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Survivors of traumatic brain injury (TBI) have an unpredictable clinical course.
This unpredictability makes clinical resource allocation for clinicians and
anticipatory guidance for patients difficult. Historically, experienced clinicians
and traditional statistical models have insufficiently considered all available
clinical information to predict functional outcomes for a TBI patient. Here,
we harness artificial intelligence and apply machine learning and statistical
models to predict the Functional Independence Measure (FIM) scores after
rehabilitation for traumatic brain injury (TBI) patients. Tree-based algorithmic
analysis of 629 TBI patients admitted to a large acute rehabilitation facility
showed statistically significant improvement in motor and cognitive FIM
scores at discharge.
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Introduction

Traumatic brain injury (TBI) is a leading cause of death and disability in America

(1). TBI represents a continuum of different types of brain injury, ranging from a

mild concussion to life-threatening blunt and penetrating head injury (2). Mild to

moderate TBI may lead to headache, a transient loss of consciousness, memory loss,

and confusion, while severe TBI creates severe disability, such as confusion, weakness,

comatose states, and even death. Physiologically, the brain is subject to local mass

effect, stretch/shear/rotational forces with diffuse axonal injury, increased intracranial

pressure from hemorrhage, contusion, and skull fracture, and is exquisitely sensitive

to generalized, secondary insults including hypotension and hypoxia. Marginalized

populations, including ethnic minorities, the homeless, and those in rural

communities, are disproportionately affected. Suicide, falls, motor vehicle accidents,

and assaults consistently account for greater than 200,000 TBI-related hospitalizations
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yearly (3). While severe TBI can be fatal, survivors living with

mild to moderate TBI experience a broad spectrum of

unpredictable short and long-term physical and mental

disabilities that compromise their quality of life and

productivity. These patients require extensive social and

financial support to manage several chronic diseases. This

ranges from immediately life-threatening conditions such as

epilepsy, substance abuse, diabetes, cardiopulmonary disease,

depression, and stroke to conditions that reduce quality of life

such as chronic pain, mood disorders, insomnia, and

cognitive slowing (4, 5). For example, patients with moderate-

severe TBI have reduced life expectancy, shortened by 7–9

years compared to age-matched controls (6). Furthermore,

five years after injury, 1 in 5 TBI patients is either dead,

disabled, unemployed, or lives in a nursing home, and this

statistic has not changed in the last decade (5). Nationwide,

the latest Center for Disease Control (CDC) report estimates

the direct aggregate medical costs of TBI at over $70 billion,

without accounting for years of lost or reduced productivity

and unemployment (2). Cost notwithstanding, we are unable

to reliably identify those who will benefit most from valuable

rehabilitation services or tailor an individualized treatment

plan to maximize recovery. Current clinical practice is

subjective, anecdotal, and falls short of incorporating all

available clinical data.

Each patient and their specific brain injury are uniquely

multifaceted, posing challenges in predicting the long-term

outcomes of any single treatment. Countless permutations of

anatomic and physiologic mechanisms of traumatic brain

injury account for the heterogeneity in clinical phenotype.

These mechanisms can vary from direct blunt contact to

penetrating brain injury. Widely accepted clinical outcome

measures such as the Glasgow Outcome Score (GOS, GOS-E),

Disability Rating Scale (DRS), and the Coma Recovery Scale

(CRS) standardize communication by calculating patient

clinical data and documenting progress but fail to provide the

prognostic granularity sought after by patients and their

families (6–8). Clinical prediction models derived from the

Corticosteroid Randomization after Significant Head Injury

(CRASH) and the International Mission on Prognosis and

Analysis of Clinical Trials in TBI (IMPACT) trials incorporate

patient clinical data, imaging, and laboratory values, all in

pursuit of predicting patient outcomes (9). However, studies

seeking external validation of these models found only 75%–

87% accuracy in predicting mortality or unfavorable outcomes

and have limited generalizability. In other words, this leaves

an unacceptably high degree of uncertainty in predicting

outcomes for at least 1 in 4 patients (10–15). This statistical

inaccuracy may be explained by the limited quantity and

quality of descriptive clinical data points incorporated.

Prediction algorithms developed by leading statisticians

have transformed modern-day medical research using

machine learning. These sophisticated algorithms “learn” from
Frontiers in Rehabilitation Sciences 02
large patient datasets to predict outcomes and guide decision-

making (16). Machine learning, which surpasses the average

human capacity for data interpretation, has the unique

potential to drive precision medicine and forecast outcomes

based on known permutations of individual patient data

points (17). In fact, combining machine learning with

traditional logistic regression models has generated reliable,

highly accurate predictions in several neurosurgical arenas,

ranging from recurrent lumbar disc herniations, surgical site

infections, readmissions, and complications after tumor

resection (18–23). However, little research exists on the

application of machine learning to predicting outcomes in

traumatic brain injury.

In this study, we collaborated with data scientists and expert

statisticians to apply advanced machine learning and statistical

modeling to predict functional independence measure (FIM)

scores in a large cohort of traumatic brain injury patients

completing a comprehensive rehabilitation program (24–26).

We evaluate both the accuracy and fitness of traditional and

machine learning statistical models to predict patient FIM

scores. Our objective is to systematically assess the impact of

inpatient rehabilitation on functional independence for

traumatic brain injury patients. We hypothesize that

quantifying the influence of rehabilitation on specific

functional independence measures may guide future resource

allocation and optimize decision-making during rehabilitation.
Materials and methods

Study design

Retrospective analysis of a prospectively collected data set of

all traumatic brain injury patients admitted to a single acute

rehabilitation facility (Casa Colina Acute Rehabilitation Unit,

Pomona, CA) between 2010 and 2015 identified 629 patients.

Pediatric, pregnant, and deceased patients were excluded from

the study. Target inclusion criteria included adult patients

with traumatic brain injury requiring inpatient rehabilitation

after hospital discharge. Documented functional independence

measure (FIM) scores were obtained at the time of admission

and upon discharge. The Institutional Review Board (IRB) at

the University of California, Los Angeles (UCLA) has

exempted our study from its formal review, given the study’s

retrospective nature, under IRB #15-001380.
Statistical analysis

The Functional Independence Measure (FIM) is a widely

accepted, 18-item motor and cognitive function score that

originated from the American Academy of Physical Medicine

and Rehabilitation and the American Congress of
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Rehabilitation Medicine (27, 28). The FIM is calculated as a

composite score based on direct observation by a

multidisciplinary rehabilitation team that documents the

patient’s disability and level of assistance required to perform

activities of daily living (29). Each motor and cognitive item

earns an ordinal numerical score ranging from 1 to 7. The

motor-FIM categories include eating, grooming, bathing,

dressing the upper or lower body, toileting, bladder control,

bowel control, bed transfer, toilet transfer, tub transfer, walk/

wheelchair, and stairs. The cognitive-FIM categories include

comprehension, expression, social interaction, problem-

solving, and memory. Typically, a score of 1 means total

assistance and 7 means full independence.

We first examined the efficacy of rehabilitation by testing

whether the FIM scores at discharge improved compared to

the FIM scores at admission. Specifically, we conducted paired

t-tests for each of the 18 items. Then, we adjusted for

multiple testing using the Bonferroni procedure. We applied

established statistical and novel machine learning algorithms

to predict patients’ FIM scores at the end of rehabilitation.

Our responses of interest are patients’ FIM scores at

discharge, each of which is an ordinal variable that takes

integer values from 1 to 7. An ordinal variable differs from

either a categorical variable because of its ordering (e.g., 1 <

2 < 23… <7) and differs from a continuous variable because

of its discrete nature (i.e., it cannot take on values such as
TABLE 1 Mean and standard deviation of input features used in all predictiv

Predictors Mean (sd)

Gender NA

PreHospitalLivingSetting NA

PreHospitalLivingWith NA

Diagnosis NA

brain.tumor NA

DM NA

Other.dementia NA

Coronary.artery.disease NA

AdmitFIMWalkWheelchairMeasured NA

AdmitFIMComprehensionMeasured NA

AdmitFIMExpressionMeasured NA

LOS 18.7 (12.8)

AGE 62.13 (23.47)

AdmitSwallowingStat 2.42 (0.71)

AdmitFIMEating 4.16 (1.73)

AdmitFIMGrooming 3.8 (1.56)

AdmitFIMBathing 2.65 (1.54)

AdmitFIMDressingUpper 3.46 (1.45)

AdmitFIMDressingLower 2.57 (1.29)

AdmitFIMToileting 2.07 (1.32)

Input features include basic demographic information, pre-existing conditions, and p
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1.5). Although both the statistics and the machine learning

communities have developed various prediction methods, most

of them are tailored to continuous or categorical responses.

Ordinal regression is a statistical method designed to handle

ordinal responses by considering their ordering and discreteness.

Tree-based machine learning algorithms designed to predict

continuous responses are capable of handling ordinal responses

if we round the predicted value to the nearest integer (30).

Input features included 40 predictors including

demographic information, diagnostic characteristics,

comorbidities, FIM scores at admission, length of stay, etc. as

seen in Table 1. Continuous predictors include age and length

of stay at the rehabilitation center. Categorical predictors

include gender (male; female), diagnosis (cerebral contusion;

concussion; intracranial hemorrhage (ICH): subarachnoid

hemorrhage (SAH), subdural hematoma (SDH), epidural

hematoma (EDH)), brain tumor (yes; no), diabetes (yes; no),

other cognitive impairment/dementia (yes; no), coronary

artery disease (yes; no). These categorical predictors were

selected as the leading significant types of traumatic brain

injury and to remove potential confounding factors, such as

the presence of a brain tumor or pre-existing cognitive

impairment. Ordinal predictors include FIM scores and

functional modified FIM scores at admission. Data on

predictors and responses were collected by independent,

trained data collectors.
e modelling.

Predictors Mean (sd)

AdmitFIMBladderCtrl 2.75 (2.25)

AdmitFIMBowelCtrl 4.2 (2.26)

AdmitFIMBedTransfer 2.75 (1.23)

AdmitFIMToiletTransfer 2.75 (1.27)

AdmitFIMTubTransfer 2.09 (1.91)

AdmitFIMWalkWheelchair 1.96 (1.35)

AdmitFIMStairs 1.02 (1.32)

AdmitFIMComprehension 3.86 (1.47)

AdmitFIMExpression 3.82 (1.62)

AdmitFIMSocialInteraction 4.04 (1.71)

AdmitFIMProblemSolving 2.99 (1.37)

AdmitFIMMemory 3 (1.34)

AdmitFnModBladderLvlAssist 2.76 (2.26)

AdmitFnModBladderFreqAccidents 5.73 (1.02)

AdmitFnModBowelLvlAssist 4.21 (2.27)

AdmitFnModBowelFreqAccidents 5.95 (0.59)

AdmitFnModDistWalked 1.68 (0.95)

AdmitFnModDistWheelchair 1.61 (0.99)

AdmitFnModWalk 1.94 (1.36)

AdmitFnModWheelchair 1.92 (1.5)

re-admission Functional Independence Measure (FIM) scores.
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FIGURE 1

Graphical illustration of tree-based algorithms such as random
forests and XGBoost. Both algorithms build multiple trees for
prediction. Random forests build independent trees whereas
XGBoost builds trees based on the performance of previous trees.

FIGURE 2

Graphical illustration of ordinal regression. Suppose the class labels
range from 1 to 7. The ordinal regression trains 6 logistic models to
predict the probability of Y≤ j, j= 1,…,6. The parallel ordinal
regression model assumes that these 6 sub-models share the
same set of coefficients, whereas the semi-parallel model forces
the (K-1) sets of coefficients to be similar and close to 0.

Say et al. 10.3389/fresc.2022.1005168
By using the above features as predictors and each FIM item

at discharge as the response, we applied the following eight

algorithms to our prediction analyses: statistical methods,

including parallel or semi-parallel ordinal regression with

lasso, ridge, or elastic net penalty and machine learning

methods including tree-based algorithms such as XGBoost

and random forests (31–34). Figure 1 graphically illustrates

the concept of tree-based algorithms, featuring the building of

innumerable tree branches and decision nodes of the sample

population to ultimately predict those same features. Our

objective was to find the best prediction algorithm that

minimizes error. We chose not to include neural networks;

because the assignment of the FIM scores involved subjective

judgment from medical providers, neural networks could

easily overfit the data given the high level of noise in the data.

The semi-parallel ordinal regression models are more flexible

than parallel models and prone to overfitting.

We evaluated the prediction accuracy of statistical and

machine learning methods using five-fold cross-validation.

Hyperparameters were tuned again by five-fold cross-

validation using only the training set. The algorithms were

subsequently trained with optimized hyperparameters on the

full training set and evaluated on the test set. We evaluated

predictive accuracy by computing the L1 loss, defined as the

absolute difference between the true outcome and the

predicted outcome averaged over patients. For benchmarking,

we used the FIM scores at admission as the predicted value at

discharge, which we referred to as the baseline approach. We

implemented ordinal regression in R using R package

ordinalNet (version 2.9), random forests using R package

randomForest (version 4.6-14), and XGBoost using R package

xgboost (32–35). (version 1.4.1.1).

When applied to predicting FIM scores that range from 1 to

7, the ordinal regression trains 6 logistic regression sub-models

to compute the probabilities of a score no greater than 1, 2, …,

6, respectively (Figure 2). Given a new datapoint with unknown

score Y , the trained ordinal regression computes the probability

of Y ¼ i, for example, as the probability of Y � i minus the
Frontiers in Rehabilitation Sciences 04
probability of Y � i� 1. Then the model outputs the score

with the highest probability as the predicted value of this

datapoint.

To increase the stability of the final model, we added

LASSO, elastic net, or ridge penalty to the training of

individual sub-models. In addition, we also forced the trained

parameters of 6 sub-models to share various levels of

similarity. The parallel ordinal regression forces the 6 sub-

models to share the same set of coefficients except for the

intercept. The nonparallel ordinal regression imposes no such

constraints and allows the coefficients to differ completely.

The semi-parallel ordinal regression lies between the parallel

and the non-parallel regression; it enforces the coefficients to

be similar but not exactly the same. We applied all the three

types of models, and only the parallel and semi-parallel

models were successfully trained on our data. Therefore, the

results of the non-parallel ordinal regression models are not

shown.
Results

Paired t-tests demonstrated that rehabilitation showed

statistically significant improvement in the functional

independence of patients in all 18 items of FIM (Figure 3).

Regarding prediction analysis, tree-based algorithms,

including random forests and XGBoost, demonstrated the best

overall accuracy. Specifically, tree-based algorithms offered the

strongest advantage in 3 items: Eating, bladder control, and

stairs, while achieving comparable accuracy in the remaining

15 items as visualized in Figure 4. Figures 5a,b recapitulate

the superiority of tree-based algorithms through a box-

whisker plot and bar graphs. For eating, only tree-based

algorithms outperformed the baseline model by controlling L1

loss under 0.75, while the L1 loss of ordinal regressions,
frontiersin.org
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FIGURE 3

Bar graph shows p-values comparing FIM scores at discharge with
FIM scores at admission. P-values are adjusted for multiple
correction. All p-values are smaller than 0.05, showing
improvement in all 18 Functional Independence Measurement
(FIM) items upon discharge in TBI patients compared to admission
to acute rehabilitation.
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parallel or semi-parallel, all exceeded 1.5. In terms of Bladder

Control, tree-based algorithms achieved the L1 loss of around

1.6, showing a slight advantage over parallel regressions (L1

loss: around 1.7) and an enormous lead over semi-parallel

ordinal regressions (L1 loss: 3). Similarly, in terms of Stairs,

tree-based algorithms achieved an L1 loss of around 1.25,

similar to that of parallel ordinal regression with the ridge

penalty; in contrast, semi-parallel ordinal regressions’ L1 loss

exceeded 2. Machine learning algorithms demonstrated an

overall advantage over statistical methods.
Discussion

Predicting the clinical outcome for those living with

traumatic brain injury (TBI) is critical, carrying far-reaching

implications for their families, health systems, and society.

Yet, expert opinion and traditional statistical analyses have

been unable to reliably incorporate the numerous clinical data

points to accurately forecast a patient’s outcome, reintegration

into society, and ultimately, the precise financial resources

required. Because the Functional Independence Measure

(FIM) has emerged as an externally validated, comprehensive

clinical score of a patient’s level of disability, we focus on

these points as surrogate markers of functional improvement
Frontiers in Rehabilitation Sciences 05
(24, 36–39). We developed the first known investigation on

predictive statistical modeling of Functional Independence

Measure (FIM) scores for TBI patients in an acute

rehabilitation facility. Our tree-based machine learning

algorithms using random forest and XGBoost demonstrated a

high degree of accuracy and predicted on average within ±1

from the true FIM scores for at least 14 items out of 18,

showing promise for real-world applications.

Tree-based decision algorithms such as random forest and

XGBoost demonstrated the highest degree of error for bowel/

bladder control and stairs categories. Deterministic algorithms

are notoriously sensitive to statistical noise and reflect the

inherent variability within the data, such as during collection,

entry, and interpretation. For example, at separate timepoints,

FIM scores are determined by direct observation by one or

multiple members of a multidisciplinary team of physicians,

nurses, and physical/occupational therapists. Since FIM scores

are designed to describe the burden of care required, a single

FIM score of 7 for independent bladder control, for instance,

may describe a patient who either voids normally, self-

catheterizes, or is completely dependent on dialysis.

Furthermore, grading may be nuanced and subject to the

amount of time “reasonably expected” to complete any

given task.

Semi-parallel ordinal regression algorithms showed lower

accuracy than the other algorithms, most notably in eating,

bladder control, and stairs. Because of their increased model

flexibility compared to parallel ordinal regression, semi-

parallel regression models severely overfit the data. This may

be explained by the subjectivity of FIM scoring, resulting in

unfavorable prediction accuracy.

High-quality statistical modeling and applications of

machine learning to the traumatic brain injury population

after hospital discharge are sparse and concentrate mostly on

predicting in-hospital mortality. Satyadev et al. similarly

recognized the insufficiency of traditional prognostic

calculators and ultimately selected a random forest model to

predict hospital discharge disposition after traumatic brain

injury (40). Tu et al. applied several statistical models, but

found that a logistical regressional model best predicted

mortality of traumatic brain injury patients triaged in an

emergency room (41). Similar to our findings, Warman et al.

found that another tree-based model, XGBoost predicted in-

hospital mortality for high-income and low-income countries,

compared to clinical prognostic calculators CRASH and

IMPACT (42). To date, there is limited evidence analyzing

statistical modeling for traumatic brain injury patients after

hospital discharge, leaving considerable uncertainty in

predicting their functional outcomes.

Our study is limited by our moderate sample size of 629

patients and reflects patients at a single inpatient

rehabilitation center in southern California. Specifically, it is

not completely generalizable to all TBI patients and captures
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FIGURE 4

Heatmap showing the error rates of machine learning prediction algorithms across the 18 Functional Independence Measurement (FIM) scores in TBI
patients. Statistical algorithms included parallel and semi-parallel ordinal regression with lasso, ridge, or elastic net penalty, random forest, and XGBoost.

FIGURE 5

(A) Bar and whisker plot showing superior accuracy of tree-based algorithms, in random forest (rf) and XGBoost with controlled algorithm L1 loss
compared to parallel and semi-parallel ordinal regression. (B) Bar graphs for individual Functional Independence Measure (FIM) items illustrating
tree-based algorithms random forest (rf) and XGBoost with the lowest error.

Say et al. 10.3389/fresc.2022.1005168
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only the subset who have the resources to enter and stay in a

rehabilitation facility. Selection to enter inpatient

rehabilitation is based on a number of factors, namely a

patient’s severity of injury, insurance status, and level of

family support.

Our study’s greatest limitation likely lies within the gradient

of the clinical pathology itself. The unique combination of

patient factors, mechanism of injury, and resulting clinical

phenotype can only be approximated by advanced statistics,

but never completely defined. With further refinement of the

models and the data, it is plausible that machine learning

algorithms could be used in practice.

Future study could expand to multiple centers, capturing a

diversity of patients and allowing for focused investigation on

different categories of traumatic brain injury. Additional

patient demographics, such as ethnicity, education level, and

socioeconomic status could be collected to reflect social

determinats of functional outcome. Furthermore, data quality

may be improved by consistent, standardized formal training

of FIM score evaluators. Although machine learning

prediction algorithms are positioned to surpass expert

interpretation and traditional statistical analysis, the models

remain vulnerable to the inherent variability, quality, and bias

based on the training data.
Conclusion

Machine learning statistical models and artificial

intelligence may accurately provide valuable, granular clinical

predictions of neurologic outcomes for TBI patients receiving

rehabilitation services. Our study is the first to apply machine

learning statistical algorithms to this population, TBI patients

receiving acute rehabilitation. We found that acute

rehabilitation services significantly improve FIM scores for

TBI patients and ultimately, their clinical recovery and

reintegration into society.
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