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Abstract. In single-cell sequencing data analysis, addressing sparsity
often involves aggregating the profiles of homogeneous single cells into
metacells. However, existing metacell partitioning methods lack checks
on the homogeneity assumption and may aggregate heterogeneous single
cells, potentially biasing downstream analysis and leading to spurious
discoveries. To fill this gap, we introduce mcRigor, a statistical method
to detect dubious metacells composed of heterogeneous cells and optimize
the choice of metacell partitioning methods and hyperparameters.
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1 Introduction

The high sparsity of single-cell sequencing data, caused by low per-cell sequenc-
ing depth and technical sensitivity limitations, poses a significant challenge for
data analysis. Metacell partitioning is a key strategy to mitigate sparsity as an
alternative to imputation. Unlike imputation, which predicts missing values and
risks introducing artifacts, metacell partitioning aggregates cells representing the
same cell state into a metacell through averaging, using these metacells for down-
stream analysis [1]. Metacell partitioning is expected to reduce noise and thereby
accentuate biological signals often obscured in sparse single-cell datasets. The
metacell concept has been widely adopted in high-profile single-cell studies, and
several metacell partitioning methods have been developed, including MetaCell
[1], MetaCell2 [2], SuperCell [3], and SEACells [4]. However, the single-cell field
lacks a rigorous definition of metacells or a universally accepted metacell parti-
tioning strategy. Algorithm and hyperparameter choices introduce variability in
metacell partitions across different methods, creating uncertainty about which
partition best preserves biological signals and potentially compromising the reli-
ability of metacell-based data analysis. To address this, we propose a statistical
definition of metacells and develop mcRigor, a novel method to enhance the rigor
of metacell partitioning.
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2 Methods

2.1 A Statistical Definition of Metacells

Fig. 1. a, Schematic of mcRigor for detecting dubious metacells. b, Schematic of
mcRigor for optimizing metacell partitioning. c, mcRigor effectively assesses meta-
cell heterogeneity and detects dubious metacells within the metacell partition by the
MetaCell method on semi-synthetic data. Left: UMAP plots of metacells, colored by
mcDiv values (top) and metacell purity (ground truth, bottom). Right: mcRigor iden-
tifies dubious and trustworthy metacells, aligning well with impure and pure metacells
(top, with the F-score as the harmonic mean of precision and recall); thresholding
mcDiv based on metacell size effectively identifies impure metacells (bottom).

Consider a total of n cells sequenced to measure the abundance of p features.
The observed count matrix is denoted by Y = [yij ] ∈ Z

n×p
≥0 , with yij as the

count of feature j in cell i. The unobserved (true) relative abundance matrix
is denoted by Λ = [λ1, . . . ,λn]� = [λij ] ∈ [0, 1]n×p, where λij is the relative
abundance of feature j in cell i, with

∑p
j=1 λij = 1. We formalize the definition

of metacells statistically, following the two-layer observation model for single-cell
sequencing data [5]. The first layer, the expression model, describes the distribu-
tion of λi = (λi1, . . . , λip)�, which captures the biological variation among cells
and typically depends on cell i’s covariates, such as cell type. The second layer,
the measurement model, describes the distribution of yij given λi:

yij | λi
ind∼ Poisson(ciλij) ,

which implies (yi1, . . . , yip)| λi, yi+ ∼ Mult(yi+, λi1, . . . , λip) , (1)
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where ci = E[yi+|λi], with yi+ =
∑p

j=1 yij representing the library size of cell i;
the measurement model describes the technical variation among cells. Under this
two-layer observation model, we define a metacell as a group of cells sharing the
same λ. We term metacells that satisfy this definition as trustworthy metacells,
and those that do not as dubious metacells.

2.2 The mcRigor Algorithm

Detection of Dubious Metacells. The mcRigor algorithm begins by detect-
ing dubious metacells given a metacell partitioning, via a per-metacell statisti-
cal test with H0 : (yi1, . . . , yip)| λ, yi+

ind∼ Mult(yi+, λ1, . . . , λp) , for all cell i in
a metacell, where λ = (λ1, . . . , λp)� is shared by all cells within the metacell.
Specifically, mcRigor detects dubious metacells via four steps (Fig 1a):

Step 1 (Metacell Divergence Scores). mcRigor computes a metacell diver-
gence score (mcDiv) for each of M metacells separately. For the kth metacell
of size mk (i.e., containing mk single cells), k = 1, . . . ,M , mcRigor calculates
the feature correlation matrix Σk and its deviation from the identity matrix I
using the Frobenius norm ‖Σk − I‖F. To establish the baseline deviation under
no feature correlation, mcRigor applies a within-feature permutation, i.e., inde-
pendently shuffling the values of mk single cells for each feature, and then cal-
culates the feature correlation matrix Σ̃k from the permuted data. Then, mcDiv
is defined as: mcDivk = ‖Σk − I‖F/‖Σ̃k − I‖F.

Step 2 (Null Divergence Scores). mcRigor constructs a null divergence score
(mcDivnull) for each metacell in a data-driven manner. For the kth metacell,
mcRigor generates a within-cell permuted data matrix by independently shuffling
the values of p features for each of the mk single cells, retaining the original
cells’ library sizes, and calculates its feature correlation matrix, Πk. The same
procedure as in Step 1 is then applied to calculate Π̃k, the feature correlation
matrix of the double-permuted data matrix (first within-cell, then within-feature
permutation). Then, mcDivnull is defined as mcDivnullk = ‖Πk − I‖F/‖Π̃k − I‖F.

Step 3 (Divergence Score Thresholds). From the M null divergence scores,
mcDivnull1 , . . . ,mcDivnullM , mcRigor learns the mcDiv thresholds for distinguish-
ing between dubious and trustworthy metacells. Specifically, the threshold is
defined as a function of the metacell size:

θ(mk) = q0.95

({
mcDivnullk′ : mk′ ∈ [mk − h,mk + h], k′ = 1, . . . , M

})
, (2)

where q0.95(·) computes the 95% quantile, and h is the metacell size bandwidth.

Step 4 (Dubious Metacell Detection). Upon completion of Step 1–3,
mcRigor categorizes each of the M metacells as dubious or trustworthy, clas-
sifying the kth metacell as dubious if mcDivk > θ(mk), otherwise deeming it
trustworthy.
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Optimization of Metacell Partitioning: Method and Hyperparameter
Choices. Employing the above dubious metacell detection procedure, mcRigor
further optimizes metacell partitioning by identifying the best method and
hyperparameter for a given single-cell dataset. This work focuses on optimizing
the granularity level hyperparameter, γ, which represents the average number of
cells per metacell, balancing sparsity reduction and signal preservation. To quan-
tify this trade-off, mcRigor evaluates each method-hyperparameter configuration
using two metrics: DubRate, which captures signal distortion as the proportion
of cells in dubious metacells, and ZeroRate, which measures the remaining spar-
sity as the proportion of zeros in the metacell expression matrix. mcRigor then
defines an evaluation score: Score = 1−w×DubRate−(1−w)×ZeroRate ∈ [0, 1],
where the weight w ∈ (0, 1) has a default value of 0.5. From candidate method-
hyperparameter configurations, mcRigor selects the one that maximizes this
score (Fig 1b).

3 Results and Conclusion

We evaluated mcRigor on a semi-synthetic dataset with 50 ground-truth meta-
cells with true granularity level γ∗ = 50. MetaCell, SEACells, and SuperCell were
each applied at γ = 2, . . . , 100, obtaining metacell partitions for each method-
hyperparameter configuration. Metacell purity was defined as the highest frac-
tion of cells from the same ground-truth metacell, with purity = 1 indicating a
truly trustworthy metacell and < 1 indicating a dubious metacell. Using ground-
truth purity, we applied mcRigor to test its ability to detect dubious metacells.
Notably, for MetaCell partitions, mcRigor obtained per-metacell mcDiv scores
strongly correlated with metacell purity (Pearson correlation ρ = 0.948, Fig 1c)
and its thresholding via double permutation accurately distinguished dubious
from trustworthy metacells, achieving an F score of 0.921 (Fig 1c). To evaluate
mcRigor’s ability to optimize metacell partitioning, we computed the Score met-
ric for each partition. For MetaCell partitions at varying γ, the highest Score was
achieved precisely at γ = γ∗, pinpointing a partition closely matching the ground
truth with only four dubious metacells (Fig 1b). For SEACells and SuperCell
partitions, mcRigor showed similar effectiveness.

To conclude, mcRigor enhances the rigor of metacell partitioning in single-
cell data analysis, ensuring reliable downstream analysis on metacells. The R
package mcRigor is available at https://github.com/JSB-UCLA/mcRigor.

Full Paper: A preprint of the full paper is available on bioRxiv at https://www.
biorxiv.org/content/10.1101/2024.10.30.621093v1, where we provide detailed
justification of the mcRigor method and multiple real-data analyses showcas-
ing mcRigor’s effectiveness in enhancing metacell-based data analysis.

https://github.com/JSB-UCLA/mcRigor
https://www.biorxiv.org/content/10.1101/2024.10.30.621093v1
https://www.biorxiv.org/content/10.1101/2024.10.30.621093v1
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