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Abstract

Motivation: Modeling single-cell gene expression trends along cell pseudotime is a crucial analysis for exploring
biological processes. Most existing methods rely on nonparametric regression models for their flexibility; however,
nonparametric models often provide trends too complex to interpret. Other existing methods use interpretable but
restrictive models. Since model interpretability and flexibility are both indispensable for understanding biological
processes, the single-cell field needs a model that improves the interpretability and largely maintains the flexibility
of nonparametric regression models.

Results: Here, we propose the single-cell generalized trend model (scGTM) for capturing a gene’s expression trend,
which may be monotone, hill-shaped or valley-shaped, along cell pseudotime. The scGTM has three advantages: (i)
it can capture non-monotonic trends that are easy to interpret, (ii) its parameters are biologically interpretable and
trend informative, and (iii) it can flexibly accommodate common distributions for modeling gene expression counts.
To tackle the complex optimization problems, we use the particle swarm optimization algorithm to find the con-
strained maximum likelihood estimates for the scGTM parameters. As an application, we analyze several single-cell
gene expression datasets using the scGTM and show that scGTM can capture interpretable gene expression trends
along cell pseudotime and reveal molecular insights underlying biological processes.

Availability and implementation: The Python package scGTM is open-access and available at https://github.com/
ElvisCuiHan/scGTM.

Contact: jli@stat.ucla.edu or dongyuansong@ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Pseudotime analysis is one of the most important topics in single-cell
transcriptomics. There has been fruitful work on inferring cell pseu-
dotime (Bendall et al., 2014; Cao et al., 2019; Ji and Ji, 2016;
Magwene et al., 2003; Mondal et al., 2021; Qiu et al., 2017; Shin
et al., 2015; Street et al., 2018; Trapnell et al., 2014) and construct-
ing statistical models for gene expression along the inferred cell
pseudotime (Bacher et al., 2018; Campbell and Yau, 2017; Ren and
Kuan, 2020; Song and Li, 2021; Van den Berge et al., 2020).

Informative trends of gene expression along cell pseudotime may re-
flect molecular signatures in the biological processes. For instance, a
gene may over time exhibit a hill-shaped trend (i.e. first-upward-
then-downward) (Fig. 1b) or a valley-shaped trend (i.e. first-
downward-then-upward) (Fig. 1c) trend, and both trends may indi-
cate the occurrence of some biological event. Hence, it is of great
interest to have a statistical model that can capture hill- and valley-
shaped gene expression trends along cell pseudotime.

Two types of statistical methods have been developed to model
the relationship between a gene’s expression in a cell (or a sample)

VC The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3927

Bioinformatics, 38(16), 2022, 3927–3934

https://doi.org/10.1093/bioinformatics/btac423

Advance Access Publication Date: 27 June 2022

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/16/3927/6618524 by guest on 16 N
ovem

ber 2022

https://orcid.org/0000-0002-9288-5648
https://github.com/ElvisCuiHan/scGTM
https://github.com/ElvisCuiHan/scGTM
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac423#supplementary-data
https://academic.oup.com/


and the cell pseudotime (or the sample’s physical time). Methods of
the first type are based on statistical regression models, such as gener-
alized linear models (GLM) and generalized additive models (GAM).
Specifically, the GLM used in the Monocle3 method (Cao et al.,
2019) assumes that a gene’s log-transformed expected expression in a
cell is a linear function of the cell pseudotime, making it unable to
capture hill- and valley-shaped trends. Consequently, most methods
use nonparametric regression models, such as the GAM and piece-
wise linear models, to capture complex trends. For example, Storey
et al. (2005) applied basis regression; Trapnell et al. (2014) consid-
ered the GAM with the Tobit likelihood; Ren and Kuan (2020)
applied the GAM with Bayesian shrinkage dispersion estimates; Van
den Berge et al. (2020) proposed tradeSeq using the spline-based
GAM. More recently, Song and Li (2021) proposed the
PseudotimeDE method, which fixes the P-value calibration issue in
tradeSeq and also uses the spline-based GAM. Additionally, Bacher
et al. (2018) used a piecewise linear model, which is more restrictive
than the GAM. Locally estimated scatterplot smoothing (LOESS) is
another nonparametric smoothing method that is often used for cap-
turing gene expression trends. Although these nonparametric meth-
ods can fit complex gene expression trends, they are prone to over-
fitting without proper hyper-parameter tuning (as we will show in
Section 3), and their parameters either do not directly inform the
shape of a trend (e.g. hill-shaped) or carry biological meanings.

Unlike the first type, methods of the second type use models with
direct relevance to gene expression dynamics, and notable methods
include ImpulseDE/ImpulseDE2 (Chechik and Koller, 2009; Sander
et al., 2017; Fischer et al., 2018) and switchDE (Campbell and Yau,
2017). Specifically, ImpulseDE2 estimates a gene expression trend
using a double-logistic curve to capture the non-monotonicity;
however, even though the parameters have biological
interpretations, they do not intuitively inform the shape of a trend.
In contrast, switchDE uses a restrictive model with parameters that
directly inform the shape of a trend (e.g. a gene’s activation time)
but is unable to detect non-monotonic trends.

The above review suggests that there is no current model that
can capture monotone, hill-shaped and valley-shaped trends with
biologically interpretable and trend-informative parameters. To this
end, we propose the scGTM that (i) can capture both hill- and
valley-shaped trends and monotone trends, (ii) has interpretable and
trend-informative parameters and (iii) has flexible modeling for
count data.

To estimate the scGTM parameters, we apply particle swarm op-
timization (PSO) to find the constrained maximum likelihood esti-
mates (MLE) of the model parameters (Supplementary Fig. S21).
PSO has several advantages that make it suitable for our optimiza-
tion problem: (i) it does not require the objective function to be con-
vex or differentiable; (ii) it can handle boundary constraints and
discrete parameters without having to re-formulate the objective
function, and (iii) unlike the Newton-type algorithms used in the
studies by Trapnell et al. (2014), Wood (2017) and Campbell and

Yau (2017), PSO is gradient-free. In addition, PSO codes are freely
available and easy to implement; PSO’s successes in tackling com-
plex optimization problems are already well documented in com-
puter science and engineering.

The rest of the article is organized as follows. In Section 2, we
introduce the scGTM and briefly review the PSO algorithm.
In Section 3, we compare the scGTM with the GLM, GAM,
ImpulseDE2, switchDE and LOESS, and we show scGTM’s advan-
tages in capturing informative, interpretable gene expression trends
in two real datasets. Section 4 contains a discussion and future
work.

2 Materials and methods

2.1 The scGTM formulation
Let Y ¼ ðygcÞ be an observed G�C gene expression count matrix,
where G is the number of genes, C is the number of cells (i.e. the
number of pseudotime values), and ygc is the (g, c)-th element indi-
cating the observed expression count of gene g ¼ 1; . . . ;G in cell
c ¼ 1; . . . ;C. We consider gene expression counts as random varia-
bles whose randomness comes from experimental measurement un-
certainty, so ygc is a realization of the random count variable Ygc.
Given a particular gene g, for notation simplicity, we drop the sub-
script g and denote Ygc as Yc and ygc as yc. We denote by tc 2 ½0;1�
the inferred (normalized) pseudotime of cell c. In the scGTM,
t1; . . . ; tC are treated as fixed values of pseudotime and serve as the
covariate vector of interest.

Given tc, the scGTM can model the count variable Yc using four
count distributions commonly used for gene expression data: the
Poisson, negative binomial (NB), zero-inflated Poisson (ZIP) and
zero-inflated negative binomial (ZINB) distributions.

For a hill-shaped gene, the scGTM is

Yc�ind
Fðsc;/; pcÞ; c ¼ 1; . . . ;C; (1)

logðsc þ 1Þ ¼ bþ lmag expð�k1ðtc � t0Þ2Þ if tc � t0

bþ lmag expð�k2ðtc � t0Þ2Þ if tc > t0

;

(
(2)

log
pc

1� pc

� �
¼ a logðsc þ 1Þ þ b; (3)

where Fðsc;/; pcÞ in (1) represents one of the four common count
distributions. The most general case is when Fðsc;/; pcÞ ¼
ZINBðsc;/; pcÞ with mean parameter sc � 0, dispersion parameter
/ 2 Zþ :¼ f1;2;3; . . .g and zero-inflated parameter pc 2 ½0;1�. As
special cases, Fðsc;/; 0Þ ¼ NBðsc;/Þ; Fðsc;1; pcÞ ¼ ZIPðsc;pcÞ and
Fðsc;1; 0Þ ¼ PoissonðscÞ.

We design the parametric form (2) for the following reasons.
First, on the left-hand side, logðsc þ 1Þ is motivated by the

Fig. 1. Illustration of the scGTM. (a) Four parameters of the scGTM in Equation (2) for a hill-shaped trend: the maximum log expected expression lmag (horizontal dashed

line), the activation strength k1 (absolute value of the left tangent line’s slope), the repression strength k2 (absolute value of the right tangent line’s slope), and the change time

t0 (vertical dashed line). (b) A hill-shaped trend of gene Tmsb10 (in the GYRUS dataset) fitted by the scGTM with counts modeled by the Poisson distribution. (c) A valley-

shaped trend of gene NFKBIA (in the LPS dataset) fitted by the scGTM with counts modeled by the Poisson distribution. In b–c, the scatter points indicate gene expression lev-

els, and the curves are the trends fit by the scGTM

3928 E.H.Cui et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/16/3927/6618524 by guest on 16 N
ovem

ber 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac423#supplementary-data


logarithmic link function used in the GLM and GAM. The addition
of 1 is to ensure that logðsc þ 1Þ � 0 so we can use b � 0 as the base-
line of the hill-shaped trend (empirically, b is set to 0 and works
well). Second, on the right-hand side, two partial Gaussian functions
are adopted to model the trend’s increasing and decreasing parts
separately, so that the trend is allowed to be asymmetric (e.g. the
increasing trend may be steeper or flatter than the decreasing trend).
We choose to piece two partial Gaussian functions at the maximum
into one function for two reasons: (i) the function is smooth (differ-
entiable everywhere) and has a zero derivative at the maximum; and
(ii) the function has tails that converge to the baseline b as the pseu-
dotime tc moves away from the mode t0, a pattern that agrees with
many biological processes.

Figure 1a shows the roles of the four parameters lmag, k1, k2 and
t0 in (2) for modeling a hill-shaped trend. For a valley-shaped trend,
there are four similar parameters, and we note that a monotone
increasing trend is a special case of a hill-shaped trend with the
increasing part only. The four parameters in the Figure 1a are the
maximum log expected expression lmag, the activation strength k1,
the repression strength k2, and the change time t0 where the
expected expression stops increasing. Figure 1b and c show the
scGTM fitted to the gene Tmsb10 in the GYRUS dataset and the
gene NFKBIA in the LPS dataset (Supplementary Table S1). The fit-
ted trends are hill- and valley-shaped, respectively.

In the hill-shaped scGTM, we assume that a gene’s expression
count Yc in cell c has mean parameter sc and zero-inflation parameter
pc, and both depend on the pseudotime tc of cell c. In (2), we link sc to
tc. In (3), we link pc to tc using a logistic regression with predictor
logðsc þ 1Þ, i.e. the logistic transformation of pc is a linear function of
logðsc þ 1Þ (with slope a and intercept b) and thus a function of tc.

Besides / 2 Zþ and a; b 2 R, the following parameters of the
hill-shaped scGTM shown in Figure 1a need to be estimated for bio-
logical interpretations:

• lmag � 0: magnitude of the hill;
• k1 � 0: activation strength (how fast the gene is up-regulated);
• k2 � 0: repression strength (how fast the gene is down-

regulated);
• t0 2 ½0;1�: change time (where the gene reaches the maximum

expected expression). It is within ½0;1� because the pseudotime is

normalized to ½0;1�.
For a valley-shaped gene, the scGTM is the same except that we

replace (2) by

logðsc þ 1Þ ¼
(

b� lmag expð�k2ðtc � t0Þ2Þ if tc � t0

b� lmag expð�k1ðtc � t0Þ2Þ if tc > t0

; (4)

where b indicates the baseline (maximum) log-transformed(expected
expression þ 1) of the valley-shaped gene. The interpretation of the
four key parameters of the valley-shaped scGTM becomes

• lmag 2 ½0; b�: magnitude of the valley;
• k1 � 0: activation strength (how fast the gene is up-regulated);
• k2 � 0: repression strength (how fast the gene is down-regulated);
• t0 2 ½0;1�: change time (where the gene reaches the minimum

expected expression).

Compared to the hill-shaped scGTM, the valley-shaped scGTM
has an additional baseline parameter b that needs to be estimated.
For simplicity, we estimate b by a plug-in estimator
b̂ ¼ maxc2f1;...;Cg logðyc þ 1Þ, where y1; . . . ; yC are the observed
counts of a valley-shaped gene. This estimate is justified by the fact
that the maximum likelihood estimate (MLE) of the upper bound
parameter of a domain is the maximum order statistic; i.e. if
x1; . . . ; xn are randomly sampled from a distribution with domain
½a; b�, then b̂ ¼ maxi2f1;...;ngxi is the MLE of b. For the common
parameters of the hill- and valley-shaped scGTMs, we next discuss
how PSO can provide constrained likelihood estimates for these
parameters.

2.2 Constrained MLE and the PSO algorithm
To fit the scGTM to a gene, we first need to ascertain whether the
gene is hill- or valley-shaped: we fit both hill- and valley-shaped
models to the gene’s data and choose the model that has the smaller
Akaike information criterion (AIC) value (see Supplementary
Information S9 for the model selection results for the two genes in
Fig. 1b and c). Next, based on the trend shape, we estimate the
scGTM parameters. For a hill-shaped gene, we estimate the scGTM
parameters H ¼ ðlmag; k1;k2; t0;/; a; bÞT from the observed expres-
sion counts y ¼ ðy1; . . . ; yCÞT and cell pseudotimes t ¼ ðt1; . . . ; tCÞT
using the constrained maximum likelihood method, which respects
each parameter’s range and ensures the estimation stability. Let
log LðHjy; tÞ be the log likelihood function and the optimization
problem is:

max
H

log LðHjy; tÞ such that

min
c2f1;...;Cg

logðyc þ 1Þ � lmag � max
c2f1;...;Cg

logðyc þ 1Þ;

k1; k2 � 0; min
c2f1;...;Cg

tc � t0 � max
c2f1;...;Cg

tc; / 2 Zþ;

(5)

where

log LðHjy; tÞ ¼ log

"YC
c¼1

PðYc ¼ ycjtcÞ
#

¼
XC

c¼1

log ½ð1� pcÞf ðycjtcÞ þ pc Iðyc ¼ 0Þ�
(6)

and

f ðycjtcÞ ¼
syc

c

yc!

Cð/þ ycÞ
Cð/Þð/þ scÞyc

1

1þ sc

/

� �/ ;

which can be further specified as a function of H based on (2)
and (3).

For a valley-shaped gene, the constrained MLE problem is simi-
lar, and we omit the discussion for space consideration.

There are two difficulties in the optimization problem (5). First,
the likelihood function (6) is neither convex nor concave. Second,
the constraint is linear in lmag, k1, k2 and t0, but / is a positive
integer-valued variable. Hence, conventional optimization algo-
rithms such as P-IRLS in GAM (Wood, 2011, 2017) and L-BFGS in
switchDE (Campbell and Yau, 2017) are difficult to apply in this
case. Metaheuristics is a class of assumptions-free general purpose
optimization algorithms used to tackle challenging and high-
dimensional optimization problems in quantitative sciences
(Whitacre, 2011a,b; Yang, 2017). PSO is an exemplary metaheuris-
tic algorithm, and it has effectively solved various types of optimiza-
tion problems. Korani and Mouhoub (2021) is a recent review of
metaheuristic algorithms and their applications across various
disciplines.

PSO first generates a swarm of candidate solutions (known
as particles) to the optimization problem (5). At each iteration,
particles change their positions within the constraints, and the
algorithm finds the best solution among all particle trajectories.
We summarize the vanilla PSO algorithm (Bratton and Kennedy,
2007) for the constrained MLE of the scGTM in Algorithm 1, and
we provide further details of PSO in the Supplementary
Information.

2.3 Approximate confidence intervals of the four key

parameters in the scGTM
The estimated parameters Ĥ ¼ ðl̂mag; k̂1; k̂2; t̂0; /̂; â; b̂ÞT are next
used to construct approximate confidence intervals for lmag, k1, k2,
and t0 using the maximum likelihood theory. Specifically, we calcu-
late the plug-in asymptotic covariance matrix of ðl̂mag; k̂1; k̂2; t̂0ÞT
as the inverse of the partial Fisher information matrix of the four
parameters evaluated at ðl̂mag; k̂1; k̂2; t̂0ÞT (detailed derivation in the
Supplementary Information). Then we use the diagonal elements of

scGTM 3929

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/16/3927/6618524 by guest on 16 N
ovem

ber 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac423#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac423#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac423#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac423#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac423#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac423#supplementary-data


this matrix as the plug-in asymptotic variances of l̂mag; k̂1; k̂2 and

t̂0, and denote them by V̂arðl̂magÞ; V̂arðk̂1Þ; V̂arðk̂2Þ and V̂arðt̂0Þ,
respectively. We then obtain a 95% approximate confidence interval

for each of the parameters: ½l̂lb
mag; l̂

ub
mag�; ½k̂

lb

1 ; k̂
ub

1 �; ½k̂
lb

2 ; k̂
ub

2 � and

½t̂ lb
0 ; t̂

ub
0 �, where

l̂ lb
mag ¼ max

�
0; l̂mag � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðl̂magÞ

q �
; l̂ub

mag ¼ l̂mag þ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðl̂magÞ

q
;

k̂
lb

1 ¼ max
�

0; k̂1 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðk̂1Þ

q �
; k̂

ub

1 ¼ k̂1 þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðk̂1Þ

q
;

k̂
lb

2 ¼ max
�

0; k̂2 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðk̂2Þ

q �
; k̂

ub

2 ¼ k̂2 þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðk̂2Þ

q
;

t̂
lb
0 ¼ max

�
0; t̂0 � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðt̂0Þ

q �
; t̂

ub
0 ¼ min

�
t̂0 þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðt̂0Þ

q
; 1
�
:

3 Results

3.1 scGTM outperforms GAM, GLM, LOESS, switchDE

and ImpulseDE2 in capturing informative and

interpretable trends
As an example, we use the MAOA gene in the WANG dataset
(Wang et al., 2020) (Supplementary Table S1) to compare the fitted
trends of the scGTM, GAM, GLM, LOESS, switchDE and
ImpulseDE2. In the original study, the gene was reported to have a
hill-shaped trend. Our comparison results have several interesting
observations. First, we show that the scGTM provides more in-
formative and interpretable gene expression trends than the GAM
and GLM do. Figure 2a shows that the scGTM robustly captures
the hill-shaped trends by assuming the Poisson, ZIP, NB and ZINB
distributions and consistently estimates the change time around
0.75, which is where the MAOA gene reaches its expected max-
imum expression. While the GAM also estimates the maximum ex-
pression around 0.75, its estimated trends are much more complex.
This is likely due to possible overfitting (despite the use of penaliza-
tion), and consequently, the GAM trends are more difficult to inter-
pret than the scGTM trends (Fig. 2b). Unlike the scGTM and
GAM, the GLM can only capture monotone trends, making it un-
able to detect the possible existence of expression change time
(Fig. 2c). Second, we compare the scGTM with the two existing
methods, switchDE and ImpulseDE2, that use models with direct
relevance to gene expression dynamics. Although switchDE esti-
mates the activation time around 0.75, similar to the scGTM’s esti-
mated change time, switchDE cannot capture the downward
expression trend as the cell pseudotime approaches 1.00 due to its
monotone nature (Fig. 2d). ImpulseDE2 can theoretically capture a
hill-shaped trend, but it only fits a monotone increasing trend for
the MAOA gene (Fig. 2e). A likely reason is that the method was
designed for time-course bulk RNA-seq data. Third, we compare
the scGTM with the LOESS method commonly used for explora-
tory data analysis. While LOESS outputs a reasonable, though less
smooth trend (Fig. 2f), it is not probability-based and thus does not
have a likelihood. Hence, LOESS does not allow likelihood-based
model selection, a functionality of the scGTM. To summarize, the
scGTM outperforms the GAM, GLM, LOESS, switchDE and
ImpulseDE2 by providing more informative and interpretable
trends with less concern on model overfitting.

In addition to the MAOA gene, Wang et al. (2020) reported
19 other exemplary genes that define menstrual cycle phases
and exhibit hill-shaped expression trends along the cell pseudotime.
Supplementary Figures S1–S19 compare the various model fits for
the 19 genes, and we observe that the scGTM consistently provides
more informative, interpretable trends than the other methods do.

Besides visually inspecting the fitted expression trends, we com-
pare the AIC values of the scGTM, GAM and GLM used with the
four count distributions fitted to the aforementioned 20 genes. Note
that a lower AIC value indicates a model’s better goodness-of-fit
with the model complexity penalized. Supplementary Figure S20
shows that the scGTM has comparable or even lower AIC values
than the GAM’s AIC values, confirming that the scGTM fits well to

data despite its much simpler model than GAM’s. Based on Figure 2
and Supplementary Figures S1–S20, we use the scGTM with the
Poisson distribution in the following applications for its goodness-
of-fit and model simplicity. This choice is consistent with previous
research on modeling sequencing data (Silverman et al., 2020; Jiang,
2022) and other count data (Campbell, 2021; Warton, 2005).

3.2 scGTM recapitulates gene expression trends of

endometrial transformation in the human menstrual cycle
The WANG dataset contains 20 exemplar genes that exhibit tem-
poral expression trends in unciliated epithelia cells in the human
menstrual cycle (Wang et al., 2020). The original study also ordered
the 20 genes by the estimated pseudotime at which they achieved the
maximum expression (Fig. 3a; genes ordered from top to bottom),
and it was found that the ordering agreed well with the menstrual
cycle phases (Fig. 3a; the top bar indicates the phases). Comparing
the fitted expression trends of the 20 genes by the scGTM,
switchDE and ImpulseDE2, we observe that only the scGTM trends

Algorithm 1 PSO for the constrained MLE for the scGTM

Input data: a gene’s expression counts and cell pseudotime

values y: a C� 1 gene expression count vector; t: a C� 1

cell pseudotime vector;

Input parameters:

F: count distribution: Poisson, NB, ZIP, or ZINB;

H: number of iterations in PSO; set to H¼100 by default;

w, c1, and c2: hyperparameters of PSO; set to w¼0.9,

c1 ¼ 1:2, and c2 ¼ 0:3 by default;

Algorithm:

1. Randomly initialize H with B particles: H0
1;H

0
2; . . . ;H0

B;

2. Randomly initialize velocity vectors for the B particles:

v0
1; v

0
2; . . . ; v0

B;

3. For h ¼ 0 to H:

i. Update the best solution of each particle i

Ĥ
h

i ¼ argmax
H2Ah

i

log LðHjy; tÞ;

where Ah
i ¼ fHk

i : k ¼ 0; . . . ; hg; i ¼ 1; . . . ;B;

ii. Update the global best solution

Ĥ
h ¼ arg max

H2[B
i¼1
Ah

i

log LðHjy; tÞ;

iii. Update velocity of each particle i

vhþ1
i ¼ wvh

i þ c1rh
i1ðĤ

h

i �Hh
i Þ þ c2rh

i2ðĤ
h �Hh

i Þ;

where rh
i1 and rh

i2 are independently generated from

Unifð0;1Þ; i ¼ 1 . . . ;B;

iv. Update each particle

Hhþ1
i ¼ Hh

i þ vh
iþ1; i ¼ 1; . . . ;B;

4. Set Ĥ ¼ Ĥ
H

;

5. Calculate 95% approximate confidence intervals of key

parameters based on Ĥ (Section 2.3).

Output:

�log LðĤjy; tÞ: fitted negative log likelihood value;

Ĥ ¼ ðl̂mag; k̂1; k̂2; t̂0; /̂; â; b̂ÞT: estimated parameters;

½l̂lb
mag; l̂

ub
mag�; ½k̂

lb

1 ; k̂
ub

1 �; ½k̂
lb

2 ; k̂
ub

2 �, and ½t̂ lb
0 ; t̂

ub
0 �: 95% approxi-

mate confidence intervals.
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agree well with the data (Fig. 3). Additionally, we evaluate the 20
genes’ estimated change times (i.e. t0) by the scGTM and their esti-
mated activation times by the switchDE. Although the change times
and activation times are both expected to correlate well with the
gene ordering in the original study, only the change times estimated
by the scGTM fulfills this expectation (Fig. 3b and c). Compared
with the scGTM, switchDE miscalculates the activation times for
many hill-shaped genes whose maximum expression occurs in the
middle of the cycle; this is likely due to the fact that switchDE can
only capture monotone trends (Fig. 3c). Similarly, ImpulseDE2 can-
not well capture the trends of those hill-shaped genes (Fig. 3d).

Unlike switchDE and ImpulseDE2, the scGTM estimates the change
times reasonably for almost all genes. For instance, the GPX3 gene
has an estimated change time at 0.88, consistent with its role as a se-
cretory middle/late phase marker gene (Wang et al., 2020).

Besides the 20 exemplar genes, we apply the scGTM, switchDE
and ImpulseDE2 to fit the expression trends of all 1382 menstrual
cycle genes reported in Wang et al. (2020). Supplementary Figure
S28 shows that the scGTM still outperforms switchDE and
ImpulseDE2 for capturing these genes’ expression trends. In sum-
mary, the scGTM provides useful summaries for gene expression
trends in the human menstrual cycle.

Fig. 2. Comparison of the scGTM with GAM, GLM, LOESS, switchDE and ImpulseDE2 for fitting the expression trend of gene MAOA in the WANG dataset (Wang et al.,

2020) (Supplementary Table S1). In the first four columns, the three rows correspond to (a) scGTM, (b) GAM and (c) GLM. From left to right, the first four columns corres-

pond to Poisson, ZIP, NB and ZINB as the count distribution used in the scGTM, GAM and GLM. The fifth column corresponds to (d) switchDE, (e) ImpulseDE2 and (f)

LOESS. Each panel shows the same scatterplot of gene MAOA’s log-transformed expression counts versus cell pseudotime values, as well as a model’s fitted trend. With all

four count distributions, the scGTM robustly captures the gene expression trend and estimates the change time around 0.75. In contrast, GLM, switchDE and ImpulseDE2

only describe the trend as increasing; GAM overfits the data and does not output trends as interpretable as the scGTM’s; LOESS outputs a reasonable trend, but it does not

allow likelihood-based model selection like the scGTM does

Original Data

PLAU
MMP7
THBS1
CADM1
NPAS3
ATP1A1
ANK3
ALPL
TRAK1
SCGB1D2
MT1F
MT1X
MT1E
MT1G
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DPP4
NUPR1
GPX3
PAEP

Phase

Fitted scGTMs

PLAU
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Fig. 3. Fitted expression trends by the scGTM, switchDE and ImpulseDE2 for 20 exemplar genes in the WANG dataset (Wang et al., 2020) (Supplementary Table S1). All

panels are ordered by cell pseudotime values from 0 (left) to 1 (right). The top color bars show the endometrial phases defined in the original study. (a) The original expression

values along pseudotime. (b) The fitted trends of the scGTM, with the short vertical segments highlighting the estimated change times t0. (c) The fitted trends of switchDE,

with the short vertical segments highlighting the estimated activation times. (d) The fitted trends of ImpulseDE2
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3.3 scGTM identifies informative gene expression

trends after immune cell stimulation
As the second real data application, we use the scGTM to categorize
gene expression trends in mouse dendritic cells (DCs) after stimula-
tion with lipopolysaccharide (LPS, a component of Gram-negative
bacteria) (Shalek et al., 2014). First, we apply the likelihood ratio
tests to screen the genes where the scGTM fits significantly better
than the null Poisson model [in which sc and pc in (1) do not depend
on cell pseudotime tc] does. Assuming that the likelihood ratio statis-
tic of every gene follows v2

3 as the null distribution, we retain 2405
genes whose Benjamini–Hochberg (BH) adjusted P-values � 0:01.

Second, we use the scGTM’s confidence intervals of the three
parameters t0, k1 and k2 to categorize the 2405 genes into three
types: (i) hill-shaped and mostly increasing genes: tlb

0 > 0:5þ 0:1
(change time occurs at late pseudotime) and klb

1 > 1 (strong activa-
tion strength), (ii) hill-shaped and mostly decreasing genes: tub

0 <
0:5� 0:1 (change time occurs at early pseudotime) and klb

2 > 1
(strong repression strength) and (iii) valley-shaped genes. To demon-
strate that this categorization is biologically meaningful, we perform
gene ontology (GO) analysis on the three gene types and compare
the enriched GO terms. Figure 4a shows that the three gene types
are enriched with largely unique GO terms, verifying their

Fig. 4. Three types of gene expression trends characterized by the scGTM parameters in the LPS dataset (Supplementary Table S1). (a) GO enrichment analysis of the three gene

types. The top enriched GO terms are different among the three gene types. Notably, the hill-shaped and mostly increasing genes (1st column) are functionally related to immune

responses. (b) Visualization of example genes in the three types. The scatter plots show gene expression data; the trends estimated by the scGTM (curves) well match the data
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functional differences. Notably, the hill-shaped and mostly increas-
ing genes are related to immune response processes, showing con-
sistency between their expression trends (activation after the LPS
stimulation) and functions (immune response). Further, we visualize
five illustrative genes from each gene type (Fig. 4b) and observe that
the scGTM’s fitted trends agree well with the data. In conclusion,
the scGTM can help users discern genes with specific trends by its
trend-informative parameters.

Besides the above three real data applications, we conduct a
simulation study to verify the robustness of the scGTM to gene ex-
pression trends not generated from the scGTM assumptions. The
simulation results also show that, beyond good interpretability, the
scGTM is flexible enough to fit various trends to a similar extent as
the GAM does (Supplementary Information S3). Moreover, we use a
bootstrap analysis to show that the fitted scGTM trends have a
smaller variance than the fitted GAM trends do (Supplementary
Information S3), at the cost of a larger bias.

4 Discussion

We propose the scGTM as a flexible and interpretable statistical
model for studying single-cell gene expression trends along cell pseu-
dotime. Using four count distributions and two real datasets, we
demonstrate that the scGTM has interpretable parameters that can
directly inform a trend for gene expression counts. The scGTM
parameters are estimated by the constrained maximum likelihood
estimation via PSO, one of the most popular metaheuristic algo-
rithms for function optimization. We show that scGTM has distinct
advantages over the classic models GLM and GAM and the two re-
cent methods switchDE and ImpulseDE2 in that it can uniquely cap-
ture robust, informative and interpretable trends. In contrast, the
GLM and switchDE can only estimate monotonic trends; the GAM
often provides trends that are too complex to interpret, and
ImpulseDE2 (a method designed for bulk RNA-seq data) does not
have stable performance on single-cell data. We then use the esti-
mated parameters and confidence intervals from the scGTM to char-
acterize gene expression trends.

Note that we can extend the scGTM by assuming a more compli-
cated mean function, whose estimation can still be achieved by the
flexible PSO algorithm. To demonstrate this functionality of the
scGTM, we conduct a simulation in Supplementary Information
S10, where we use the sine function to generate a gene’s true expres-
sion trend along the pseudotime. With its mean function set as as
the sine function, the scGTM accurately estimates the gene trend
(Supplementary Fig. S25). In a future version of the scGTM pack-
age, we can allow users to input specified mean functions that reflect
the gene expression trends of interest. On the other hand, if users do
not have any prior preference for the gene expression trends, we
would recommend the GAM that can capture flexible trends.

Strictly speaking, the inference of the scGTM has two caveats.
First, the parameter estimation includes a double-dipping procedure:
the same data are first used to decide whether a trend is hill- or
valley-shaped and second used to estimate the parameters. Second,
since only the key parameters lmag, k1, k2 and t0 are inferential tar-
gets, the other parameters /, a and b should be regarded ‘nuisance’
parameters. However, the construction of confidence intervals of
the key parameters does not account for these two caveats and
would thus result in overly optimistic confidence intervals. We will
investigate how to obtain better-calibrated confidence intervals in
future research.

In our previous work (Song and Li, 2021), we developed a
method PseudotimeDE to account for the uncertainty of inferred
pseudotime on the inference of differentially expressed genes along
the pseudotime. Note that PseudotimeDE is directly extendable to
the scGTM, by just replacing the GAM in PseudotimeDE by the
scGTM. However, here our focus is on proposing the scGTM for
interpreting a trend, instead of testing whether a trend is different
from a horizontal line, i.e. the focus of PseudotimeDE. Hence, we
leave the incorporation of the scGTM into PseudotimeDE to future
work. Moreover, we have a simulation study to show that the fitted

scGTM trends have shapes largely robust to noise added to pseudo-
time (Supplementary Information S4).

The current implementation of the scGTM is only applicable to
a single pseudotime trajectory (i.e. cell lineage). A natural extension
is to split a multiple-lineage cell trajectory into single lineages and fit
the scGTM to each lineage separately.

In addition, the vanilla PSO algorithm in this article handles
each parameter’s constraint separately. Hence, if we need a con-
straint on more than one parameter, e.g. k1=k2 should be within an
user-specified range, then we have to develop a variant algorithm of
PSO or use other metaheuristics algorithms.
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