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We congratulate Dr. Timmothy I. Cannings and Dr. Richard J. Samworth for their innovative and
thought-provoking read paper titled “Random projection ensemble classification.” In recent years,
many classification methods have been developed for high-dimensional settings, where the feature
dimension p is comparable to or larger than the sample size n. In the literature, most of the existing
work aimed to build a specific procedure (e.g., screening and penalization approaches) to effectively
reduce model complexity. From a different and novel perspective, Cannings and Samworth’s work
developed a theory-backed ensemble classification procedure, which first projects features into
many lower dimensional spaces so that “base” classifiers (e.g., LDA and QDA) can be applied
to the projected data without any modification, and second aggregates these low-dimensional
classifiers via a proper voting scheme. Their paper lays a good foundation that motivates us to
think about many questions including the following three.

(I) What is the consequence of relaxing the assumption (A.3)? This assumption states: “There
exists a projection A∗ ∈ A such that

PX({x ∈ Rp : η(x) ≥ 1/2}∆{x ∈ Rp : ηA
∗
(A∗x) ≥ 1/2}) = 0 ,
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where ∆ denotes the symmetric difference between sets.” Essentially, this assumption means
there exists one projection that leads to an oracle decision boundary essentially the same as the
oracle decision boundary in the original feature space. While this is a reasonable and convenient
assumption, it can probably be relaxed, and the discrepancy between the two oracle decision
boundaries, that is the discrepancy between the original Bayes classifier (in Rp) and the best
projected Bayes classifier (in Rd), can perhaps show up in the upper bound of the excess error.

(II) In the paper, the voting threshold α is to mimic α∗ in equation (12):

α∗ = arg min
α′∈[0,1]

[
π1Gn,1(α

′) + π2
{

1−Gn,2(α′)
}]

.

This is a very natural choice when the classification target is to minimize the classification error (i.e.,
risk) and when the empirical proportions π̂1 and π̂2 are good estimates of of π1 and π2 respectively.
How would the authors suggest the choice for α when we are interested in a type I/II error weighting
different from that implied by the class priors, or when there lack good estimates of π1 and π2?

(III) This comment is related to the first one. If we relax (A.3) to achieve the best performance
bounds in Section 4, we no longer prefer d as small as possible (while validating (A.3)). We expect
that a best choice of d will depend on the discrepancy between the two Bayes classifiers in Rp and
Rd.
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