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Abstract 

The false discovery rate (FDR) controlling method by Benjamini and Hochberg 
(BH) is a popular choice in the omics fields. Here, we demonstrate that in datasets 
with a large degree of dependencies between features, FDR correction methods 
like BH can sometimes counter-intuitively report very high numbers of false positives, 
potentially misleading researchers. We call the attention of researchers to use suited 
multiple testing strategies and approaches like synthetic null data (negative control) 
to identify and minimize caveats related to false discoveries, as in the cases where false 
findings do occur, they may be numerous.
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Background
With high-throughput data generation and data-driven analysis becoming increasingly 
prevalent across biology, the simultaneous statistical testing of multiple hypotheses has 
become a standard technique in many biologists’ toolboxes. The selection of hypotheses 
(e.g., for detailed investigation) is often done by thresholding based on p-values. Even 
when all the null hypotheses are true, a controlled proportion of the hypotheses (known 
as alpha, traditionally set to 5%) will be falsely rejected [1]. Various adjustment methods 
have thus been proposed to control false discoveries in settings where multiple tests are 
systematically explored. These methods are known to adequately control either the fam-
ily-wise error rate (FWER—the chance of reporting any false finding) or the false discov-
ery rate (FDR) the expected proportion of false discoveries among all reported findings. 
Formally, FDR is the expectation of the False Discovery Proportion (FDP), defined as 
the ratio of the number of false discoveries to the total number of discoveries (ensuring 
at least one discovery to avoid division by zero). Since both values vary across datasets, 
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FDP is a random variable. In frequentist statistics, FDR is the expectation of FDP over 
potential datasets drawn from the same distribution as the dataset at hand, depending 
on the needs of the study [2]. Although findings from data-driven exploration are usually 
followed up with independent verification, this comes with a cost, comes with a delay, 
and is not always possible. It is thus highly desirable to limit false findings, which is what 
properly controlled (multiple) statistical testing aims to achieve. The choice between 
FWER and FDR has long been a trade-off between type I and type II error rates. Ana-
lysts often understand this as a choice between “highly conservative” and “less conserva-
tive” correction methods [2–4]. When faced with the dilemmas of other study design 
considerations (e.g., power, biases) that may limit the detection of “statistically signifi-
cant” findings, many analysts choose “less conservative” methods under the premise that 
the FDR methods still control the expected FDP at a pre-specified level, leading to a con-
trolled risk and cost of false findings [2, 5, 6].

However, it is well known that the proportion of falsely rejected null hypotheses may 
increase beyond its formally controlled level depending on other factors like broken 
assumptions for the statistical test, study biases, or the researcher’s flexibility in analyz-
ing the data [7]. When analyzing the statistically significant findings (post-correction), 
analysts may thus be aware that the proportion of false findings could easily be some-
what higher than the reported FDR but presume that as long as there was no p-hack-
ing [8] and the assumptions are only slightly broken (e.g., only slight presence of study 
biases), the large majority of their observed findings will still reflect genuine effects. 
Specifically, suppose a large number of findings are reported after following a multi-
ple testing procedure. In that case, analysts may follow the intuition that if, for exam-
ple, hundreds of genomic sites are reported as findings, they cannot all be false findings. 
In certain biological contexts—like differential gene expression, pathway enrichment, 
and epigenome-wide association analyses—this could be taken to imply the presence 
of an underlying biological mechanism that involves at least some of the many findings 
(e.g., genes or genomic sites) being reported. This could result in either futile validation 
experiments or the scientific literature being plagued with false findings.

Contrary to this intuition, we show in this manuscript that when strong dependen-
cies exist between the many hypotheses being tested, such a central intuition regard-
ing FDR control does not hold (see Additional file 1: Fig. S1 for a graphical summary). 
In fact, even though a positive correlation between tests is (rightly) considered safe for 
FDR controlling procedures like Benjamini-Hochberg (BH) [9], in the sense that it does 
not break the formal guarantees of the procedures, it can still lead to counter-intuitive 
results: in combination with slight data biases, broken test assumptions, publication bias 
(or even just rare coincidence alone), or the researcher’s flexibility in analyzing the data, 
hypothesis dependencies may (as demonstrated later in the article) lead to thousands of 
sites along the genome being falsely reported, even when all the null hypotheses are true.

Results and discussion
In this study, we first analysed FDR control in two settings with all null hypotheses being 
true: (a) when high-dimensional datasets contain correlated features and (b) when they 
do not. For this, we used both simulated and real-world datasets of DNA methylation 
arrays (~ 610,000 unique datasets; see Methods for details). To show that the findings are 



Page 3 of 17Kanduri et al. Genome Biology          (2025) 26:249 	

not connected to the intricate details of any one specific type of statistical test, we con-
ducted experiments for two different statistical testing settings: (a) comparing the means 
of two different groups and (b) assessing whether a set of features are sampled from a 
shared underlying normal distribution. Irrespective of the type of statistical hypothesis 
testing, and on both simulated and real-world datasets, we observed an increased fre-
quency of observing a very high number of false findings (as high as 20% of the total 
number of features) when the datasets contained correlated features (Fig. 1 A–C). Note 
that the FDR (and equivalent FWER because all null hypotheses are true) was still con-
trolled according to its formal guarantee—i.e., the procedure resulted in zero reported 
findings in > 95% of cases. However, in the remaining < 5% of cases, the number of 
reported sites was, at times, very high. This phenomenon of sometimes observing a high 
number of false findings persisted when using BH correction [9] at the routinely used 
predefined FDR nominal levels (e.g., 5%, 10%), irrespective of the sample size (number 
of observations), the total number of features, and the choice of statistical tests (differ-
ent types of parametric or non-parametric tests) (Fig. 1D–H, Additional file 1: Fig. S2 
A–E), as long as the datasets mimicked the real-world datasets in terms of the degree 
of correlations and the proportion of correlated features (Additional file  1: Table  S1). 
Note particularly that the FDP is always 100% in the settings we analyse because all null 
hypotheses are true from the outset. The variance of the number of rejected features per 
dataset was larger for correlated tests than under independence (where it would follow 
a binomial distribution). This was the case for any alpha level (trivially including Bonfer-
roni correction [10–12]). The BH correction [9] leads to a further exaggerated increase 
in variance (Additional file 1: Fig. S3). Although the effect started to gradually decrease 
when the total proportion of correlated features was lower than what is observed in 
some of the real-world datasets from life sciences, we observed that the phenomenon 
still persisted (Fig. 1I, Additional file 1: Fig. S2F).

To demonstrate that the implications of our findings extend to any type of data with 
correlated features, we repeated the experiment of analysing FDR control where all null 
hypotheses are true in real-world gene expression data, metabolite data, and eQTL data 
analyses. For gene expression data, we used real-world bulk RNA-seq datasets with 
shuffled labels (~ 10,000 unique datasets with ~ 40,000 features; see the “ Methods” sec-
tion for details). We performed the standard differential expression analysis comparing 
groups for expression differences using DESeq2 [13], followed by BH correction (which 
also happens to be the default option in DESeq2). We used an FDR nominal level of 
10%, as such a level is commonly used in gene expression studies. Similar to the obser-
vations on simulated and real-world methylation data (Fig. 1A–C), we again observed 
an increased frequency of a high number of false findings in real-world RNA-seq data 
(Fig. 2A). We randomly picked one of the datasets with an elevated false positive ratio 
(FPR) as a representative example and observed that the false-finding features were 
highly correlated with each other when compared to randomly drawn features from the 
same dataset (Fig. 2B).

For metabolite data, we used real-world metabolite datasets with shuffled labels 
(10,000 datasets with ~ 65 features; see the “  Methods” section for details). We per-
formed a two-sided t-test with the null hypothesis that there is no difference between 
the group means of two randomly assigned groups, followed by BH correction with a 
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FDR nominal level of 5%. We again observed an increased frequency of a high number 
of false findings (Fig. 2D). Although the FDR is still controlled (with zero false findings 
in ~ 96% datasets), when false findings occurred, the phenomenon described above is 
even more pronounced in real-world metabolite data, where sometimes as high as ~ 85% 
of the total features were found to have significant differences between groups. This 

Fig. 1  A–C Conditional histograms (conditioned on number of false findings being greater than zero) 
showing the distribution of the number of false findings across datasets (10,000 datasets assessed in each 
sub-panel) after performing feature-wise statistical hypothesis testing with the standard two-group t-test 
that assumes equal variance (A, C) or the KS test assessing whether a set of features is sampled from a shared 
underlying normal distribution (B) followed by BH FDR correction (FDR nominal control at 0.05). Note that 
bins representing zero false findings have been excluded for improved readability in panels A–C A total of 
10,000 datasets each for Beta (A) and Normal (B) distributions have been simulated with 100 observations 
across 10,000 features with and without dependencies (shown in different colors). In the simulated datasets 
with dependencies, the proportion of highly correlated features was similar to real-world experimental omics 
data in life sciences. Additionally, we analyzed the phenomenon for real-world methylation array datasets (C) 
with shuffled labels. D–I Boxplots illustrating the impact of specific study design characteristics or analytical 
choices on false findings across all 10,000 analyzed datasets with and without dependencies. Note that the 
false discovery proportion (FDP) is always 100% in all figure panels because all null hypotheses are true. We, 
therefore, plot the false positive ratio (FPR), which is defined as the proportion of true negatives that were 
falsely categorized as positive. We demonstrate the impact of the sample size (D), number of features (E), 
type of statistical test (F), FDR/FWER correction method (G), level of significance (alpha) (H), and the total 
proportion of correlated features (I). Note that here, the statistical hypotheses testing performed was a 
two-group t-test followed by BH correction at 5% FDR level. The number of observations was fixed at 100, 
and the number of features remained constant at 10,000 except when they were varied for investigation. For 
similar findings on one-sample tests assessing whether a set of features is sampled from a shared underlying 
normal distribution, see Additional file 1: Fig. S2. Note that the FDR, which is the average of FDP across all the 
10,000 datasets in each sub-panel (A–I), was still controlled under 5% in both the settings with and without 
dependencies (i.e., there was no inflated FDR); however, in the presence of dependencies, a high FPR was 
observed sporadically
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Fig. 2  A Conditional histograms (conditioned on the number of false findings being greater than zero) 
showing the number of datasets (y-axis) with a certain number of false findings (on x-axis) across real-world 
RNA-seq datasets with shuffled labels (10,000 datasets). Feature-wise statistical hypothesis testing with 
standard two-group comparison was performed using DESeq2, followed by BH FDR correction (FDR nominal 
control at 0.1). Note that bins representing zero false findings have been excluded for improved readability. 
The datasets contained ~ 40,000 features. B Empirical cumulative distribution plots of the correlation 
coefficients. The distribution of the upper triangle of the Pearson correlation coefficient matrix for all false 
findings in a specific dataset with many false findings is depicted in a distinct color. In contrast, dark blue-ish 
colours represent the distribution of the upper triangle of the Pearson correlation coefficient matrix for 
randomly sampled features of the same size, repeated five times, from the same dataset. C Histograms 
showing the number of datasets (y-axis) with a certain number of false findings (on x-axis) across real-world 
eQTL datasets with shuffled gene expression levels (10,000 datasets). eQTL analysis was carried out using the 
MatrixEQTL R package [24] using linear models, followed by default FDR correction using the BH method at 
a FDR nominal control of 0.05. D Conditional histograms (conditioned on the number of false findings being 
greater than zero) showing the number of datasets (y-axis) with a certain percentage of false findings (on 
x-axis) across real-world metabolite datasets with shuffled labels (10,000 datasets). Feature-wise statistical 
hypothesis testing was performed using a two-sided t-test with the null hypothesis that there is no difference 
between the group means of two randomly assigned groups, followed by BH correction with a FDR nominal 
level of 5%. The colour indicates the findings using either the BH or BY correction methods. E FPR comparison 
for different multiple testing adjustment approaches, where all the null hypotheses were true. F True positive 
ratio (TPR) comparison for different multiple testing adjustment approaches for null hypotheses that are false. 
A subset of datasets with controlled FPR and elevated FPR were selected from previous analyses shown in 
Fig. 1G. for analyses shown in E–F 
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observation can be attributed to the higher degree of dependencies known to be present 
in metabolomics data.

Multiple hypothesis testing is also a major issue in fields involving genetic variation. 
Genome-wide association studies (GWAS) have long used Bonferroni correction with a 
threshold of 5 × 10−8 (corresponding to a 0.05 threshold per a million sites tested) [14], 
but permutation testing is also increasingly being considered the gold standard [15] 
because of the well-known correlations along the genome, especially due to linkage dis-
equilibrium (LD). Quantitative trait locus (QTL) studies associating genetic variation 
with traits like gene expression (eQTL) [16], DNA methylation (mQTL) [17], and metab-
olites (metQTL) [18] also face a similar issue of multiple testing with dependent tests. 
Conscious of the dependencies arising from pervasive LD along the genomes, the QTL 
field has increasingly focused on developing and implementing LD-aware multiple test-
ing corrections. This includes emphasis on efficient locus-restricted permutation testing 
and hierarchical procedures that often involve local permutation testing [19–22]. Huang 
et al. [23] performed a comprehensive evaluation of various multiple testing strategies 
across study design considerations of eQTL studies and showed that global FDR cor-
rection methods like BH are “inappropriate for eQTL studies, as they give inflated 
(sometimes substantially) FDR that worsen as sample size increases”. We observe similar 
findings in our eQTL experiments, where we used real-world eQTL data with shuffled 
gene expression levels (10,000 datasets; see Methods for details). We performed stand-
ard eQTL analyses using linear models from the famous MatrixEQTL package [24] with 
population stratification as covariate (cited ~ 1800 times as of June 2025, with the BH 
method as the default for FDR). We observed a substantially increased incidence of a 
high number of false findings (Fig. 2C), much more frequently than any other type of 
data analyzed in this study. Huang et  al. [23] observed that the most commonly used 
hierarchical approach in eQTL studies (e.g., also used by GTEx [25]; permutation testing 
for local correction, followed by a global correction using BH or similar) is better at con-
trolling FDR. However, based on our findings from all the above experiments, we urge 
the readers to be aware that FDR correction methods like BH [9] can, in some cases, 
report very high numbers of false positives.

Comparison of false and true positive ratios of multiple FDR and FWER control methods

FDR control in the presence of correlated features is a known problem, and various 
approaches have been proposed that operate under a range of assumptions regarding the 
dependence structure. We compared the behaviour (FPR and TPR) of some of the well-
known approaches that have been suggested to be robust in controlling FWER or FDR 
in the presence of positively correlated test statistics. To accomplish this, we expanded 
the comparison from Fig. 1G by incorporating additional methods. Instead of using all 
the 10,000 datasets that were previously used in Fig.  1G, we used only ~ 160 datasets. 
Particularly, we used all those simulated datasets where the FPR was > 0.05 (~ 60 such 
datasets, hereafter referred to as datasets with elevated FPR) and a random subset of 100 
datasets where the FPR was < 0.05 at a pre-defined FDR nominal level of 5% using the 
BH method in previous analyses (hereafter referred to as datasets with controlled FPR). 
The reason for this restriction is the computational expense of resampling-based FDR 
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controlling procedures, where we intended to have at least 1000 permutations for each 
dataset.

Beyond the BH [9] and Bonferroni [11] methods previously examined (Fig.  1G), we 
included the following FWER or FDR controlling approaches: Sidak [26], Holm [27], 
Holm-Sidak [26, 27], Simes-Hochberg (SH) [28, 29], Benjamini-Yekutieli (BY) [30], two-
stage approaches based on the work of Benjamini-Hochberg (TS_BH) [31], Benjamini, 
Krieger and Yekutieli (TS_BY) [32], and a resampling-based FDR controlling procedure 
similar to that of Yekutieli and Benjamini (resampling) [33]. To throw light on the TPR of 
all the FDR control procedures simultaneously with the FPR, in each dataset, we simu-
lated 1–2% of the total hypotheses being tested as false. For this, we used exactly the 
same datasets as before but now introduced effect sizes for a subset of features that align 
with a realistic number of significant hits reported in typical experimental studies.

Regarding the FPR (Fig. 2C), FWER methods (Bonferroni, Sidak, Holm, Holm-Sidak) 
and one FDR method (SH) had consistently low FPRs. FDR methods (BY, resampling-
based, BH, TS_BKY, TS_BH) showed varied behavior. The BH [9], TS_BKY [32] and 
TS_BH methods had many instances of high FPRs. The BY method [30] and the resa-
mpling-based approach [33] showed fewer instances of a moderate level of FPRs, albeit 
less frequently and less severe than other FDR methods (Fig. 2C).

Concerning the TPRs (Fig. 2D), FDR methods BH [9], TS_BKY [32] and TS_BH [31] 
resulted in the highest TPRs. In contrast, the FWER methods and one FDR method (SH) 
showed the lowest TPRs. BY [30] and the resampling-based approach [33] showed a 
moderate level of TPRs. Collectively considering FPRs and TPRs, the methods can be 
categorized into three classes: (a) those that resulted in the lowest FPRs at the expense of 
the lowest TPRs, (b) those that had the highest TPRs but many instances of high FPRs, 
and (c) those that had moderate TPRs with fewer, less severe instances of FPRs. These 
observations align with the findings of a previous benchmarking effort [34], where the 
BY method [30] has been shown to be conservative in controlling the FDR way below 
the specified 5% nominal level, often controlling less than 1%, at the expense of loss of 
TPR that was shown to be 30% lower than that of the BH procedure [9].

BH method remains a popular choice even in the presence of correlated features

While several methods have been proposed to address FDR control in the presence of 
correlated features, the persistent challenge lies not in the absence of solutions but in 
practical adoption, potentially owing to the type II error rates of suited procedures. Pop-
ular tools designed for performing multiple tests for gene expression data (e.g., DESeq2 
[13], edgeR [35], limma [36] that are together cited > 150,000 times) have the BH pro-
cedure as the default option for controlling FDR. These tools do not provide a ration-
ale for the choice of BH procedure, except the following statement in the user guide of 
limma: “Benjamini and Hochberg’s control of the false discovery rate assumes independ-
ence between genes, although Reiner et al. have argued that it works for many forms of 
dependence as well.” Notably, we demonstrated using real-world gene expression data 
that there can sometimes be numerous false findings with BH, and we showed a high 
degree of correlation between false findings (Fig.  2A–B). To further investigate how 
prevalent the BH procedure is in the presence of dependent test statistics, we performed 
a literature search in eight different journals that are popular avenues for omics-based 
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investigations. We particularly focused on DNA methylation studies published from 
2020 through March 2025 and analysed the prevalence of three multiple testing adjust-
ment procedures: BH [9], Bonferroni [11], and Benjamini-Yekutieli [30]. The search pro-
cess is detailed in the “ Methods” section. ~ 60% of the relevant articles (that performed 
multiple statistical tests and mentioned multiple testing adjustments) did not explic-
itly mention any of the selected adjustment methods. Of the remaining relevant arti-
cles across journals that mentioned any of the selected adjustment methods, ~ 57% of 
all the articles used the Bonferroni procedure, followed by ~ 31% usage of the BH proce-
dure, compared to < 2% that used the Benjamini-Yekutieli procedure (Additional file 1: 
Table S2). These findings reasonably reflect the prevalence of the BH procedure in stud-
ies with dependent test statistics. Overall, these statistics and BH being a default option 
in popular libraries suggest that the BH procedure remains a popular choice even in the 
presence of correlated statistics.

Recommendations and outlook

When an analysis results in a large number of significant hits, it may be intuitive to con-
clude that at least some of them must be true—i.e., that the result is a robust indication 
of some form of underlying biology. To identify whether an observed high number of 
significant hits could occur merely by chance (whether such a number is consistent with 
all nulls being true, due to strong feature dependence), the following two approaches 
could be of relevance: (a) the distribution of correlation coefficients between signifi-
cant hit features can reveal if the findings can be potentially attributed to correlations 
between features, (b) a distribution of the number of significant findings based on rep-
etitions of negative control data (similar to “negative controls” used by experimental 
biologists [37]) can reveal if a similar counter-intuitively high number of false findings 
can occur given the properties of the original dataset. Here, simple permutations of 
the labels of the observations in the original dataset could be a good starting point for 
generating in silico negative control data and can suffice for the analysis of differences 
between groups. However, the permutation of labels may not suffice to generate a valid 
null distribution in certain settings (e.g., when the effect of interest involves changes in 
trajectories and spatial organization). In such cases, sophisticated models that are either 
generic or domain-adapted (like being specific to particular omics types or a particular 
technology (e.g., single cell)) could be used to generate synthetic null data. For instance, 
knockoffs [38–40] are a class of methods that can generate synthetic null data while 
preserving the intrinsic dependence structure of the original datasets. The knockoffs 
require knowledge of the joint distribution of features and are computationally inten-
sive because of the strict requirement of exchangeability, where swapping any subset of 
features with their knockoff counterparts requires preserving the joint distribution of 
all the original features and knockoffs. Novel frameworks such as SyNPar [41, 42] have 
been proposed recently to generate synthetic null data efficiently and easily by overcom-
ing the challenges of knockoffs. Generic synthetic data generation libraries (e.g., [43] also 
include copula-based models and deep generative models that can preserve either the 
dependence structure and/or the marginal statistical properties of the datasets. Domain-
adapted synthetic data generation libraries (e.g., scDesign3 [44] for single-cell data) have 
also been developed to preserve both the dependence structure and marginal statistical 
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properties of the datasets. Song et al. [45] demonstrate one example of using domain-
adapted synthetic data generation libraries to generate synthetic null data to minimize 
FDR. Irrespective of the choice of the tools/methods used, valid synthetic null data 
should be able to nullify the effect of interest under the null hypothesis. As an example 
of synthetic null data generation that involves more than the permutation of labels, we 
provided a short tutorial using a generic synthetic data generation library in the accom-
panying GitHub repository.

Making a single recommendation that fits all goals is challenging when addressing 
the identified phenomenon, as the tolerance for various types of error rates often influ-
ences the choice of a suited FDR controlling procedure in the presence of dependencies 
between test statistics. Nevertheless, the following would be our recommendation based 
on the findings: Although no instances of a high FPR were observed with Bonferroni and 
similar FWER approaches, we would not suggest making them a general recommenda-
tion, owing to low TPRs (unless high type II errors can be tolerated). Among the FDR 
methods that had the highest TPRs, the popular BH method had, on average, the lowest 
FPRs (Fig. 2C–D). Notably, the BH method still controls the FDR according to its for-
mal guarantee, which was evident in all the analyses of Fig. 1, where zero false findings 
were observed in > 95% of the cases. One could thus still use the BH method in settings 
with high feature dependence. However, to ensure correct interpretation, users need to 
understand the formal guarantees of the BH method precisely. Specifically, with the BH 
method we would advise both analysts and peer reviewers to take into account that even 
a very large number of significant hits does not provide a sure indication of underly-
ing biology—with strong dependency, a large number of false findings could occur just 
by chance (even if all null hypotheses hold). Finally, although the BY method does not 
completely eliminate the described phenomenon, it makes it much less frequent and less 
severe. As long as a slightly increased level of type II error can be tolerated, we therefore 
recommend the BY method as a good compromise that reduces the risk of unwarranted 
interpretations while still providing good statistical power.

The widespread adoption of the BH method in omics data analysis may stem from 
several factors. Computationally, it offers a less conservative and powerful alternative to 
methods like BY while avoiding the high computational cost of permutation testing. Its 
prevalence as a default option in many popular omics data analysis libraries also contrib-
utes to its frequent, and sometimes uncritical, application. Analysts may also strategi-
cally select BH to balance Type I and Type II error rates, or they may be aware that its 
FDR control properties hold when test statistics are stochastically independent or satisfy 
positive regression dependency—a condition often met in omics data, as supported by 
our findings of zero false findings in over 95% of cases. Another plausible factor con-
tributing to the less-informed application of the BH method is the lack of explicit docu-
mentation in widely used statistical software, such as R’s “p.adjust()” function and other 
omics-specific libraries, regarding the underlying dependence structure assumptions 
required for BH to control FDR. Particularly, FDR control by BH holds under the so-
called positive regression dependency condition introduced by Benjamini and Yekutieli 
(2001) [30]. It says that for any increasing set D of p-value outcomes, conditioning on 
one null p-value being smaller (i.e., more significant) cannot decrease the probabil-
ity that the overall outcome falls in D. Intuitively, it implies that conditioning on one 
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null p-value becoming more significant does not decrease the probability of other null 
p-values becoming less significant. While our results indicate that the BH method often 
maintains FDR control in omics data, even with high feature dependence, it is crucial for 
analysts to be aware that a large number of significant findings does not automatically 
guarantee underlying biological relevance. This highlights the need for clearer methodo-
logical guidance and transparent reporting of FDR control choices in scientific literature.

Conclusions
In summary, our findings demonstrate that with highly correlated datasets, as in omics 
and life sciences, FDR correction methods like BH [9] can, in some cases, report very 
high numbers of false positives. This can lead to thousands of falsely reported findings, 
even if all null hypotheses are true. It can be highly counter-intuitive that these findings 
may all be false, which can mislead researchers to conclude on the presence of an under-
lying mechanism (or signal) that involves at least some of the reported sites. An underly-
ing mechanism’s alleged existence may indeed be a given study’s main conclusion. Slight 
data biases, broken test assumptions, researcher degree of freedom, or publication bias 
may further compound this effect. Thus, we call the attention of researchers using multi-
ple statistical tests in high-dimensional data to be aware of dependencies in the datasets, 
to use suited multiple testing strategies, and to beware that in cases where false findings 
do occur, they may be numerous.

Methods
Synthetic and real‑world datasets

High‑dimensional data with a large degree of dependencies

DNA and its properties are examples of high-dimensional data having substantial 
dependencies between features. In this study, we used DNA methylation data as one 
example of high-dimensional datasets with correlated features to investigate its impact 
on FDR control. For this, we use both simulated and real-world methylation array data. 
Methylation arrays have remained a popular technology for assaying genome-wide DNA 
methylation patterns. Methylation array data is typically known to follow the beta dis-
tribution, and the beta values are generally assumed to be biologically interpretable. The 
beta-distributed methylation values are often transformed to M values (logit transfor-
mation) before any statistical testing, owing to their more convenient statistical proper-
ties. A frequent need for univariate statistical testing on methylation data arises from the 
hypothesis that a fraction of the methylation sites differ between two groups of observa-
tions (e.g., disease vs healthy), where the null hypothesis is often that the methylation 
levels do not differ between groups (a two-group statistical test). A fraction of the null 
hypothesis could be false when there are true biological effects. In this study, we chose to 
investigate the FDR control when all null hypotheses are true using both synthetic and 
real-world methylation data. Thus, neither the simulated nor the real-world datasets that 
we used contained any known signal that differentiated the two groups being compared.

Simulated methylation array data

In this study, we chose to investigate the FDR control when all null hypotheses 
are true. Thus, we do not introduce any signal into the methylation data in a large 
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majority of the settings (see point 3 below for an exception). For simulating data that 
mimics real-world methylation data, we used approaches that are often referred to 
as “plasmode simulation” [46–50], where some aspects of the data-generating model 
are known and used for simulations (e.g., using estimated distributional properties of 
features in observed data, using estimated associations between features in observed 
data).

1.	 To simulate methylation array data mimicking the correlation structure from real-
world experimental datasets, we followed the procedure described below:

a.	 We randomly sampled the desired number of methylation sites from a real-
world experimental dataset (specifically, Illumina Infinium EPIC Human meth-
ylation array data from GEO accession number: GSE161651 [51, 52]) and esti-
mated their beta distribution parameters (alpha and beta, respectively).

b.	 To generate features with a particular correlation structure, we first divided the 
total number of features into bins of a prespecified size. In each bin, we gener-
ated one proxy feature to represent that bin. All the other features in that bin 
were generated in such a way that they are correlated to a certain degree with 
the representative feature. The representative feature was drawn from the stand-
ard Gaussian distribution. All the other features with the desired number of 
observations were also drawn randomly from the standard Gaussian distribu-
tion while being correlated with the representative feature. The degree of cor-
relation between the representative feature and every other feature is based on 
a correlation coefficient that is randomly drawn from a pre-specified range of 
correlation coefficients.

c.	 We used the estimated beta distribution parameters (from step 1) to transform 
the Gaussian features into beta-distributed features for each of the standard 
Gaussian features. Briefly, the cumulative distribution function (CDF) of the 
Gaussian distribution is applied to each Gaussian feature to transform it into 
uniform random variables within the interval [0, 1]. Then, the percent-point 
function (PPF; inverse of CDF) of the beta distribution with specified beta dis-
tribution parameters is applied to each uniform random variable to transform it 
into beta random variables.

2.	 To have a setting of high-dimensional datasets without correlated features while still 
being sufficiently similar to the distributional properties of methylation data for apt 
comparison, we simulated methylation-like data without any dependencies between 
the features. For this, we followed the procedure described below:

a.	 We randomly sampled the desired number of methylation sites from a real-
world experimental dataset (GEO accession number: GSE161651 [51, 52]) and 
estimated their beta distribution parameters (alpha and beta, respectively).

b.	 We use the corresponding estimated beta distribution parameters (from Step 1) 
for each simulated feature to draw the desired number of observations from the 
beta distribution.
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3.	 To throw light on the type II error rates of all the controlling procedures simultane-
ously with the type I error rate, we simulated 1–2% of the total hypotheses being 
tested as false and are guaranteed to result in p-values < 0.05. For this, we used a 
subset of datasets from the large collection of datasets that we used to compare the 
behaviour of the Bonferroni and BH procedures, as shown in Fig.  1G in the main 
manuscript. We introduced effect sizes for a subset of features (between 1 and 2%) 
that align with a realistic number of significant hits reported in typical experimen-
tal studies. The effect sizes were introduced on the so-called M-values of methyl-
ation data (not in the beta value scale). All the features that were selected to have 
group differences were selected to have their mean M-values within a specified range 
before the introduction of effect sizes. Particularly, we chose all the features to have 
their mean M-values between 2 and 2.5. We added a constant value of 1 to one of the 
groups and verified that between 1 and 2% of the features indeed had p-values < 0.05 
before adjustment for multiple comparisons.

Real‑world datasets with shuffled labels

To investigate the FDR control on real-world high-dimensional datasets with a large 
degree of dependencies, we generated many semi-real-world methylation datasets, 
RNAseq datasets, metabolite datasets, and eQTL datasets using the plasmoid-like simu-
lation strategy mentioned above [46–50]. A criterion for our investigation is that all the 
null hypotheses for statistical testing are true. For methylation, RNAseq, and metabo-
lite data, we chose to shuffle the labels of real-world experimental datasets and divide 
the observations into two random groups with no known true differences. For eQTL 
data, we chose to keep the SNP data fixed while permuting the expression levels of 
observations. For methylation data, we used the dataset with GEO accession number 
GSE161651 [51, 52]. For RNAseq data, we used the dataset with GEO accession num-
ber GSE267625 [53, 54]. For metabolite data, we used urinary metabolite data meas-
ured using 1H-NMR from [55]. For eQTL data, we used publicly available data from [56] 
with GEO accession number GSE53261 [57]. One possibility is to use many real-world 
datasets from public databases as desired for our investigation (n = 10,000). However, 
without being uniformly processed and normalized in some form, potential experiment-
specific and processing-specific biases of the different datasets can affect the conclu-
sions of our investigation. To avoid this, we chose to repeatedly shuffle the labels of one 
real-world dataset. In methylation datasets, we sampled with replacement the number 
of desired features (often 10,000) to be comparable with our simulated methylation data. 
For RNAseq data, we used all the ~ 40,000 features. For metabolite data, we used all 
the ~ 65 features. For eQTL data, we did not exclude any observations or features from 
SNP or expression data.

Simulated multivariate normal features with and without dependencies

To avoid the intricate details of a two-group statistical test confounding our investi-
gation on FDR control in high-dimensional datasets with dependencies, we chose to 
include an additional combination of high-dimensional datasets with different distri-
butional properties and one-sample statistical testing. For this, we simulated datasets 
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with multivariate normal features with dependencies following the identical procedure 
described in 1. b. For the comparative datasets without dependencies, we have drawn the 
desired number of observations from the standard normal distribution for each feature.

Statistical testing with quantification of FDR and FWER

For the two-group comparison statistical testing, we divided the observations ran-
domly into two groups of equal size. We performed three different statistical tests: (a) 
a standard two-group Student’s t-test that assumes equal variances, (b) a moderated 
t-test (limma [58]) that is a slight variation of the standard t-test, where empirical Bayes 
methods are used to shrink the feature-wise standard deviation to the global standard 
deviation, and (c) a non-parametric Wilcoxon rank-sum test. For the one-sample statis-
tical testing, we performed the Kolmogorov–Smirnov (KS) test to assess for normality 
of features. For real-world RNAseq data, we perform a standard differential expression 
analysis using DESeq2’s Wald test for negative binomial distribution data. For real-world 
metabolite data, log2-transformed and scaled metabolite data are analysed for group 
(randomly-assigned) differences using a standard t-test. For real-world eQTL data, we 
performed standard eQTL association analysis using MatrixEQTL R package [24] using 
linear models with population stratification as covariate and querying cis associations 
within 1 megabase proximity for every gene. We used the BH method [9] for control-
ling the FDR and the Bonferroni method [11, 12, 59] for controlling the FWER. When 
extending the comparison with various other FDR and FWER controlling methods, we 
used the following approaches: Sidak [26], Holm [27], Holm-Sidak [26, 27], Simes-Hoch-
berg (SH) [28, 29], Benjamini-Yekutieli (BY) [30], two-stage approaches based on the 
work of Benjamini-Hochberg (TS_BH) [31], Benjamini, Krieger and Yekutieli (TS_BY) 
[32], and a resampling-based FDR controlling procedure similar to that of Yekutieli and 
Benjamini (resampling) [33]. All the compared methods were implemented in the multi-
pletests module of statsmodels in Python, except for the resampling approach, which is 
not readily implemented either in Python or R to our knowledge. Thus, we implemented 
it ourselves. We used three different pre-specified nominal levels that are routinely 
employed in life sciences: 1%, 5% and 10%.

Simulation of datasets with varying dataset properties

For both types of high-dimensional datasets (beta and normally distributed), we gener-
ated many variations of the datasets with a variety of properties related to the sample 
size, number of features, and whether the features have dependencies or not. For data-
sets with dependencies, we also varied the total proportion of correlated features. For 
each variation of the parameters, we generated 10,000 datasets with identical proper-
ties. In addition, we also investigated the FDR control on 20,000 variations of real-world 
experimental datasets with dependencies (DNA methylation and RNAseq). In total, we 
investigated FDR control on 620,000 unique datasets. On each dataset, we performed 
different statistical tests (both parametric and non-parametric) and adjusted for both 
FDR and FWER at different pre-specified nominal thresholds, resulting in approximately 
8 million unique FDR/FWER corrections.
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Literature search to investigate the prevalence of various multiple testing correction methods 

in the presence of dependent test statistics

To investigate the prevalence of multiple testing correction methods in the presence of 
dependent test statistics, we performed a literature search using web scraping. We par-
ticularly focused on DNA methylation studies published from 2020 through March 2025 
and analyzed the prevalence of three multiple testing adjustment procedures: BH, Bon-
ferroni, and Benjamini-Yekutieli. The search process is detailed below.

We restricted our literature search to eight different journals that are popular avenues 
for publishing high-dimensional omics-based research, particularly studies based on 
epigenetics. Specifically, we searched Clinical Epigenetics, BMC Genomics, Genome 
Biology, Genome Research, NAR, Nature Communications, Nature, and Nature Genet-
ics journals. To find all the relevant articles that are primarily investigating epigenetics, 
we first filtered articles that contain the epigenetic-related keywords mentioned below, 
either in the title or abstract. We then filtered for the presence of both the statistical 
testing-related keywords and multiple testing-related keywords either in the abstract or 
the full text. We then searched for the presence of specific multiple-testing adjustment 
procedure names or abbreviations. Reference sections were excluded to prevent false 
keyword matches based on the initials of the author names. Supplementary materials 
were not included in the web scraping process and were therefore not considered in the 
keyword-based filtering. We ensured that our keyword searches were case-insensitive, 
allowing us to detect relevant terms regardless of capitalization. Additionally, to account 
for plural forms, we applied pattern-matching techniques that recognized both singular 
and plural variations of keywords.

Epigenetic-related keywords included the following: “methylation,” “epigenetic,” or 
“epigenomic.” To determine whether articles employed statistical analyses, we searched 
for the following keywords: “statistical test,” “t-test,” “t test,” “anova,” “wilcoxon,” 
“kruskal–wallis,” “kruskal wallis,” “mann–whitney u,” “mann whitney u,” “mann–whit-
ney–wilcoxon,” “mann whitney wilcoxon,” “wilcoxon mann whitney,” “wilcoxon-mann–
whitney,” “rank-sum,” “rank sum,” “linear model,” “linear regression,” “limma,” “edgeR,” 
“deseq2,” “hypothesis test,” “p-value,” “p value,” “f-test,” or “f test.” To identify the articles 
that mentioned multiple testing adjustment-related keywords, we searched for “multiple 
testing,” “multiple comparison,” “multiple correction,” “multiple adjustment,” “multiple 
hypothesis,” “adjusted p-value,” “adjusted p value,” “family-wise error rate,” “family wise 
error rate,” “fwer,” “false discovery rate,” “fdr,” “q value,” or “q-value.”

After identifying articles that mentioned methylation, statistical analyses, and multi-
ple testing corrections, we further checked for the presence of specific multiple testing 
correction methods: BH, Bonferroni, and Benjamini-Yekutieli (BY). To detect BH, we 
searched for the terms “benjamini-hochberg,” “benjamini hochberg,” and “bh.” Similarly, 
Bonferroni corrections were identified by the presence of the term “bonferroni.” Benja-
mini-Yekutieli was detected using “benjamini-yekutieli,” “benjamini yekutieli,” and addi-
tionally, a case-sensitive search for “BY.” The results were then recorded, allowing us to 
estimate how often specific correction methods were used and reported in methylation 
studies across the selected journals. To avoid cases where several correction methods 
were mentioned—potentially indicating benchmarking or comparative analyses—we 
only considered articles that referenced a single correction method.
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