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Integrated molecular and functional
characterization of the intrinsic apoptotic
machinery identifies therapeutic
vulnerabilities in glioma

Elizabeth G. Fernandez1, Wilson X. Mai 1, Kai Song2, Nicholas A. Bayley 1,
Jiyoon Kim3, Henan Zhu1, Marissa Pioso1, Pauline Young1, Cassidy L. Andrasz1,9,
Dimitri Cadet 1, Linda M. Liau 4,5, Gang Li3, William H. Yong6,
Fausto J. Rodriguez6, Scott J. Dixon 7, Andrew J. Souers 8,
Jingyi Jessica Li 3,4,9,10,11, Thomas G. Graeber 1,4,12,13,
Timothy F. Cloughesy 1,4,14 & David A. Nathanson 1,4

Genomic profiling often fails to predict therapeutic outcomes in cancer. This
failure is, in part, due to a myriad of genetic alterations and the plasticity of
cancer signaling networks. Functional profiling, which ascertains signaling
dynamics, is an alternative method to anticipate drug responses. It is unclear
whether integrating genomic and functional features of solid tumours can
provide unique insight into therapeutic vulnerabilities. We perform combined
molecular and functional characterization, via BH3 profiling of the intrinsic
apoptotic machinery, in glioma patient samples and derivative models. We
identify that standard-of-care therapy rapidly rewires apoptotic signaling in a
genotype-specific manner, revealing targetable apoptotic vulnerabilities in
gliomas containing specific molecular features (e.g., TP53 WT). However,
integration of BH3 profiling reveals high mitochondrial priming is also
required to induce glioma apoptosis. Accordingly, a machine-learning
approach identifies a composite molecular and functional signature that best
predicts responses of diverse intracranial glioma models to standard-of-care
therapies combined with ABBV-155, a clinical drug targeting intrinsic apopto-
sis. This work demonstrates how complementary functional and molecular
data can robustly predict therapy-induced cell death.

Next-generation sequencing has revealed the altered genetic and
transcriptional landscape of human cancers1,2. These data have led to
the molecular classification of tumours, and to subsequent tailored
treatment regimens that have successfully linked genetic profiles to
therapeutic vulnerabilities3,4. However, even in the presence of a vali-
dated oncogenic driver,molecularly guided therapy often fails to elicit
clinical responses in cancer patients5,6. The array of genetic alterations

within a given tumour, coupled with the high plasticity of signaling
networks, can provide tumours with unpredictable avenues to cir-
cumvent therapeutic interventions7,8.

Functional precision medicine (FPM) attempts to address these
challenges by assessing the response of live cells to specific
perturbations9. When tumourigenic pathways have defined measur-
able outputs, perturbations (e.g., drugs, metabolites, peptides) that
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alter the functional circuitry are added to live cells to assess the state of
that specific pathway9. This approach can identify tumour vulner-
abilities as well as predict drug responses, without pre-existing
knowledge of the molecular alterations present in the cell10–12. Nota-
bly, the application of FPM to match cancer patients with specific
therapies has shown significant clinical promise13–16. However, these
approaches have typically required deriving ex vivo cell cultures of
patient cells for drug screening where, in particular for solid tumours,
the non-native environment can preclude the establishment of a viable
or faithful cell culture17–19.

BCL-2 homology domain (BH3) profiling is a functional assay that
interrogates tumour intrinsic apoptotic pathway function without the
need to establish an ex vivo cell culture20–22. Briefly, by exposing a
single-cell suspension of tumour cells to pro-apoptotic BH3-only
peptides that have specific affinities for various anti-apoptotic BCL-2
family proteins (e.g., MCL-1, BCL-XL and BCL-2), both a tumour’s
dependency on an apoptotic block(s) and the overall apoptotic
potential for cell death (i.e., mitochondrial priming) can be assessed23.
As a result, BH3 profiling can predict in vivo sensitivity to conventional
anti-cancer agents (DNA-damaging and targeted therapies)20,24, and to
characterise and guide the translationof smallmolecule inhibitors that
directly target the apoptotic blocks (e.g., BH3 mimetics), some of
which have been clinically evaluated (e.g., Venetoclax, Navitoclax)25.
Thus, unlike other FPMmethods that necessitate the establishment of
ex vivo cell cultures, BH3profiling offers a robust and directmethod to
functionally assess a critical cell fate pathway in cancer cells freshly
isolated from tumour samples26.

Here, we hypothesise that integrating genomic and BH3 func-
tional profiling may reveal specific genetic events that associate with
particular apoptotic dependencies. In this investigation, we focus on
malignant glioma, a cancer characterised by both genetic diversity and
profound resistance to cell death26,27. Using patient tumour specimens,
together with a library of patient-derived gliomaspheres and intra-
cranial mouse xenografts to confirm and expand on our clinical find-
ings, our integrated molecular and BH3 functional analysis reveals
previously unrecognized insight into apoptotic resistance in glioma
leading to a tailored therapeutic approach for gliomas with specific
genetic and functional features.

Results
BCL-XL and MCL-1 create a dual apoptotic barrier in glioma
Prior work in a small number of cell culture models suggests glio-
blastoma (GBM) cells may have survival dependencies on the apop-
totic blocks BCL-XL, BCL-2 and/or MCL-128–30. However, the
composition of apoptotic block dependencies among glioma patient
tumours — in which the genomic landscape is diverse — has yet to be
functionally defined. To search for relationships between recurring
genetic alterations and specific apoptotic block dependencies in
glioma patients, we molecularly and functionally characterised 30
uniquepatient glioma tumoursbyperformingwhole exome (WES) and
RNA sequencing (RNA-seq) coupled with BH3 profiling (Fig. 1A, Sup-
plementary Data Table 1). Purified tumour cell specimens, which
included freshly isolated patient tumour cells from both newly diag-
nosed and recurrent IDH WT (n = 20) GBM as well as IDH mutant
gliomas (n = 10), underwent BH3 profiling and molecular analysis fol-
lowing tissue dissociation and removal of red blood cells (RBCs),
myelin and CD45+ cells (Fig. 1A). Molecular analyses revealed our
patient tumour samples contained the commonly recurring genetic
events in glioma as described by The Cancer Genome Atlas
(TCGA)31 (Fig. 1B).

To functionally define the apoptotic block(s) dependencies
among our patient sample cohort, ~1.5 × 106 purified patient cells were
permeabilized and themitochondriawere exposed to either individual
or combinations of peptides or small molecule inhibitors that have
specific affinities for the anti-apoptotic blocks: BCL-XL (peptide: HRK),

MCL-1 (peptide: MS1), BCL-2 (BH3 mimetic: ABT-199), and dual BCL-2/
BCL-XL (peptide: BAD) (Fig. 1A). Consistent with previous work and as
demonstrated in Ext Fig. 1A using established cell line controls, the
induction of cytochrome c release by specific peptide(s) — as mea-
sured by flow cytometry — indicates a reliance on a particular apop-
totic block to inhibit mitochondria outer membrane permeabilization
(MOMP) and, thereby, prevent intrinsic apoptosis20. Interestingly,
across our patient samples, BH3 profiling revealed that the most sig-
nificant increase in cytochrome c release, irrespective of genetic
alterations, was observed only when peptides specific for BCL-XL and
MCL-1were combined (Fig. 1B, C). Thus, BCL-XL andMCL-1 act as cross-
compensatory blocks to prevent glioma tumour MOMP and poten-
tially apoptosis.

To test the prediction that inhibition of both MCL-1 and BCL-XL is
required to promote glioma apoptosis, we utilized a library of mole-
cularly diverse patient-derived gliomaspheres (n = 26), which retain
the genetic features and tumour initiating potential of GBM patient
tumours (Supplementary Data Fig. 1B)18. Like the patient tumour
cohort, BH3 profiling of gliomaspheres revealed dual BCL-XL andMCL-
1 blocks to prevent MOMP (Fig. 1C and Supplementary Data Fig. 1B). In
agreement with this finding, only the combination of small molecule
drugs targeting BCL-XL (A-1155463) and MCL-1 (S63541) were con-
sistently capable of inducing apoptosis in the panel of gliomaspheres
(Fig. 1D–F). Therefore, BH3 profiling of primary GBM cells can strongly
predict apoptotic block dependencies (Fig. 1G).

Intriguingly, while this functionally defined dependency on BCL-
XL and MCL-1 is coupled to their high RNA expression in patients and
gliomaspheres28 (Supplementary Fig. 1C), this relationship did not
extend to protein levels of BCL-XL andMCL-1, whose expression, along
with other BCL-2 family members, was variable among patient-derived
gliomaspheres and glioma patient samples (Supplementary Fig. S1D,
E). Thesefindings confirmprevious studies showing that protein levels
of anti-apoptotic BCL-2 family members are often incapable of pre-
dicting apoptotic block dependencies32. Taken together, these data
indicate BCL-XL and MCL-1 comprise a dual apoptotic barrier to block
intrinsic apoptosis across molecularly heterogeneous patient glioma
tumours.

Standard-of-care therapy results in an exclusive survival
dependency on BCL-XL in TP53 wild-type GBM
Ionizing radiation (IR) is standard treatment for GBM patients; how-
ever, tumour responses are typically short-lived33. Resistance to cell
death via apoptosis may play a causal role in the lack of treatment
durability34. Indeed, while IR administration at a range of doses
strongly reduced gliomasphere proliferation, it weakly induced cell
death across the entire panel of cells tested (n = 17) (Fig. 2A). To
examine the role of BCL-XL or MCL-1 (or both) in impeding treatment-
mediated apoptosis, we exposed a small cohort of gliomaspheres
(n = 8) to IR and subsequently quantified therapy induced changes in
the functional dependencies on BCL-XL and MCL-1 using the
treatment-incorporating approach of Dynamic BH3 Profiling (DBP)35.
DBP revealed acute IR treatment (48 hours) caused a subset of glio-
masphere lines to shift to a single BCL-XL dependency to prevent
MOMP while the remaining gliomaspheres maintained their dual BCL-
XL and MCL-1 blocks (Fig. 2B).

To detect potential associations between glioma genotypes and
changes in apoptotic dependencies with radiotherapy, we queried
whole-exomedata fromourgliomaspheres.All gliomaspheres inwhich
IR induced a sole dependency on BCL-XL for survival were char-
acterised as wild-type TP53 (TP53 WT) (Fig. 2C). This singular BCL-XL

dependency was demonstrated by caspase-dependent intrinsic apop-
tosis when BCL-XL was targeted genetically or pharmacologically (with
A-1155463) in combination with IR (Fig. 2C, D, Supplementary Fig. S2A,
B). By contrast, the gliomaspheres maintaining their dual dependency
on BCL-XL andMCL-1 under IR treatment had inactivatingmutations in
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TP53 (i.e., hereafter referred to asmut-p53). These gliomaspheres were
insensitive to IR combined with BCL-XL inhibition (Fig. 2C, D, Supple-
mentary Figure S2B). In an orthogonal approach, CRISPR-Cas9 medi-
ated TP53 knock-out (KO) prevented two p53 WT lines (HK301 and
GS025) from converting to a single dependency on BCL-XL with IR
(Fig. 2E) and subsequent cell death (Fig. 2F). Likewise, pharmacological
p53 transcription inhibition with pifitrin-α (PFTα)36 mitigated cell
death with combined IR and BCL-XLi in p53 WT gliomaspheres (Sup-
plementary Fig. 2C). Finally, the IR-induced switch to BCL-XL depen-
dence preceded the induction ofGBMcell senescence (Supplementary
Fig. 2D)37, indicating that IR treatment can create a BCL-XL dependency
independent of GBM cell senescence. Collectively, these results
demonstrate that all GBM tested have dual BCL-XL and MCL-1 anti-
apoptotic blocks; however, in the face of acute IR treatment, p53
promotes an exclusive dependency on BCL-XL for tumour cell survival.

To investigate whether IR promotes a BCL-XL dependency in a
p53-dependent manner in vivo, we established orthotopic brain
xenografts from p53WT (GS025) andmut-p53 (GS005) gliomasphere
lines. Once exponential tumour growth was confirmed, mice were
treated with 10Gy IR cranially and 48 h later tumour cells
were extracted, purified (blood, myelin, and mouse cells were
removed), and immediately used for DBP. Consistent with our
in vitro results, IR created a single BCL-XL dependency only in p53WT
GBM tumour xenografts (Fig. 2G). Moreover, only in the p53 WT
xenograft could BCL-XL knockdown augment IR tumour growth
inhibition (Fig. 2H).

Our findings show IR treatment induces a single dependency on
BCL-XL through a p53-dependent mechanism. We were curious whe-
ther this therapy-induced effect on the GBM intrinsic apoptotic
machinerywas limited to IR. The alkylating agent temozolomide (TMZ)
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Fig. 1 | Multiomic characterisation of the intrinsic apoptotic machinery in
glioma patient and patient-derived samples. A Workflow describing tumour
purification and subsequent molecular (whole-exome sequencing) and functional
(BH3 profiling) characterisation of glioma patient samples (n = 31). Also see Sup-
plementary Table 1. B Heatmaps describing patient sample clinical characteristics,
copy number alterations andmutations of gene frequently alerted in GBMand BH3
profiling of the apoptotic blocks. C BH3 profiling is plotted as a z-score across the
sample. Peptide concentrations are as follows: ABT-199: 1 µM (anti BCL-2), MS1:
10 µM (antiMCL-1), HRK: 100 µM (anti BCL-XL), BAD: 10 µM(anti BCL-2 and BCL-XL).
BH3 profiling of anti-apoptotic blocks in patient tumours and gliomaspheres. Dot
plot displays % cytochrome c release as dot size and z-score as dot color (n = 31 and
n = 26, two-tailed, paired t test compares HRK+MS1 to all conditions). Also see
Supplementary Fig. 1B. D Example heatmaps of cell viability (Cell Titer Glo) after

48 hours. of treatment with combinations of ABT-199 (BCL-2i), A-1155463 (BCL-XLi),
and S63856 (MCL-1i) in gliomaspheres GS028. BH3 mimetics concentrations are as
follows: 0 nM, 3.9 nM, 15.6 nM, 62.5 nM, 250 nM, 1000nM. E Bar graphs (mean ±
s.d.) of zip synergy scores plotted as a z-scores for gliomaspheres (n = 26). Synergy
scores calculated from cell viability (Cell Titer Glo) experiments with combinations
of BH3mimetics: ABT-199 (BCL-2i), A1155463 (BCL-XLi), and S63856 (MCL-1i) (mean
± s.d., n = 2 experimental replicates). F Box and whiskers plot (mean, hinges at 25th

and 75th percentiles, ±min tomax)of synergy scores for eachgliomasphere (n = 26),
grouped by combinations of BH3 mimetics (two-tailed, paired t test). G Heat map
displays summarizes highest scoring combination of cell death and BH3 profiling
data for the 26 gliomaspheres. Statistics calculated using the binomial test. p >0.05
= ns; p <0.05 = *p <0.01 = **p <0.001 = ***p <0.0001 = ****. See also Table S1 and
Figure S1.
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or the combination of TMZ and IR (IR/TMZ) is often provided to GBM
patients33. Like IR treatment, TMZ suppressed GBM cell proliferation
but had a marginal impact on apoptosis (Supplementary Fig. 2D).
Moreover, DBP revealed TMZ induced a specific reliance on BCL-XL for
survival in a p53-dependent fashion (Fig. 2I, Supplementary Fig. 2E, F).
Similarly, the IR and TMZ combination elicited minimal apoptosis and
a sole dependency on BCL-XL for survival exclusively in p53 WT GBM
cells (Fig. 2I, J, Supplementary Fig. 2D). These results show that IR, TMZ
or the combination of IR/TMZ therapy rewires the apoptotic machin-
ery in p53 WT GBM, consequently triggering a targetable vulnerability
on BCL-XL for tumour cell survival.

p53-mediated induction of PUMA ablates the MCL-1 block fol-
lowing standard-of-care therapy
p53 can modulate MCL-1 by inducing the expression of the sensitizer
NOXA, which then binds to and neutralizes MCL-138. Alternatively, p53
can suppress the level of MCL-1 protein by promoting MCL-1 ubiquiti-
nation and degradation39,40. However, we observed minimal changes in
the protein expression of either NOXA or MCL-1 in p53 WT glioma-
spheres following IR or TMZ treatment (Fig. 3A, Supplementary Fig. 3A).
A broader investigation into the levels of BCL-2 family proteins revealed
that the pro-apoptotic BH3 protein, PUMA, was the only BCL-2 family
protein with significant changes in expression in p53 WT gliomaspheres
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shows change in precent cytochrome c release between mice irradiated with 10Gy
and untreated mice with HRK, MS1 and ABT-199 (n = 2 independent replicates).
H shRNA KD of BCL-XL before cells were orthotopically implanted and irradiated
with 10Gy IR 3 days post injection. Bar plots display log2(fold-change) of tumour
burden over time (mean± SEM, n = 9 mice). Grouped comparisons made were
made with two-tailed, unpaired t tests. I DBP post TMZ or TMZ+ IR treatment of
gliomaspheres. J Box plots show apoptosis with TMZ or TMZ+ IR in combination
with BCL-Xli (mean ± s.d., two tailed, paired t test). IR (5gy), TMZ (50 µM), BCL-XLi
(A1155463: 0.5 µM). DBP Assessed at 48hours, peptide concentrations: ABT-199:
1 µM, MS1: 10 µM, HRK: 100 µM. Apoptosis (Annexin V/PI) assessed at five days. All
box plots: mean, hinges at 25th and 75th percentiles, ± min to max.
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in response to IR or TMZ (Fig. 3A, Supplementary Fig. 3B). p53 KO
confirmed that treatment-mediated PUMA protein upregulation was
p53-dependent (Fig. 3B, Supplementary Fig. 3C). To test whether PUMA
is responsible for negating the MCL-1 block, we used shRNA to reduce
PUMA expression in two p53 WT gliomaspheres (GS025 and HK301)
(Fig. 3C). In both gliomasphere lines, the loss of PUMA prevented the
treatment-induced sole dependency on BCL-XL andmitigated cell death
when challenged with IR or TMZ together with BCL-XLi (Fig. 3C, D).

Although NOXA is perhaps the most recognized neutralizer of
MCL-1, PUMAalso has the capacity to bindwith high affinity toMCL-141.
In p53 WT gliomaspheres, IR or TMZ-mediated PUMA induction coin-
cided with an increase in PUMA-MCL-1 complexes (Fig. 3E). While we

also observed a modest induction in PUMA binding to BCL-XL with IR
or TMZ treatment, this association was less than what was observed
between PUMA and MCL-1 (Fig. 3F). Together, these results support
that, following IR or TMZ treatment, p53 promotes the cellular accu-
mulation of PUMA that subsequently binds to and inactivates MCL-1,
and thereby creates an exclusive dependence on BCL-XL for GBM
survival (Supplementary Fig. 3B).

TP53 genetic status cannot fully identify apoptotic
vulnerable GBM
Our initial mechanistic studies suggested that TP53 mutation status
may be used as a genetic biomarker to predict susceptibility to
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Fig. 3 | p53-mediated induction of PUMA ablates the MCL-1 block following IR
or TMZ therapy. A Immunoblots of MCL-1, PUMA and Noxa expression 48hours
post IR (5 Gy) or TMZ (50 µM) treatment, in 4 out the 20 gliomasphere lines
assessed, all blots shown in Supplementary Fig. 3A. Dot plot of quantified immu-
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test compares if p53WTormut-p53 changed relative to their vehicle gliomaspheres
for all proteins assessed. Colors represent -log10 transformed p-values and dot
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These results were independently repeated. B PUMA expression in p53 KOmodels
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XLi: 0.5 µM), TMZ (50 µM), IR (5Gy), TMZ+A1155463, or IR + A1155463 (mean ± s.d.,
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immunoprecipitation of p53 WT gliomaspheres of BCL-XL or MCL-1 with PUMA
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intrinsic apoptosis with either IR or TMZ combined with BCL-XL inhi-
bition. To corroborate this observation, we extended these combina-
tion efficacy studies in an additional 18 gliomaspheres (total n = 26).
We treated each gliomasphere line with either IR or TMZ plus BCL-XLi
and assessed apoptosis relative to IR or TMZ alone. Gliomaspheres
with increased cell death above themean of the treatment group were
classified as sensitive to the respective combination (Fig. 4A). Cur-
iously, while allmut-p53GBMs (n = 9)were insensitive to the treatment
combinations, we observed a substantial proportion of p53 WT glio-
maspheres (IR + BCL-XLi: n = 7/17; TMZ+ BCL-XLi: n = 8/17) were also
non-responsive to the combination strategy (Fig. 4A). Thus, TP53
mutational status alone cannot predict responses to targeting the
glioma intrinsic apoptotic machinery with either IR or TMZ in combi-
nation with BCL-XL inhibition.

We next askedwhether othermolecular alterations within the p53
signaling pathway might affect the tumour response to the IR or
TMZ+BCL-XLi therapeutic combinations. MDM2 negatively regulates
p53 signaling42, and its genetic locus can be amplified in patients with
wild type p53 gliomas43. Indeed, MDM2 amplified gliomaspheres
(n = 2), which are p53 WT, were insensitive to IR or TMZ+BCL-
XLi (Fig. 4A).

Other known molecular biomarkers in GBM include the DNA
repair protein O-6-methylguanine-DNA methyltransferase (MGMT),
which repairs the DNA damage induced by TMZ treatment44. Conse-
quently, tumours with an unmethylated MGMT promoter and with
corresponding high MGMT RNA expression (MGMT positive) are
generally insensitive to TMZ44. We observed that most p53 WT glio-
maspheres that were alsoMGMTpositive were non-responsive to TMZ
and BCL-XLi (n = 8/10) (Fig. 4A). We confirmed the requirement for
suppressed levels and activity of MGMT for TMZ and BCL-XLi sensi-
tivity both genetically and pharmacologically (Supplementary
Fig. 4A, B).

However, while incorporation of both MDM2 amplification and
MGMT expression status improved on the classification of p53 WT
gliomaspheres insensitive to the combination strategy (Fig. 4A),
approximately 30% of the remaining intact p53 signaling glioma cells
were nonresponsive to treatment (IR + BCL-XLi: n = 5/15; TMZ + BCL-
XLi: n = 3/10). Consequently, enrichment for gliomas with the com-
pilation of molecular biomarkers (TP53 WT, MDM2 WT, and MGMT
negative) was still unable to fully distinguish between therapeutic
responders and non-responders (Fig. 4B). Our findings suggested
that this set of mechanistically defined molecular biomarkers could
not fully identify the gliomas sensitive to IR or TMZ+BCL-XL

inhibition.

Functional assessment of the apoptotic ‘primed state’ alone
cannot fully predict response to apoptotic targeting
A tumour cell’s apoptotic potential (i.e., mitochondria priming) indi-
cates its proximity to the apoptotic threshold. Accordingly, a func-
tional assessment of a tumour’s mitochondria priming, via BH3
profiling, prior to treatment can predict therapy-induced intrinsic
apoptosis32. To explore whether mitochondrial priming status can
identify if GBMs are responsive or non-responsive to IR or TMZ with
BCL-XLi treatment, we measured the apoptotic potential of our panel
of gliomaspheres (n = 26) by performing BH3 profiling with increasing
concentrations of the pro-apoptotic BIMBH3 peptide (equal affinity to
all anti-apoptotic proteins)41 (Fig. 4C).We calculated the area under the
curve of cytochrome c release to create a metric to represent the
primed state of each gliomasphere tested (BIMAUC) (Supplementary
Fig. 4C). This analysis revealed that gliomaspheres exhibit diversity in
mitochondria priming.

Next, we asked whether the differences in mitochondria priming
among our gliomasphere cohort could stratify responders and non-
responders to IR or TMZ+BCL-XLi treatment. Using receiver operating
characteristic (ROC) curves to establish a binary classification of

‘highly primed’ and ‘lowly primed’ gliomaspheres (Supplementary
Fig. 4D), we observed that while all lowly primed gliomaspheres were
insensitive to the IR or TMZ+BCL-XLi combination (Fig. 4D), there
remained a considerable number of highly primed gliomaspheres that
did not respond to treatment (IR + BCL-XLi: n = 5/15; TMZ+BCL-XLi:
n = 6/15) (Fig. 4D). Therefore as was observed with defined molecular
biomarkers, functional BH3 profiling alone could not fully stratify
GBMs responsive to this combination therapy approach.

Selection for intact p53 signalingmolecular status increases the
association between primed apoptotic state and therapeutic
response
To further investigate the highly primed GBMs that were insensitive to
IR or TMZ+BCL-XLi, we performedunivariate linear regressions to test
the association between treatment-induced apoptosis and functional
BH3 profiling (Fig. 4E, F). We found highly primed gliomaspheres
having a low response to IR or TMZ+BCL-XLi contained a molecular
alteration in the p53 signaling pathway (e.g., GS116 and GS121: mut-
p53). Therefore, we hypothesised that enriching the population for
gliomaspheres with intact p53 signaling (e.g., TP53WT,MDM2WT and
MGMT negative) would enhance the association between apoptotic
potential and drug sensitivity. Accordingly, adding these molecular
feature requirements substantially strengthened the correlation
between apoptotic priming and response to the combined ther-
apeutics (IR + BCL-XLi: R2 =0.41→0.58; TMZ+ BCL-XLi: R2 =0.35→0.82)
(Fig. 4E, F). Consequently, enriching for both p53 signaling status and
apoptotic potential could now identify > 90% (IR + BCL-XLi: 91%;
TMZ+BCL-XLi: 100%) of the gliomaspheres that responded to IR or
TMZ+BCL-XLi. By contrast, using p53 signaling mutational status or
BH3 functional profiling alone identified ~70% of the gliomaspheres
responsive to the therapeutic combinations (Fig. 4E, F).

Amachine-learningmodel identifies a composite molecular and
functional predictive biomarker for targeting GBM apoptosis
Our results suggest that specific molecular and functional character-
istics are required for GBM cell death in response to targeting the
apoptotic machinery. To explore whether an integrated biomarker
consisting of both genomic and functional features could best predict
GBM tumours sensitive to this apoptotic targeting approach, we
sought to develop a machine-learning model using these diverse
datasets. We trained and compared the performance of two predictive
models: the first trained on a combination of previously implicated
molecular features (TP53 mutational status, MDM2 amplification sta-
tus, MGMT status) as well as functional (BIMAUC) components to create
an Integrated Molecular and Functional (IMF) feature set (p = 15). The
second model trained on Global Molecular (GM) features including
gene expression (p = 18,909 genes) and genomic alterations (copy
number alterations: p = 19,023; somatic mutations: p = 213) (Fig. 5A,
Supplementary Table 2). Model predictions were based on elastic net
regressions subject to nested cross-validation (see Methods).

The IMF model frequently selected features with interactions
between p53 signaling genetic status (as well as MGMT for TMZ) and
apoptotic potential (Supplementary Fig. 5A) and predicted GBM
sensitivity values for IR + BCL-XLi (r2 = 0.74, RMSE (Root Mean
Square Error) = 15.36) and TMZ + BCL-XLi (r2 = 0.64, RMSE = 14.69)
(Fig. 5B, Supplementary Fig. 6A). In the GM model, almost all fea-
tures selected were transcriptomic, with many of the genes relating
to pathways linked with apoptosis, DNA damage repair, and
p53 signaling (Supplementary Fig. 5B, C). Relative to the IMF model,
the GMmodel was less effective at predicting apoptosis in response
to IR + BCL-XLi (r2 = 0.0003, RMSE = 37.69) and TMZ + BCL-XLi
(r2 = 0.15, RMSE = 24.40) (Fig. 5B, Supplementary Fig. 6A). Next, we
pooled the IMF and GM features and ranked their predictive
importance using a Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression approach (see Methods). We found the top
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feature for IR + BCL-XLi was BIMAUC*TP53*MDM2 and for TMZ + BCL-
XLi was BIMAUC*TP53*MDM2*MGMT (Supplementary Fig. 6C).

To confirm these results, we evaluated the prospective ability of
the IMF and GM models to predict sensitivity among an independent

verification cohort of patient-derived gliomaspheres (n = 12 glioma-
sphere lines, Supplementary Table 3) (Fig. 5C, Supplementary
Fig. 6A, B, Supplementary Table 4). Like the training cohort, the IMF
model (IR + BCL-XLi: r

2 = 0.66, RMSE = 17.45; TMZ +BCL-XLi: r
2 = 0.72,
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Fig. 4 | p53 genetic status alone cannot predict response to TMZ/IR in combi-
nationwithBCL-XLi. AApoptosis (Annexin V/PI +) of gliomaspheres (n = 26) 5 days
post IR (5Gy) or TMZ (50 µM) andBCL-XLi (A1155463:0.5 µM) treatment normalized
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cutoff determined by taking themean. Heatmap below displaysmutations or copy
number alterations in TP53 or MDM2, respectively. MGMT status is determined
using MGMT methylation and expression, see methods. B Grouped analysis of
apoptosis visualizedwith box plots (mean, hinges at 25th and 75th percentiles, ±min
tomax) of all molecular biomarker positive vs negative gliomaspheres, sub-divided
by response (n = 26), (two-tailed, unpaired t test). Darker coloring signifies
responders identified in 4 A. C Basal BH3 profiling of gliomaspheres (n = 26) pre-
formed with a titration of the BIM peptide (0 µM, 0.01 µM, 0.03 µM, 0.1 µM, 0.3 µM,

1 µM, 3 µM, 10 µM). Data points in the dynamic range (0.03 µM − 3 µM BIM, defined
by peptides with the greatest range in responses) used to calculate area the AUC.
Diagram depicts simplified examples of high and low primed gliomaspheres.
DGrouped analysis of apoptosis visualizedwith box plots (mean, hinges at 25th and
75th percentiles, ± min to max) of all functional biomarker positive vs negative
gliomaspheres, sub-divided by response (n = 26), (two-tailed, unpaired t test).
Darker coloring signifies responders identified in 4 A. Correlations of BIMAUC with a
simple linear regression between cell death induced by IR (E) or TMZ (F) and BCL-
XLi, grey band represents with 95% confidence interval. Line represents simple
linear regression, used to calculate p-value and r-squared. Summary bar plots
describing the percent of correctly identified gliomaspheres sensitive to with the
different biomarker stratification.
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RMSE = 12.99) provided better predictive capability than the
GM model (IR + BCL-XLi: r2 = 0.12, RMSE = 27.93; TMZ+ BCL-XLi:
r2 = 0.19, RMSE = 23.01). Thus, even relative to global molecular
datasets, integrated molecular profiling of the p53 signaling pathway
with functional profiling of apoptotic potential best predicts IR or
TMZ+BCL-XLi-induced apoptosis in heterogeneous patient-derived
gliomaspheres.

Finally, we set out to define a simple model for stratifying GBM
samples into those predicted as sensitive or insensitive to inducers of
apoptosis based on the most informative features identified through
machine learning. We applied the top-ranked IMF features (IR + BCL-
XLi = BIMAUC*TP53*MDM2; TMZ+BCL-XLi = BIMAUC*TP53*MDM2*MGMT)
(Supplementary Fig. 6C) as binary variables to score the
gliomaspheres. We termed this scoring approach the GBM Apoptotic
Vulnerability Assessment (GAVA), where gliomaspheres containing
both the identified molecular and functional features were
designated GAVA positive, and those lacking either of these defined
molecular or functional features were designated as GAVA negative
(see Methods).

GAVA-positive gliomaspheres from both training and verification
cohorts were more sensitive to IR or TMZ+BCL-XLi relative to glio-
maspheres designated GAVA negative from both cohorts (Fig. 5D).
Moreover, the GAVA biomarker had strong predictive power, achiev-
ing an AUROC of 0.99 and 0.97 for IR + BCL-XLi in the training and
verification cohorts, respectively, and an AUROC of 0.99 and 0.91 for
TMZ+BCL-XLi in the training and verification cohorts, respectively
(Supplementary Fig. 7A). Finally, across all gliomaspheres (n = 38 in
total), 95% (IR + BCL-XLi) and 91% (TMZ+ BCL-XLi) of gliomaspheres
designated as GAVA positive were sensitive to apoptotic targeting
therapy, while 94% (IR + BCL-XLi) and 96% (TMZ+BCL-XLi) of GAVA-
negative gliomaspheres were insensitive to these therapeutic combi-
nations (Fig. 5E). Together, these data indicate GAVA may serve as an
integrated molecular and functional predictive biomarker for this
therapeutic approach in GBM.

The antibody-drug conjugateABBV-155 targets BCL-XL in glioma
Our results support the conclusion that gliomas with intact
p53 signaling and high mitochondria priming are susceptible to the
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drug combination of IR or TMZ and a BCL-XL inhibitor. This suggests a
potential therapeutic strategy and biomarker for targeting glioma
intrinsic apoptosis. However, BH3 mimetics that block BCL-XL (e.g.,
Navitoclax) have a poor therapeutic window in patients, in part due to
on-target, dose-limiting toxicity in platelets, which depend on BCL-XL

for survival45. Mirzotamab Cletuzoclax (ABBV-155) is a first-in-class
antibody-drug conjugate (ADC) that targets the cell surface protein B7-
H3 (CD276) and includes a specific and potent BCL-XL inhibitor
warhead46,47. B7-H3 is highly expressed in glioma, as well as other solid
tumours, and is a compelling target for ADCs as well as cell-based
therapies given its high tumour-to-normal tissue expression48,49.
Notably, early clinical data indicate ABBV-155 is safe in humans with a
maximum tolerated dose (MTD) not reached and, unlike previous
inhibitors of BCL-XL, does not impact platelets to a significant degree
(i.e., no thrombocytopenia)46.

To first evaluate the protein expression of B7-H3 in GBM
tumours relative to normal brain specimens, we performed immu-
nohistochemistry of B7-H3 on a tissue microarray of GBM samples
(n = 34) and normal brain biopsies (n = 5). In agreement with pre-
vious findings49, we observed high and diffuse B7-H3 protein
expression on GBM cells, whereas expression in normal brain spe-
cimens was largely absent (Fig. 6A, Supplementary Fig. S8A). We
corroborated these findings by immunoblotting for B7-H3 protein
expression in autopsy samples and gliomaspheres lines (Supple-
mentary Fig. S8B, C).

Next, to assess whether ABBV-155 could selectively abolish the
BCL-XL block in our gliomaspheres, we performed DBP across six
gliomasphere lines (n = 4 p53 WT, n = 2 mut-p53). ABBV-155 created a
single dependency on MCL-1 to prevent MOMP in all gliomaspheres
(Fig. 6B), and consequently promoted apoptosis when combined with
MCL-1 inhibition (Supplementary Fig. 8D). Therefore, ABBV-155 can
selectively remove the BCL-XL block regardless of gliomasphere TP53
genetic status.

To test if ABBV-155 promotes GBM cell death when combined
with IR and, if so, whether GAVA could predict apoptotic sensi-
tivity, we treated a mixed population of GAVA-positive and GAVA-
negative gliomaspheres (n = 7) with IR in combination with
increasing concentrations of ABBV-155. We observed that IR +
ABBV-155 induced apoptosis in the GAVA-positive gliomaspheres,
GS025 and GBM39, with cell death observed as low as 0.001 µg/ml
of ABBV-155 when combined with IR (Fig. 6C). By contrast, all GAVA
negative gliomaspheres (n = 5) were insensitive to IR + ABBV-155
(Fig. 6D–F). Similarly, TMZ + ABBV-155 triggered synergistic
apoptosis specifically in GAVA-positive gliomaspheres (Supple-
mentary Figure 8E–G). Thus, GAVA-predicted apoptotic sensitivity
in response to ABBV-155 combined with standard-of-care therapies
in GBM cells (Fig. 6F, Supplementary Fig. 8H).

Importantly, a non-targeting control (NTC) ADC with the same
potent BCL-XL inhibitor warhead as ABBV-155 was incapable of
inducing cell death either alone or in combination with IR or TMZ in
the highly primed p53 WT line, GS025 (Fig. 6G, Supplementary
Fig. 8I). These data suggest that the synergistic lethality of ABBV-155
in GBM cells, when combined with IR or TMZ, is specific for B7-H3
expression.

To extend our characterisation of ABBV-155 in GBM, we asked
whether ABBV-155 could ablate the BCL-XL block in vivo. Accordingly,
we established both a p53 WT (PDX039) and a mut-p53 (PDX147)
patient-derived orthotopic GBM xenograft in the brains of immuno-
compromised mice. Once tumours were established, mice were trea-
ted with one dose of ABBV-155 (10mg/kg) or vehicle. Tumours were
harvested 72 hours later, and tumour cells were purified and subjected
to DBP. Consistent with our in vitro results, we found that ABBV-155
caused a single dependency on MCL-1 in both xenograft models,
supporting the conclusion that ABBV-155 can ablate the BCL-XL block
in orthotopic glioma xenografts (Fig. 6).

Integration of genomic and functional profiling predicts in vivo
tumour response to IR+ABBV-155
We next explored if ABBV-155 sensitizes GBM tumours to
DNA-damaging therapy in vivo and whether the GAVA biomarker
could prospectively determine the tumours most vulnerable to
this combination. Accordingly, we established orthotopic xeno-
graft models (n = 6) and, once engrafted, harvested the tumours
from mice and purified the tumour cells for genomic character-
isation and functional BH3 profiling of the primed state (Fig. 7A).
Our analysis revealed PDX025 and PDX039 were both TP53 and
MDM2 WT as well as primed for apoptosis (Fig. 7A). These sam-
ples were classified as GAVA positive; therefore, we predicted
these two glioma tumour xenografts would be sensitive to IR +
ABBV-155 treatment. Conversely, PDX054 and PDX027 were TP53
WT, MDM2 WT but lowly primed, and PDX147 and PDX005 were
both mut-p53 (Fig. 7A). These tumours were collectively classified
as GAVA negative since they lacked both the requisite molecular
and functional characteristics proposed for therapeutic response
to IR in combination with ABBV-155. We hypothesised these
orthotopic xenografts would not respond to such combination
therapies.

To test these predictions, we established a separate cohort of
intracranial tumours from these six PDXs. Following intracranial
inoculation, mice were monitored for exponential tumour growth by
secreted gaussia luciferase50. Once aggressive tumour growth was
achieved, mice were randomised and treated with 10mg/kg ABBV-155
intraperitoneally (i.p.) weekly for three weeks, 10Gy IR weekly for two
weeks, or the combination of ABBV-155 and IR. ABBV-155 did not
impact tumour growth in five out of six models, with only modest
changes in PDX025 (relative to vehicle treated mice) and did not
extend survival in all PDXmodels tested. IRwas capable of significantly
inhibiting tumour growth — albeit largely tumour static responses —

and prolonging survival in both p53 WT and mut-p53 models. By
contrast, ABBV-155 + IR significantly reduced tumour size and pro-
longed mouse survival relative to single agent controls; however, this
combined therapeutic efficacy was confined to PDXs that were GAVA
positive (PDX025 and PDX039; Fig. 7B–D). None of the GAVA-negative
PDXs showed tumour regressions or augmented survival with ABBV-
155 in combination with IR therapy. Thus, we conclude that the com-
bination of DNA-damaging therapy and ABBV-155 can have an anti-
tumour impact in aggressive glioma PDXmodels that are both p53WT
and primed for apoptosis.

Our in vitro and in vivo findings demonstrate that integrated
molecular and functional profiling by GAVA can robustly predict
responses to this approach to target GBM intrinsic apoptosis. To
consider the translational potential of GAVA, we analyzed the p53
genomic status as well as the apoptotic priming of 21 WHO grade 4
glioma purified patient tumour samples (from Fig. 1). 62% percent of
our patient sample cohort had intact p53 signaling genetic features
(TP53 WT, MDM2 WT), which is concordant with the 67% of patients
having these features as reported by TCGA31. BH3 profiling revealed
that 50% of our patient samples were highly primed, with an even
distribution of primed samples among p53 WT and altered tumours.
Accordingly, 31% of our patient sample cohort were GAVA positive
(Fig. 7E). These results support that integrated molecular and func-
tional profiling can be performed on freshly isolated glioma patient
samples, revealing that a considerable number of glioma patients may
be potential candidates for this proposed predictive biomarker and
therapeutic combination approach assaying and targeting intrinsic
apoptosis.

Discussion
Precision medicine for cancer is currently largely dependent on static
genomic biomarkers. However, genetic features cannot always predict
tumour cell function, particularly in response to drug perturbations51.
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In this study, we demonstrate a precision medicine approach in which
we integrate genomic and functional measurements to determine
GBM tumour responses to therapy targeting intrinsic apoptosis. Spe-
cifically, we show that standard-of-care DNA-damaging therapy (IR or
TMZ) shifts the composition of the GBM intrinsic apoptoticmachinery
with genetically intact p53 signaling (i.e., TP53 WT, MDM2 WT). More-
over, while synergistic apoptosis with combined IR or TMZ and BCL-XL

inhibition was exclusive to p53 WT tumours, functional BH3 profiling
of apoptotic potential was also required to predict response to the
drug combination, both in vitro and in vivo. This finding enabled us to
use machine learning to establish an integrated molecular and

functional predictive biomarker—whichwe termGAVA— for targeting
glioma-intrinsic apoptosis.

Our findings may have important therapeutic implications for
treating malignant glioma, a cancer notoriously refractory to cell
death. We show that the anti-apoptotic proteins BCL-XL and MCL-1
both protect against cell death across all glioma tumours, regardless
of genetic features. This observation suggests a dual apoptotic bar-
rier exists for glioma that must be overcome for a glioma cell to
execute apoptosis. We demonstrate that DNA-damaging therapies
(i.e., the standard of care for GBM) rapidly ablate the MCL-1 block via
p53-dependent induction of PUMA, which subsequently binds and
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Article https://doi.org/10.1038/s41467-024-54138-9

Nature Communications |        (2024) 15:10089 10

www.nature.com/naturecommunications


sequesters MCL-1, creating a sole survival dependency on BCL-XL in
GBM lacking genetic alterations in the p53 signaling pathway. Inter-
estingly, other work has also identified BCL-XL dependencies in GBM
cells after drug perturbations52, including a BCL-XL dependency after
drug-induced senescence37. How the MCL-1 block is modulated in
these contexts, and the impact of genotype and apoptotic primed
state on these reported apoptotic block dependencies is not clear.

Moreover, in IDH mutant gliomas the production of the oncometa-
bolite, 2-HG, may reduce MCL-1 protein stability, which could also
elicit BCL-XL dependencies53. These findings, together with what is
described here, highlight the need to assess how other genetic
alterations or therapeutic perturbations shift the dependencies on
the MCL-1 and BCL-XL apoptotic blocks in various malignant brain
tumours.
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The exclusive dependence on BCL-XL created by standard-of-care
therapy in p53 WT GBM that are highly primed (31%) suggest BCL-XL is
an attractive target formany patients with GBM.While the dual BCL-XL

and BCL-2 inhibitor, Navitoclax, has been evaluated clinically for non-
CNS malignancies54, it is dose-limited by the “on-target, off-tumour”
toxicity in platelets (thrombocytopenia). Moreover, recent evidence
indicates that selective inhibition of BCL-XL can trigger cardiovascular
toxicity47. ABBV-155 is a clinical antibody drug conjugate that targets
B7-H3 — a highly expressed tumour protein — and delivers a potent
warhead specifically targeting BCL-XL in tumours. Early clinical eva-
luations of ABBV-155 show a favorable toxicity profile and promising
therapeutic potential in non-CNS tumours46. Here we provide the first
evaluationofABBV-155 for brain tumours anddemonstrate its potential
to selectively target tumour BCL-XL in mouse intracranial patient-
derived GBM models. While concerns exist as to whether ADCs can
accumulate to sufficient levels in the CNS of patients with brain
tumours, clinical evidence supports the activity of other ADCs used in
glioma (e.g., Depatuxizumab Mafodotin (ABT-414)55 and other CNS
malignancies (e.g., Trastuzumab-deruxtecan for CNSmetastatic breast
cancer)56. Thus, ADCs including ABBV-155 may have therapeutic
potential for glioma patients, particularly when the blood brain barrier
(BBB) shows considerable permeability57. Additional studies are nee-
ded to understand the requirements to achieve adequate CNS expo-
sures of ABBV-155 and other ADCs under clinical consideration for
primary brain tumours.

Functional precision medicine is showing clinical promise in
guiding treatment decisions for cancer patients14,22,58,59, yetmost of the
FPM studies for solid tumours have relied on ex vivo drug screening of
patient samples16,60. Here we demonstrate in 21 patient glioma resec-
tions that both molecular and BH3 profiling can be performed on
freshly isolated glioma patient samples, without requiring cell culture.
Our analysis revealed gliomas have both significant molecular het-
erogeneity as well as various states of apoptotic potential. The mole-
cular underpinnings of apoptotic priming among gliomas remains
unknown. Moreover, it is unclear whether isolating glioma cells from
surrounding non-malignant cells in the tumour microenvironment
influences the glioma apoptotic machinery. Future investigations into
these important gaps are warranted. Nevertheless, the results pre-
sented here show that apoptotic priming and genomic alterations can
be assessed directly from brain tumour patient specimens, high-
lighting the importance and feasibility of making both measurements.
This could pave a path for the clinical translationof using an integrated
biomarker, such as GAVA, to stratify glioma patients for this ther-
apeutic approach.

Taken together, our findings identify mechanisms of resistance
to intrinsic apoptosis across malignant gliomas and demonstrate
how they can be therapeutically targeted to synergistically induce
cell death and enhance cancer therapy. We evaluate an ADC to target
BCL-XL, in combination with the standard of care, and show the
effectiveness of this strategy across patient-derived model systems.
Finally, we propose a precision medicine methodology, which
relies on both molecular and functional tumour characteristics
measured directly from patient samples, to robustly predict tumour
responses.

Methods
This study complied with all the relevant ethical regulations. All
patient-derived tumour tissue was obtained through the UCLA Insti-
tutional Review Board (IRB) protocol 10-000655, after written
informed consent was obtained from patients. All studies were in
accordance with UCLA OARO protocol guidelines and in accordance
with UCLA Animal Research Committee protocol guidelines. All mice
experiments were approved by the Institutional Animal Care and Use
Committees at UCLA.

Patient-derived GBM tumours and gliomaspheres
Tumour resections were mechanically and enzymatically dissociated
using the Miltenyi Biotec Human tumour dissociation kit (130-094-
929) within six hours of surgery, followed by removal of red
blood cells with ACK lysis buffer (Gibco, A10492-01). Next, antibody-
conjugated magnetic beads were used to remove CD45+ cells (Mil-
tenyi, 130-045-801) and myelinated cells (Miltenyi, 130-096-433)
by preforming column-based filtrations. Primary GBM cells were
established and cultured as gliomaspheres in media consisting of
DMEM/F12 (Gibco, 11330032), B27 (Invitrogen, 12587010),
penicillin–streptomycin (Invitrogen, 15140122), and GlutaMAX (Invi-
trogen, 35050061) supplemented with heparin (5mg/mL, Sigma,
H3149), EGF (20 ng/mL, Sigma, PHG0313), and FGF (20 ng/mL, Sigma,
PHG0263). When passaged, gliomaspheres were dissociated to single
cell suspensions with TrypLE (Thermo Fisher, 12605028). All cells
were grown at 37 °C, 20% O2, and 5% CO2 and were routinely tested
and confirmed negative for the presence of mycoplasma (MycoAlert,
Lonza, LT07-318). Gliomaspheres were used at fewer than 15 pas-
sages, except for HK301, HK336 and GBM39, which were used
between 15 and 30 passages. All cells were authenticated by short
tandem repeat (STR) analysis.

Mice
Female NOD scid gamma (NSG) mice were purchased from the Uni-
versity of California, Los Angeles (UCLA) Medical Center animal-
breeding facility and JacksonLaboratories at6–8weeks of age. Allmice
were kept under defined pathogen-free conditions at an animal facility
approved by the AAALAC of the Division of Laboratory Animals
(DLAM) at UCLA. Mice are housed in a controlled environment with a
12:12 hours light-dark cycle (e.g., lights on at 6:00 AM and off at 6:00
PM). The temperature in the vivarium ismaintained between 20–26 °C
(68–79 °F). The relative humidity in the environment is regulated
between 30–70%. Mice are housed in irradiation-sterilized, ventilated,
disposable cages with corn cob bedding, and provided irradiated pico
vac diet as feed. Mice were drug and test naïve prior to injection of
tumour cells.

Patient-derived orthotopic xenografts
Intracranial mouse xenograft studies were as previously described52.
Briefly, GS025 (shControl, shBCL-XL), GS005 (shControl, shBCL-XL),
GS025, GBM39, GS027, GS054, GS147, and GS005 cells were trans-
ducedwith secretedGaussia luciferase (sGluc)-encoding reporter gene
(Prolume Ltd., pLetni_CMV_GLeu_T2A_eGFP plasmid) to enable non-
invasive and routine quantification of tumour burden50 as well as GFP-
guided microdissection of the tumour tissue post euthanasia. 2 × 105

cells were injected into the right striatum of the brain in female NSG
mice (6–10weeks old), 2mm lateral and 1mmposterior to the bregma,
at a depth of 2mm. Tumour burden was monitored based on 1-2x
weekly measurements of secreted Gaussia luciferase, once tumours
entered an exponential growth rate, mice were randomised into
treatment arms, there were no covariates for which a control was
needed. Sample sizes were chosen based on estimates from pilot
experiments. Endpoints were determined primarily by body con-
ditioning score, especially focusing on the 30% weight loss threshold,
decreased mobility, uncontrollable seizures and/or bleeding, and
respiratory distress. Other criteria under the ARC policy on Humane
Treatment and Endpoints was also assessed – tumour burden not
evaluated as euthanasia criteria. Investigators were not blinded to
group allocation or assessment of outcome. For WES and RNA-seq
analysis as well as ex vivo BH3 profiling, tumour cells were purified via
mechanical and enzymatic dissociation using the Miltenyi Biotec
Mouse tumour dissociation kit (130-096-730). Antibody-conjugated
magnetic beads removed myelinated and mouse cells (Miltenyi, 130-
104-694) in column-based filtration steps.
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Whole-exome and RNA sequencing
The exome capture was performed by using either SeqCap EZ Human
Exome Library V3 kit or KAPA HyperExome enrichment kit according
to the manufacturer’s instructions. Transcriptome libraries were con-
structed from poly(A) selected RNA using the Nugen Universal Plus
mRNA-seq library prep kit. Paired-end short reads (150bp) were
sequenced on the Illumina HiSeq 3000 or Novaseq 6000 platforms.

Whole-exome QC and mapping
To prepare read alignments for analysis, all sequencing data were
passed through Cutadapt61 (v2.8). To remove any reads due to mouse
cell contamination, we used the BBsplit function of the Bbtools
package62 to map short reads to human (GRCh38) and mouse (mm10)
genomes simultaneously; only reads that can map to human genome
uniquelywere kept.Mapping (BWA0.7.17-r118863),marking duplicates,
and recalibrating the base quality scores were performed based on the
human genome (GRCh38) according to the pre-processing workflow
(GATK v4.2.0.064) of GATK Best Practices. Mean coverage for exome
data was 100 ~ 150x for both tumour and normal.

RNA-seq QC and mapping
The Seal program from Bbtools was used to identify and remove reads
unambiguously aligning to the mouse transcriptome (vM22). Filtered
reads were then processed through the UCSC Toil RNA sequencing
pipeline65 as described previously66. Transcripts per million (TPM)
expression value outputs from alignment with STAR (v2.4.2a)67 and
quantification with RSEM (v1.2.25)68 were used for downstream
analysis.

Somatic mutation and copy number alteration calling
For tumour samples with a sequenced matched normal, Mutect2
(v4.2.0.0)69, MuSE v1.0rc70, and Varscan271 were used to call SNPs,
small insertions and deletions. Only variants with a minimum cov-
erage of 20 reads and identified by at least twomutation callers were
selected for further analysis. For samples lacking a matched normal,
variant calling was performed using Mutect2 in tumour-only mode.
Variants were subsequently compared to the matched normal sam-
ple when available and a constructed panel of normal samples fol-
lowing GATK best practices. The identified variants underwent
filtering based on their occurrence frequency in the COSMIC
database72 (with a threshold of more than seven occurrences in CNS
tumours) or their annotation as “likely oncogenic” or “oncogenic”
according to OncoKB73. The CNVkit package was used to detect copy
number changes from whole-exome sequencing data74.

Identification and allelic frequency estimation of Gervin variants
was derived from the alternative transcript splicing of EGFR detected
in RNA sequencing data. The determination of EGFRvIII calls involved
calculating the fraction of reads mapping to two specific junctions:
one between exons 7 and 8 and the other corresponding to the
aberrant junction between exons 1 and 8. Sample with EGFRvIII
transcript allele frequencies (TAFs) over 10% were considered posi-
tive variant.

Clinical characteristics
Information reported in Supplementary Table 1, along with 1p/19q co-
deletion and MGMT methylation is from Foundation of Medicine and
clinical pathology reports. Clinical reports containing MGMT methy-
lation statuswas unavailable forHK336 andGBM39. For these samples,
MGMT status was determined through bisulfite sequencing as pre-
viously described44. GBM39 clinical characteristics were previously
published75.

MGMT status
MGMT status was determined using both MGMT methylation76 and
MGMT RNA expression (median of MGMT RNA expression from all

samples used to define cut-off between high and low expression)77.
Tumours with either methylation or low expression were deemed
MGMT negative; tumours unmethylated with high MGMT expression
were designated MGMT positive.

GTEx and TCGA samples public datasets
Gene expression data from glioblastoma tumours and normal frontal
cortex brain samples were obtained from the Toil RNAseq
Recompute65 project for TCGAGBM31 andGTEx78 respectively, publicly
available through UCSC XenaBrowser79.

Reagents and antibodies
Chemical inhibitors from the following sources were dissolved in
DMSO for in vitro studies: A-1155463 (ChemieTek, CT-A115), S63845
(ChemieTek, CT-S63845), ABT-199 (ChemieTek, CT-A199), Temozolo-
mide (Selleck Chemicals, S1237), Navitoclax (MedChemExpress, HY-
10087), A-1331852 (Abbvie), Z-VAD-FMK (Selleck Chemicals, S7023),
Pifithrin-α (PFTα) HBr (Selleck Chemicals, S2929), O6-Benzylguanine
(Selleck Chemicals, S3658), nutlin-3A (Selleck Chemicals, S8059).
ABBV-155 (Abbvie-MTA) suspended in sterile saline. The following
antibodies were obtained from the indicated sources and used for
immunoblotting: anti-β-actin (8H10D10) mouse mAb (Cell Signaling,
3700), anti-α-tubulin (DM1A) mouse mAb (Cell Signaling, 3873), anti-
p53 (DO-1) mouse mAb (Santa Cruz Biotechnology, SC-126), anti-BAX
(D2E11) rabbit mAb (Cell Signaling, 5023), anti-BAK rabbit mAb (Cell
signaling, 3814), anti-BIM (C34C5) rabbit mAb (Cell Signaling, 2933),
anti-BID (Human specific) rabbit mAb (Cell signaling, 2002), anti-
PUMA (D30C10) rabbitmAb (Cell Signaling, 12450), anti-Noxa (D8L7U)
rabbit mAb (Cell Signaling, 14766), anti-Bcl-2 (50E3) rabbit mAb (Cell
Signaling, 2870), anti-BCL-XL (54H6) rabbit mAb (Cell Signaling, 2764),
anti-MCL-1 (D35A5) rabbit mAb (Cell Signaling, 5453), anti-HRK
(PRS3771) rabbit mAb, and anti-cytochrome c rabbit mAb (Cell Sig-
naling, 4272). Antibodies used for immunoprecipitationwereobtained
from the following sources: anti-BCL-XL (54H6) rabbit mAb (Cell Sig-
naling, 2764), anti-MCL-1 (D35A5) rabbit mAb (Cell Signaling, 5453).
Secondary antibodies were obtained from the following sources: anti-
rabbit IgG HRP-linked (Cell Signaling, 7074) and anti-mouse IgG HRP-
linked (Cell Signaling, 7076). For B7-H3 immunohistochemistry was
obtained from R&D Systems (AF1027) and used at concentration of
1:1000. All immunoblotting antibodies were used at the antibody
manufacturers’ specifications. Immunoprecipitation antibodies were
diluted according to the manufacturer’s instructions (1:200 for MCL-1
and BCL-XL). Secondary antibodies were used at a dilution of 1:5000.

Immunoblotting
Cells were lysed in RIPA buffer (Boston BioProducts) with Halt™ Pro-
tease and Phosphatase Inhibitor (Thermo Fisher) and were subse-
quently centrifugedat 14,000g for 15min at 4 °C. Protein sampleswere
then heated at 80 °C with NuPAGE LDS Sample Buffer (Thermo Fisher)
and NuPAGE Sample Reducing Agent (Thermo Fisher) and separated
using SDSPAGE on 12% Bis-Tris gels (Thermo Fisher) and transferred to
nitrocellulose membrane (GE Healthcare). Immunoblotting was per-
formed as stated. Membranes were developed using the SuperSignal™
system (Thermo Fisher) and imaged using the Odyssey Fc Imaging
System (LI-COR). Signal quantification was performed using the Image
Studio™ software (LI-COR). Expression of each BCL-2 family protein
determined in relation to the loading control (Actin or Tubulin). Fold
change calculated relative to DMSO treated control.

Synergy score calculations
Performed by incubating 1500 cells per well in 384-well plates for 48 h
with BH3 mimetics (A-1155463, S63854, ABT-199). A 7-point titration
curve of each drug was performed in triplicate. Cell Titer Glo Lumi-
nescent Cell Viability Assay (Promega) was used to measure cell via-
bility from control of each drug. Luminescence (integration time 1 s)
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was recorded on a CLARIOstar microplate reader (BMG Labtech). Zip
synergy scores calculated using Synergy Finder80.

Annexin V apoptosis assay
Cells were collected and analyzed for annexin V and PI staining
according to the manufacturer’s protocol (BD Biosciences).
Briefly, cells were plated at 5 × 104 cells/mL and treated with the
appropriate drugs. At the indicated time points, cells were col-
lected, trypsinized, washed with PBS, and stained with annexin V
and PI for 15 min. Samples were then analyzed with a BD LSRII or
Attune flow cytometer.

Senescence
Senescence was measured using the CellEvent™ Senescence Green
Detection Kit (Thermo Fisher, C10850). Cells were transduced with
secreted Gaussia luciferase (sGluc)-encoding reporter gene (Prolume
Ltd., pLetni_CMV_GLeu_T2A_eGFP plasmid), edited to express
pDECKO-mCherry commercial backbone from Addgene instead of
eGFP, to enable florescent imaging of cells. The cells were quantified
via the Incucyte Live-Cell Imaging Analysis System (Sartorius). Repre-
sentative images were taken with the EVOS M5000 (Thermo Fisher).

Immunoprecipitation
Cells were collected, washed once with PBS, and incubated in IP lysis
buffer (2% CHAPS) at 4 °C for 15min. 300–500μg of each sample was
then precleared in Protein A/G Plus Agarose Beads (Thermo Fisher) for
1 hr. After preclearing, samples were then incubated with
antibody–bead conjugates overnight according to the manufacturer’s
specifications. The samples were then centrifuged at 1000g for 1min,
and the beads were washed with 500μL of IP lysis buffer five times.
Proteinswere eluted from the beads by boiling in 2× LDS Sample Buffer
(Invitrogen) at 95 °C for 5min. Samples were analyzed by immuno-
blotting as described above.

BH3 profiling
Cells were disassociated into single-cell suspensions and resuspended
in MEB buffer (150mM mannitol, 10mM HEPES-KOH, 50mM KCl,
0.02mM EGTA, 0.02mM EDTA, 0.1% BSA, and 5mM succinate). 50μL
of cell suspension (3 × 104 cells/well) was plated in wells holding 50μL
MEB buffer containing 0.002% digitonin and the indicated peptides in
96-well plates. Plates were then incubated at 25 °C for 50min. Cells
were then fixed with 4% paraformaldehyde for 10min and neutralized
with N2 buffer (1.7MTris and 1.25Mglycine, pH 9.1) for 5min. Samples
were stainedovernightwith 20μL of staining solution (10%BSA and 2%
Tween 20 in PBS) containing DAPI and anti-cytochrome c (Bio Legend
clone 6H2.B4, cat. No. 612310). The following day, cytochrome c
release was quantified with a BD LSRII or Attune flow cytometer.
Measurements were normalized to negative control (DMSO). All pep-
tide conditions run with two biological replicates.

Ex vivo BH3 profiling
Tumour cells were purified as described above and resuspended in
MEB buffer and BH3 profiling immediately preformed.

Dynamic BH3 profiling
Cells were treated for 48 hours with either vehicle, TMZ (50 µM),
IR (5 Gy) or ABBV-155 (1 µg/mL – 72 hours), and then BH3 profiling
was performed as described above. For each peptide the change
in cytochrome c release was calculated by subtracting the vehicle
from treated conditions to determine how apoptotic dependen-
cies shift with treatment.

Dynamic ex vivo BH3 profiling
Mice bearing PDX025 and PDX005 tumour were anesthetized with
ketamine/xylazine at 1.25mg/kg and cranially irradiated with 10Gy IR.

After 48 hours mice were euthanized, and tumour cells were purified
and used for BH3 profiling as described above. PDX039 and PDX147
were treated with ABBV-155 (10mg/kg, qw, i.p.). After 10 days mice
were euthanized, and tumour cells were purified and used for BH3
profiling as described above. For each peptide the change in cyto-
chrome c release was calculated by subtracting the vehicle tumour
cells from treated tumours to determine how apoptotic dependencies
shifted with treatment.

Immunohistochemistry
Immunohistochemistry was performed on 4μm sections cut from
FFPE (formalin-fixed, paraffin-embedded) blocks. Sections were then
deparaffinized with xylene and rehydrated through graded ethanol.
Antigen retrieval was achieved with a pH 9.5 Nuclear Decloaker
(Biocare Medical) in a decloaking pressure cooker at 95 °C for
40min. Tissue sections were then treatedwith 3% hydrogen peroxide
(lot 161509; Fisher Chemical) and with Background Sniper (Biocare
Medical) to decrease nonspecific background staining. Primary anti-
B7-H3 was applied in a 1:100 dilution for 80min, and detection was
then performed with a MACH 3 Rabbit HRP-Polymer Detection kit
(Biocare Medical). Visualization was achieved with VECTOR NovaRED
(SK-4800; Vector Laboratories) as a chromogen. Finally, sections
were counterstained with Tacha’s Automated Hematoxylin (Biocare
Medical).

Genetic manipulation
HEK-293-FT cells (ATCC) were transfected using lipofectamine 2000
(Invitrogen) to produce lentiviruses for genetic manipulation, which
were collected 48 hours after transfection. Short hairpin RNAs
(shRNAs) against PUMA and BCL-XL were purchased from Sigma
(shPUMA1: TRCN0000033610, shPUMA2: TRCN0000033612. shBCL-
XL1: TRCN0000033499, shBCL-XL2: TRCN0000033500, shCtl:
SHC002). TP53 CRISPR-Cas9 gene disruption was performed with the
LentiCRISPR V2 vector (Addgene, 52961) using the following oligonu-
cleotide sequences: sgp53-1 CCGGTTCATGCCGCCCATGC, sgp53-2
GAGCGCTGCTCAGATAGCGA, sgControl GTAATCCTAGCACTTT-
TAGG. Cells were spinfectedwith lentivirus and Polybrene (1 ug/mL) at
800g for 1.5 hours (32 °C). Cells were immediately transferred into
standard media and subjected to puromycin selection (1mM pur-
omycin) after 5 days of recovery.

Secreted Gaussia luciferase measurements
To measure tumour burden via the levels of sGluc, blood (6μL) was
collected from the tail vein and mixed with 50mM EDTA immediately
to prevent coagulation. Chemiluminescence was measured after
injection of 100μL of 100μM coelentarazine (Nanolight) in a 96-well
plate to obtain sGluc activity, as described before50.

Mouse treatment studies
GS025 (shControl, shBCL-XL), GS005 (shControl, shBCL-XL) cells were
injected as described above. Three days post injection mice were
anesthetized with ketamine/xylazine at 1.25mg/kg and cranially irra-
diatedwith 10Gy IR.Mice bearing PDX005, PDX025, PDX027, PDX054,
PDX039 and PDX147 were monitored for exponential tumour growth
by sGluc measurements. Once aggressive growth was achieved, mice
were randomised and treated with vehicle, 10mg/kg ABBV-155 IP qw
for three weeks, 10Gy IR qw for two weeks, or ABBV-155 and IR. ABBV-
155 was suspended in sterile saline. For IR treatments, mice were
anesthetized with ketamine/xylazine at 1.25mg/kg. Mice were huma-
nely euthanized with CO2 when endpoints were reached.

Comparing the predictive abilities of BIMAUC and multi-omics
feature sets
A method that performs Pearson correlation followed by the elastic
net regression81 was used to evaluate the functionally defined feature,
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BIMAUC AUC, andmulti-omics feature sets (transcriptomics (RNA), copy
number alterations (CNA), and mutations (MUT)) to predict the
response to the dual treatment of TMZ+BCL-XLi or IR + BCL-XLi when
TP53 mutation, MGMT status (a binary metric based on both expres-
sion andmethylation) andMDM2 amplification (GlobalMolecular (GM)
Model) are known. As the elastic net may cause the estimates of non-
zero coefficients to be biased towards zero82, a relaxed elastic net,
which takes the selected variables by the elastic net and refits an
unpenalized linearmodel, was used in place of the originally described
elastic net in the abovementioned model building algorithm. Elastic
net was performed using glmnet R package (v4.1-3)83. Both BIMAUC and
multi-omics features interact with TP53, MDM2 and MGMT through
various ways to create the starting feature sets (Supplementary
Table 2).

To reduce the collinearity in the elastic net, we merge genes with
exactly the same values across all samples (RNA expression p = 17,761,
Copy number alterations p = 1257, mutations p = 10) followed by
interactions and additions between these features in certain models.

Starting feature sets are displayed in Supplementary Table 2. Top
features in the table are based on the absolute Pearson correlation
between each feature and the response variable. Number of combi-
nations is fewer than the full combinations due to certain products
between features resulting in zero variance across samples and are
excluded in the starting feature set.

Cell death data were acquired after TMZ or IR with BCL-XLi
treatment for both the training cohort (n = 26) and an independent
verification cohort (n = 12). The training cohort was divided into
training, validation, and test subsets (Fig. 4A) in order to perform
nested cross validation (CV). The inner loop of nested CV performs the
hyperparameter tuning for Pearson correlation cutoff, elastic net
(ridge84 and lasso85 percentage alpha, penalizing strength lambda and
debiasing factor gamma using train and validation subsets (5-fold CV
with 20 repeats). The outer loop is a leave-one-out CV (LOOCV) (test
data has n = 1 for 26 folds), which was designed to estimate the model
building performance by fitting the best parameter sets to the entire
training plus validation data and then predicting the test data. The
predictive accuracy of the models was evaluated by calculating the
Root Mean Square Error (RMSE) of the sample not used for training
during LOOCV as the outer-loop CV85. In addition, the whole training
cohort is also fitted using the best parameter sets derived from the
same inner tunning algorithm to predict the testing cohort as a second
validation for the modeling performance. Both nested CV and testing
errors were quantified by RMSE. Model parameters were fitted on the
entire training cohort prior to predicting the independent verification
cohort.

In Supplementary Data Figs. 5A, 6C, ∗ represents simple products
between variables without individual main effects.

Identifying the most important features in the combined
feature set
As a secondmethod to test if features in the IMF interaction aremore
correlative than multi-omics GM features when fitting to TMZ + BCL-
XLi or IR + BCL-XLi response, lasso was performed on the combined
feature set IMF + GM. By increasing the penalty strength in LASSO, we
assigned an order to the features based on how late their coefficient
is shrunken to zero. The later the shrinkage to zero, the more valu-
able the feature is at predicting cell death. To assess if the number of
IMF features within the top 100 features is beyond expectation, the
relationships between TMZ+BCL-XLi or IR + BCL-XLi response and
feature sets were shuffled 1000 times to calculate permutation
p-values.

GBM Apoptotic Vulnerability Assessment (GAVA)
Samples were scored as GAVA positive or negative by applying the top
ranked IMF features (IR + BCL-XLi = BIMAUC*TP53*MDM2; TMZ +BCL-

XLi = BIMAUC*TP53*MDM2*MGMT) as binary variables to score the
gliomaspheres. Cutoff for high and low priming as determined using
the ROC curves in Supplementary Fig. 4D. Cut off for response or non-
response to IR or TMZ with BCL-XLi is taken from the mean of each
group (Fig. 4A).

Quantification and statistical analysis
Unless otherwise specified, comparisons were made with two-tailed
unpaired Student’s t-tests, and P values < 0.05 were considered sta-
tistically significant. All data from multiple independent experiments
were assumed to be of normal variance. For each experiment, repli-
cates are noted in the figure legends. Data represents mean ± s.d.
values unless otherwise indicated. All statistical analyses were calcu-
lated in Prism 10.0 (GraphPad). The code for elastic net and cross
validations was written in R (v4.1.2). For all in vitro and in vivo
experiments, no statistical method was used to predetermine sample
size, and no samples were excluded. For in vivo tumour measure-
ments, students t-test were used to compare between groups. As
described above, all mice were randomised before studies. For all
figures: p >0.05 = ns; p <0.05 = *; p <0.01 = **; p <0.001 = ***;
p <0.0001 = ****.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The whole-exome and RNA sequencing data generated in this study
have been deposited in the dbGap database under accession code
phs003286. Sequencing for samples used in this paper are marked
with variable “FERNANDEZ_2024”. The remaining data are available
within the Article, Supplementary Information or Source Data file.
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