical simulator for single-cell RNA sequencing experimental design

Jingyi Jessica Li

Department of Statistics University of California, Los Angeles

joint work with Wei Vivian Li (UCLA)

Introduction

Single Cell RNA Sequencing (scRNA-seq)

Single Cell RNA Sequencing Workflow

from *Wikipedia*, Single Cell Sequencing ³

Multiple scRNA-seq Protocols

[Svensson et al., 2018] Nature Protocols

Full length vs. Tag-based Protocols

[Ziegenhain et al., 2017] Molecular Cell

Protocol example	C1 (SMARTer)	Smart- seq2	MATQ- seq	MARS-seq	CEL-seq	Drop-seq	InDrop
Transcript data	Full length	Full length	Full length	3'-end counting	3'-end counting	3'-end counting	3'-end counting
Platform	Microfluidics	Plate- based	Plate- based	Plate-based	Plate-based	Droplet	Droplet
number of cells	10 ² -10 ³	10 ³ -10 ⁴	10 ³ -10 ⁴				
Typical read depth (per cell)	10 ⁶	10 ⁶	10 ⁶	10 ⁴ -10 ⁵			

[Haque et al., 2017] Genome Medicine

Challenge: Budget vs. Cell number vs. Dropout

The frequency of dropout events depends on scRNA-seq protocols

- Fluidigm C1 platform: \sim 100 cells, \sim 1 million reads per cell
- Droplet microfluidics: \sim 10,000 cells, \sim 100K reads per cell [Zilionis et al., 2017]

Trade-off: given the same budget, more cells, more dropouts

	Cost per cell	Cells per run	Flexibility/Customizable	10x Genomics One sample = ~600-6000 cells		
10x Genomics	+	~1000-46000	+	Reagent Kit (20 samples): \$20,000 Microfluidics Chips (Six 8-sample chips): \$1.440	Sequencing NextSeq500 High Output	
BioRad ddSeq	++	~300-10000	+	meronalala emperient e auripie emperiente	1 run (\$3700) enough for ~2-3k cells	
Fluidigm C1	++++	96 or 800	+++	Fluidiam C1 (HT assavs)	HiSeq4000 1 lane (~\$2700) enough for ~2-3k cells	
Plate methods	Protocol Dependent	10 - >10k	+++++	One run = ~800 cells Reagent Kit (5 runs): \$5,000	(Often need to purchase entire flow cell)	
				Integrated Eluidics Circuit (1 run): \$2000		

from David Cook, Ottawa Hospital Research Institute

- 1. Model-based / theoretical analysis
 - Negative Binomial model to estimate the number of cells to sequence [Baran-Gale et al., 2017] http://www.satijalab.org/howmanycells
 - A Good-Toulmin like estimator of number of cells of each tissue to maximize cell type discovery across tissues [Dumitrascu et al., 2018]

- 1. Model-based / theoretical analysis
 - Negative Binomial model to estimate the number of cells to sequence [Baran-Gale et al., 2017] http://www.satijalab.org/howmanycells
 - A Good-Toulmin like estimator of number of cells of each tissue to maximize cell type discovery across tissues [Dumitrascu et al., 2018]

Remarks:

- Requires prior knowledge of
 - Cell type composition
 - Cell type gene expression profiles
- Difficult to "visualize" the design

Experimental Design for scRNA-seq

- 2. Descriptive statistics
 - Sensitivity of most protocols saturates at \sim one million reads per cell

Experimental Design for scRNA-seq

- 2. Descriptive statistics
 - Detection rate saturates at ${\sim}4.5$ million reads per cell

- 2. Descriptive statistics
 - Sensitivity of most protocols saturates at ~one million reads per cell [Ziegenhain et al., 2017].
 - Detection rate saturates at ~4.5 million reads per cell [Svensson et al., 2017].

- 2. Descriptive statistics
 - Sensitivity of most protocols saturates at ~one million reads per cell [Ziegenhain et al., 2017].
 - Detection rate saturates at ~4.5 million reads per cell [Svensson et al., 2017].

Remarks:

- Difficult to unify to guide practices
- Not specific to the biological condition under study

Simulation-based scRNA-seq experimental design

Advantages of scDesign:

- Protocol-adaptive and data-adaptive: learn from
 - public real data [Abugessaisa et al., 2017, Cao et al., 2017]
 - pilot-study data
- Generate synthetic data that well mimic real data under a pre-specified experimental setting
 - Assist experimental design & method development
- Flexible in accommodating user-specific analysis needs
- No experimental cost

Methods

Key features:

- 1. Leverage existing real scRNA-seq data
- 2. Construct a Gamma-Normal mixture model to account for dropouts
 - Adapted from scImpute [Li and Li, 2018].
 - Estimate key gene expression parameters from real data
- 3. Two flexible modes:
 - One-state mode: a group of cells from a single cell state are sequenced
 - Two-state mode: two groups of cells from different cell states are sequenced together

Given an experimental setting

- total sequencing depth
- number of cells

a real scRNA-seq dataset from one cell state

 \rightarrow

a single scRNA-seq dataset

a. Estimate five parameters from the real scRNA-seq dataset: three gene-wise and two cell-wise parameters

b. Simulate gene- and cell-wise parameters for new cells

c. Simulate ideal gene expression levels for new cells, then introduce dropout values based on the estimated dropout parameters

d. Output a synthetic gene expression matrix with entries as read counts

Mimics an experiment where two groups of cells from two cell states are sequenced together

Given an experimental setting

- total sequencing depth
- cell numbers of the two states

two real scRNA-seq dataset from two cell states

 \rightarrow

two scRNA-seq datasets

Can generalize to multiple cell states

a. Independently estimate real data parameters for the two cell states

- a. Independently estimate real data parameters for the two cell states
- b. Independently simulate ideal gene expression levels for new cells of the two cell states

- a. Independently estimate real data parameters for the two cell states
- b. Independently simulate ideal gene expression levels for new cells of the two cell states
- c. Introduce dropout values based on the estimated dropout parameters of each state

- a. Independently estimate real data parameters for the two cell states
- b. Independently simulate ideal gene expression levels for new cells of the two cell states
- c. Introduce dropout values based on the estimated dropout parameters of each state
- d. Generate observed read counts by accounting for the fact that RNA fragments from the two batches of cells compete for the total sequencing depth

For one-state mode, given

- a real single-cell count matrix X^{real}
- I genes and J₀ cells
- constraints on the sequencing depth and cell number

simulate a new count matrix with I genes and J cells

For one-state mode, given

- a real single-cell count matrix X^{real}
- I genes and J₀ cells
- constraints on the sequencing depth and cell number

simulate a new count matrix with I genes and J cells

For two-state mode, given

- two real single-cell count matrices X^{real1} and X^{real2}
- cell state 1 with I genes and J_{01} cells
- cell state 2 with I genes and J_{02} cells
- constraints on sequencing depth and cell numbers

simulate a new count matrix for each cell state.

- X^{real}: real single-cell gene count matrix
- *I*: number of genes (rows)
- *J*₀: number of cells (columns)
- \hat{s}_{0j} : cell-wise library size

$$\hat{s}_{0j} = \sum_{i=1}^{l} X_{ij}^{\text{real}}, \ j = 1, \dots, J_0$$

- X^{real}: real single-cell count matrix
- *I*: number of genes (rows)
- *J*₀: number of cells (columns)

$$\hat{q}_{0j} = rac{1}{l} \sum_{i=1}^{l} \mathbb{I}\{X_{ij}^{\mathsf{real}} = 0\}, \; j = 1, \dots, J_0$$

Normalization and transformation:

$$X_{ij}^{\log} = \log_{10} \left(\frac{\operatorname{median}\{\hat{s}_{01}, \dots, \hat{s}_{0J}\}}{\hat{s}_{0j}} X_{ij}^{\operatorname{real}} + 1.01 \right)$$

Normalization and transformation:

$$X_{ij}^{\log} = \log_{10} \left(\frac{\operatorname{median}\{\hat{s}_{01}, \dots, \hat{s}_{0J}\}}{\hat{s}_{0j}} X_{ij}^{\operatorname{real}} + 1.01 \right)$$

Assume $X_{i1}^{\log}, \ldots, X_{iJ_0}^{\log}$ are i.i.d. following the density function $f_i(x) = \lambda_{0i} \operatorname{Gamma}(x; \alpha_{0i}, \beta_{0i}) + (1 - \lambda_{0i}) \operatorname{Normal}(x; \mu_{0i}, \sigma_{0i}^2), x \in \mathbb{R},$

- λ_{0i}: gene-wise dropout rate
- μ_{0i}: gene expression mean
- σ_{0i} : gene expression standard deviation

Normalization and transformation:

$$X_{ij}^{\log} = \log_{10} \left(\frac{\operatorname{median}\{\hat{s}_{01}, \dots, \hat{s}_{0J}\}}{\hat{s}_{0j}} X_{ij}^{\operatorname{real}} + 1.01 \right)$$

Assume $X_{i1}^{\log}, \ldots, X_{iJ_0}^{\log}$ are i.i.d. following the density function $f_i(x) = \lambda_{0i} \operatorname{Gamma}(x; \alpha_{0i}, \beta_{0i}) + (1 - \lambda_{0i}) \operatorname{Normal}(x; \mu_{0i}, \sigma_{0i}^2), x \in \mathbb{R},$

- λ_{0i}: gene-wise dropout rate
- μ_{0i}: gene expression mean
- σ_{0i}: gene expression standard deviation
- EM algorithm $\rightarrow \hat{\lambda}_{0i}, \ \hat{\mu}_{0i}, \ \hat{\sigma}_{0i}$

Scenario 1:

- Cells from the two cell states are prepared as two separate libraries and sequenced independently
 - Cells collected at two differentiating time points
 - Cells of the same tissue type from patients and healthy subjects
 - Cells of the same type but exposed to different experimental treatments
- Select the optimal cell numbers simultaneously for two libraries to optimize the subsequent DE analysis
- Constraints are the total sequencing depths of the two cell states

In Scenario 1, given

- Two real count matrices X^{real1} and X^{real2} from two cell states
- Pre-determined total sequencing depths for the two cell states

For each pair of candidate cell numbers,

- 1. Simulate one synthetic real count matrix for each cell state
- 2. Perform DE analysis
- 3. Calculate the target criterion (e.g., FDR)
 - "True" DE genes are top N genes ranked by

$$rac{|\hat{\mu}_{0i}^1-\hat{\mu}_{0i}^2|}{\sqrt{(\hat{\sigma}_{0i}^1)^2+(\hat{\sigma}_{0i}^2)^2}}$$

In Scenario 1, given

- Two real count matrices X^{real1} and X^{real2} from two cell states
- Pre-determined total sequencing depths for the two cell states

For each pair of candidate cell numbers,

- 1. Simulate one synthetic real count matrix for each cell state
- 2. Perform DE analysis
- 3. Calculate the target criterion (e.g., FDR)
 - "True" DE genes are top N genes ranked by

$$rac{|\hat{\mu}_{0i}^1-\hat{\mu}_{0i}^2|}{\sqrt{(\hat{\sigma}_{0i}^1)^2+(\hat{\sigma}_{0i}^2)^2}}\,.$$

 \Rightarrow Select the best pair of cell numbers based on the target criterion

In Scenario 2, given

- Two real count matrices X^{real1} and X^{real2} from two cell states
- Pre-determined total sequencing depth
- Proportions of the two cell states
 - Collected from domain knowledge or estimated from real data

For each candidate total cell number,

- 1. Simulate one synthetic real count matrix for each cell state
- 2. Perform DE analysis
- 3. Calculate the target criterion (e.g., FDR)

In Scenario 2, given

- Two real count matrices X^{real1} and X^{real2} from two cell states
- Pre-determined total sequencing depth
- Proportions of the two cell states
 - Collected from domain knowledge or estimated from real data

For each candidate total cell number,

- 1. Simulate one synthetic real count matrix for each cell state
- 2. Perform DE analysis
- 3. Calculate the target criterion (e.g., FDR)

 \Rightarrow Select the best cell number based on the target criterion

Results

Evaluation of the Simulated Data by scDesign

Six scRNA-seq protocols, each having three cell types:

- Smart-seq2 [Picelli et al., 2013]
- Fluidigm C1 [Pollen et al., 2014]
- Drop-seq [Macosko et al., 2015]
- 10x Genomics [Zheng et al., 2017]
- inDrop [Klein et al., 2015]
- Seq-Well [Gierahn et al., 2017]

Evaluation of the Simulated Data by scDesign

Six scRNA-seq protocols, each having three cell types:

- Smart-seq2 [Picelli et al., 2013]
- Fluidigm C1 [Pollen et al., 2014]
- Drop-seq [Macosko et al., 2015]
- 10x Genomics [Zheng et al., 2017]
- inDrop [Klein et al., 2015]
- Seq-Well [Gierahn et al., 2017]

Five simulation methods:

- scDesign
- splat [Zappia et al., 2017]
- powsimR [Vieth et al., 2017]
- scDD [Korthauer et al., 2016]
- Lun [Lun et al., 2016]

For each real count matrix, randomly split the cells into two subsets:

- one half used to estimate gene expression parameters and simulate new count matrices
- the other half used to evaluate the simulation results

Compare methods using six summary statistics

- Per-gene count mean, count variance, count coefficient of variation, and zero proportion
- Per-cell library size and zero proportion

For each real count matrix, randomly split the cells into two subsets:

- one half used to estimate gene expression parameters and simulate new count matrices
- the other half used to evaluate the simulation results

Compare methods using six summary statistics

- Per-gene count mean, count variance, count coefficient of variation, and zero proportion
- Per-cell library size and zero proportion

scDesign is ranked the best in 84 comparisons and the second best in 20 comparisons, among all the 108 comparisons.

Evaluation Results based on Smart-seq2

six summary statistics

mean

mean

mean

Evaluation Results based on Drop-seq

six summary statistics

relationships between statistics

0.75 0.50

0.25

Same cell types but different protocols:

Astrocytes vs. Oligodendrocytes (Fluidigm C1)

Same cell types but different protocols:

Astrocytes vs. Oligodendrocytes (inDrop)

Different cell types but same protocol:

Dendrocytes subtype 1 vs. Dendrocytes subtype 2 (Smart-seq2)

Different cell types but same protocol:

Dendrocytes vs. Monocytes (Smart-seq2)

protocol	cell type 1	cell type 2	precision	recall	TN	F1	F2
Smart-Seq2	dendrocyte1	monocyte1	64	256	64	128	128
Smart-Seq2	dendrocyte1	dendrocyte2	64	512	64	256	512
Drop-seq	cone	retinal ganglion	64	1024	64	512	512
Drop-seq	cone	rod	64	2048	64	1024	512
10x	tuft	goblet	64	2048	64	1024	4096
10x	tuft	stem	64	4096	64	2048	4096
C1	neuron	astrocyte	64	512	64	128	512
C1	neuron	oligodendrocyte	64	512	64	128	512
C1	astrocyte	oligodendrocyte	64	512	64	128	512
inDrop	astrocyte	oligodendrocyte	64	4096	64	1024	2048
inDrop	excitatory	interneuron	64	4096	64	2048	4096
inDrop	excitatory	oligodendrocyte	64	1024	64	128	512
Seq-Well	CD4	B cell	64	2048	64	512	512
Seq-Well	CD4	CD8	64	8192	64	8192	8192

Same cell types but different protocols and cell proportions:

Human Astrocytes (19%) vs. Oligodendrocytes (15%) (Fluidigm C1)

Same cell types but different protocols and cell proportions:

Human Astrocytes (8%) vs. Oligodendrocytes (11%) (inDrop)

Experimental design based on datasets from two brain regions: dorsal horn and hypothalamus [Marques et al., 2016] (Fluidigm C1)

OPC vs. COP

OPC vs. MFO

Experimental design based on datasets from two brain regions: dorsal horn and hypothalamus [Marques et al., 2016] (Fluidigm C1)

TN rate precision recall 1.0 1.00 1.00 0.9 -0.75 0.75 0.8 -0.50 -0.50 0.7 0.25 -0.25 0.6 0.00 128 256 512 1024 128 256 512 256 512 1024 64 64 1024 64 128 F1 F2 1.0 1.00 0.75 0.8 dorsal horn 0.50 0.6 hypothalamus 0.25 -0.4 0.00 64 128 256 512 1024 64 128 256 512 1024 cell number of each condition

39

Experimental design based on datasets from two brain regions: dorsal horn and hypothalamus [Marques et al., 2016] (Fluidigm C1)

OPC vs. NFO

OPC vs. MFO

Experimental design based on datasets from two brain regions: dorsal horn and hypothalamus [Marques et al., 2016] (Fluidigm C1)

TN rate precision recall 1.0 1.00 1.00 0.9 -0.75 0.75 0.8 -0.50 -0.50 0.7 0.25 -0.25 0.6 0.00 128 256 512 1024 128 256 512 256 512 1024 64 64 1024 64 128 F1 F2 1.0 1.00 0.75 0.8 dorsal horn 0.50 0.6 hypothalamus 0.25 -0.4 0.00 64 128 256 512 1024 64 128 256 512 1024 cell number of each condition

41

Experimental design based on datasets from two independent studies: [Macosko et al., 2015] and [Shekhar et al., 2016] (Drop-seq)

Experimental design based on datasets from two independent studies: [Macosko et al., 2015] and [Shekhar et al., 2016] (Drop-seq)

Muller Glia vs. Rods

Experimental design based on datasets from two independent studies: [Macosko et al., 2015] and [Shekhar et al., 2016] (Drop-seq)

Rods vs. Amacrine

Five DE methods:

- two-sample t test (baseline)
- MAST [Finak et al., 2015]
- SCDE [Kharchenko et al., 2014]
- DESeq2 + zingeR [Love et al., 2014, Van den Berge et al., 2017]
- edgeR + zingeR [Robinson et al., 2010]

Five DE methods:

- two-sample t test (baseline)
- MAST [Finak et al., 2015]
- SCDE [Kharchenko et al., 2014]
- DESeq2 + zingeR [Love et al., 2014, Van den Berge et al., 2017]
- edgeR + zingeR [Robinson et al., 2010]

For each of the six protocols, simulate a pair of read count matrices with 5% DE genes

scDesign Assists Comparison of DE methods

Ranking the DE methods for each protocol:

- Smart-seq2: SCDE > MAST > t test > edgeR > DESeq2
- Fluidigm C1: SCDE > MAST > t test > DESeq2 > edgeR

Ranking the DE methods for each protocol:

- Smart-seq2: SCDE > MAST > t test > edgeR > DESeq2
- Fluidigm C1: SCDE > MAST > t test > DESeq2 > edgeR
- inDrop: edgeR > MAST > SCDE > DESeq2 > t test
- 10x Genomics: edgeR > SCDE > MAST > DESeq2 > t test

Ranking the DE methods for each protocol:

- Smart-seq2: SCDE > MAST > t test > edgeR > DESeq2
- Fluidigm C1: SCDE > MAST > t test > DESeq2 > edgeR
- inDrop: edgeR > MAST > SCDE > DESeq2 > t test
- 10x Genomics: edgeR > SCDE > MAST > DESeq2 > t test
- Drop-seq: SCDE > edgeR > MAST > DESeq2 > t test
- Seq-Well: SCDE > edgeR > MAST > DESeq2 > t test

Four dimension reduction methods:

- principal component analysis (PCA)
- t-distributed stochastic neighbor embedding (tSNE)
- independent component analysis (ICA) [Hyvärinen and Oja, 2000]
- ZINB-WaVE [Risso et al., 2018]

Four dimension reduction methods:

- principal component analysis (PCA)
- t-distributed stochastic neighbor embedding (tSNE)
- independent component analysis (ICA) [Hyvärinen and Oja, 2000]
- ZINB-WaVE [Risso et al., 2018]

For each of the six protocols, simulate a set of read count matrices following a differentiation path

scDesign Assists Comparison of Dimension Reduction methods

Fluidigm C1

inDrop

Ranking the dimension reduction methods for each protocol:

- Smart-seq2: PCA > ZINB-WaVE > ICA > tSNE
- Fluidigm C1: ZINB-WaVE > tSNE > PCA > ICA

Ranking the dimension reduction methods for each protocol:

- Smart-seq2: PCA > ZINB-WaVE > ICA > tSNE
- Fluidigm C1: ZINB-WaVE > tSNE > PCA > ICA
- inDrop: tSNE > PCA > ZINB-WaVE > ICA
- 10x Genomics: tSNE > PCA > ZINB-WaVE > ICA
- Drop-seq: tSNE > PCA > ICA > ZINB-WaVE
- Seq-Well: tSNE > PCA > ZINB-WaVE \approx ICA

Conlusions

A statistical simulator scDesign for rational scRNA-seq experimental design

Wei Vivian Li, D Jingyi Jessica Li doi: https://doi.org/10.1101/437095

- scDesign simulates synthetic scRNA-seq datasets that well capture gene expression characteristics in real data
- The experimental design depends on
 - analysis task
 - scRNA-seq protocol
 - cell population heterogeneity
- Cross-study comparisons verify that scDesign leads to reproducible experimental designs

```
https://github.com/Vivianstats/scDesign
```