
RECOMB 2021

Simulating Single-Cell Gene Expression Count Data

with Preserved Gene Correlations by scDesign2

TIANYI SUN,1 DONGYUAN SONG,2 WEI VIVIAN LI,3 and JINGYI JESSICA LI1,i

ABSTRACT

scDesign2 is a transparent simulator that generates high-fidelity single-cell gene expression
count data with gene correlations captured. This article shows how to download and install
the scDesign2 R package, how to fit probabilistic models (one per cell type) to real data and
simulate synthetic data from the fitted models, and how to use scDesign2 to guide experi-
mental design and benchmark computational methods. Finally, a note is given about cell
clustering as a preprocessing step before model fitting and data simulation.

Keywords: gene correlation, gene expression counts, simulator, single-cell RNA-seq.

1. BACKGROUND

In the burgeoning field of single-cell transcriptomics, a pressing challenge is to benchmark

various experimental protocols and numerous computational methods in an unbiased manner. Although

dozens of simulators had been developed for single-cell RNA-seq (scRNA-seq) data, they lacked the capacity

to simultaneously achieve the following three goals: preserving genes, capturing gene correlations, and

generating any number of cells with varying sequencing depths. To fill in this gap, we developed a new

simulator scDesign2 (Sun et al., 2021), which advanced our previous simulator scDesign (Li and Li, 2019), to

achieve all three goals. Notably, scDesign2 can generate high-fidelity synthetic data of multiple scRNA-seq

protocols and other single-cell gene expression count-based technologies.

This article provides a brief guide to the scDesign2 R package. For help troubleshooting or to provide

feedback, please submit an issue to the GitHub page, which contains more documentation.

2. INSTALLATION

The required R version is no earlier than version 3.6.3. To install the scDesign2 package, users can run

the following code in R.

if(!require(devtools)) install.packages("devtools"); library(devtools);

devtools::install_github("JSB-UCLA/scDesign2");

To use the package after the installation, users can run

library(scDesign2);

1Department of Statistics and 2Interdepartmental Program of Bioinformatics, University of California, Los Angeles,
California, USA.

3Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey, USA.
iORCID ID (https://orcid.org/0000-0002-9288-5648).

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 29, Number 1, 2022

Mary Ann Liebert, Inc.

Pp. 1–4

DOI: 10.1089/cmb.2021.0440

1

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

L
os

 A
ng

el
es

 (
U

C
L

A
)

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

1/
14

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

https://orcid.org/0000-0002-9288-5648

3. MODEL FITTING AND DATA SIMULATION

The input of scDesign2 is a real single-cell gene expression count matrix, where each row represents a

gene, each column a cell, and each entry the expression level of a gene in a cell. In addition, each column

needs to be labeled with the cell type that the cell belongs to. Based on this count matrix, scDesign2 would

first fit one parametric probabilistic model for each cell type and then use the fitted models to simulate data.

In the R package, we have included an example scRNA-seq data set, which profiles the transcriptome of

mouse small intestinal epithelial cells (Haber et al., 2017). The file mouse_sie_10x.rds is the full data set,

and the file mouse_sie_10x_demo.rds is a data subset containing 1000 genes and 30% cells for dem-

onstration. In the following example code, we will select four cell types from the data subset and perform

model fitting and data simulation for each cell type. In scDesign2, the function for model fitting is

fit_model_scDesign2(), and the function for data simulation is simulate_count_scDesign2().

� Load data

data_mat_demo <-

readRDS(system.file("extdata", "mouse_sie_10x_demo.rds",

package ="scDesign2"));
� Select four cell types; obtain the total cell number and cell type proportions

cell_type_sel <- c("Goblet", "Tuft", "TA.Early", "Enterocyte.Progenitor");

data_mat_demo_sel <- data_mat_demo[, colnames(data_mat_demo) %in% cell_type_sel];

n_cell_old <- ncol(data_mat_demo_sel);

cell_type_prop <- prop.table(table(colnames(data_mat_demo_sel)));
� Fit models and simulate data for the four cell types (running time within 14 mins on 4 cores)

RNGkind("L'Ecuyer-CMRG"); set.seed(1);

copula_result <- fit_model_scDesign2(data_mat_demo, cell_type_sel,

sim_method ="copula", ncores =length(cell_type_sel));

sim_count_copula <- simulate_count_scDesign2(copula_result, sim_method ="copula",

n_cell_new =n_cell_old, cell_type_prop =cell_type_prop);

In this example, the selected cell types are in the cell_type_sel vector, the fitted models are in the

copula_result object, and the synthetic data set is the sim_count_copula matrix. We set the

synthetic data set to have the same total cell number (n_cell_old) and expected cell type proportions

(cell_type_prop) as those of the input data matrix data_mat_demo, but users may change the

n_cell_new and cell_type_prop arguments in the simulate_count_scDesign2() function.

To evaluate the quality of the synthetic data set, we will combine the synthetic cells with the real cells

and examine whether they are indistinguishable in the t-SNE visualization.

if(!require(Rtsne)) install.packages("Rtsne"); library(Rtsne); set.seed(1);

Rtsne_combined <- Rtsne (log(t(cbind(data_mat_demo_sel, sim_count_copula)) +1));

Rtsne_combined_vis <- data.frame(x=Rtsne_combined$Y[, 1], y=Rtsne_combined$Y[, 2],

group=factor(c(rep("real", ncol(data_mat_demo_sel)),

rep("synthetic", ncol(sim_count_copula)))),

cell_type=factor(c(colnames(data_mat_demo_sel), colnames(sim_count_copula))));

attach(Rtsne_combined_vis);

plot(x=x,y=y,pch=c(16,2)[group],col=c("red","blue","green","black")[cell_type]);

legend("topleft", legend=levels(cell_type), col=c("red", "blue", "green", "black"),

pch=16, bty="n");

legend("bottomright", legend=c("real", "synthetic"), pch=c(21, 2));

detach(Rtsne_combined_vis);

The t-SNE visualization shows that the synthetic cells mix well with the real cells.

4. APPLICATIONS TO EXPERIMENTAL DESIGN
AND COMPUTATIONAL BENCHMARKING

Two important applications of scDesign2 are guiding experimental design and benchmarking computational

methods. This requires generating synthetic data with varying cell numbers and sequencing depths.

2 SUN ET AL.

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

L
os

 A
ng

el
es

 (
U

C
L

A
)

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

1/
14

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

In this study, we demonstrate how to generate synthetic data sets with a fixed total cell number

and varying sequencing depths. We will use cell_type_sel, n_cell_old, cell_type_prop, and

copula_result from the previous code. The first step is to calculate the sequencing depth of the real data.

total_count_old <- sum(data_mat_demo_sel);

To vary the sequencing depth, we change total_count_old by a factor of 1/8, 1/4, 1/2, 2, 4, or 8. The

vector adj_factor contains all the multiplicative factors considered.

adj_factor <- c(1/8, 1/4, 1/2, 1, 2, 4, 8);

Finally, we use the following code for data simulation. In the simulate_count_scDesign2() function, the

key arguments include total_count_old, n_cell_old, total_count_new, and n_cell_new. The first two ar-

guments are the sequencing depth and total cell number of the real data, and the last two arguments are

the sequencing depth and total cell number of the synthetic data to be generated. To fix the total cell

number, we set n_cell_new to n_cell_old; to vary the sequencing depth, we specify total_count_new as

total_count_old multiplied by each factor in the adj_factor vector, up to rounding. The list sim_count

contains the synthetic data sets, one for each new sequencing depth total_count_new.

set.seed(1); sim_count <- lapply(1:length(adj_factor), function(iter)

{simulate_count_scDesign2(copula_result, total_count_old=total_count_old,

n_cell_old=n_cell_old, total_count_new=round(adj_factor[iter] * total_count_old),

n_cell_new=n_cell_old, cell_type_prop=cell_type_prop, reseq_method="mean_scale",

cell_sample=TRUE)});

5. A NOTE ON CELL CLUSTERING

The model fitting and data simulation of scDesign2 is performed for each cell type separately. Hence,

partitioning cells into cell types is an important preprocessing step of scDesign2. The partitioning can be

done based on biological knowledge, for example, cell type marker genes, or by a clustering algorithm, for

example, SC3 (Kiselev et al., 2017) or the Louvain algorithm (Blondel et al., 2008).

On the GitHub page, we provide a proof-of-concept demonstration of how to perform cell clustering

using the Louvain algorithm in the Seurat package (Stuart et al., 2019) and how to evaluate the clustering

result using the ROGUE score (Liu et al., 2020). For scDesign2 users who do not have predefined cell

types, they may follow our demonstration to do cell clustering before using scDesign2 to simulate data.

SOFTWARE AVAILABILITY

The scDesign2 R package is released under the MIT License and available at https://github.com/JSB-

UCLA/scDesign2.

ACKNOWLEDGMENTS

The authors appreciate the comments and feedback from the members of the Junction of Statistics and

Biology at UCLA (http://jsb.ucla.edu).

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no competing financial interests.

FUNDING INFORMATION

This study was supported by the following grants: NSF DBI-1846216 and DMS-2113754, NIGMS

R01GM120507 and R35GM140888, Johnson & Johnson WiSTEM2D Award, Sloan Research Fellowship,

and UCLA David Geffen School of Medicine W.M. Keck Foundation Junior Faculty Award (to J.J.L.);

Rutgers School of Public Health Pilot Grant and NJ ACTS BERD Mini-Methods Grant (to W.V.L.).

A GUIDE TO SCDESIGN2 R PACKAGE 3

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

L
os

 A
ng

el
es

 (
U

C
L

A
)

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

1/
14

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

https://github.com/JSB-UCLA/scDesign2
https://github.com/JSB-UCLA/scDesign2
http://jsb.ucla.edu

REFERENCES

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., et al. 2008. Fast unfolding of communities in large networks. J. Stat.

Mech. 2008, P10008.

Haber, A.L., Biton, M., Rogel, N., et al. 2017. A single-cell survey of the small intestinal epithelium. Nature 551, 333–

339.

Kiselev, V.Y., Kirschner, K., Schaub, M.T., et al. 2017. Sc3: Consensus clustering of single-cell rna-seq data. Nat.

Methods. 14, 483–486.

Li, W.V., and Li, J.J. 2019. A statistical simulator scDesign for rational scRNA-seq experimental design. Bioinfor-

matics. 35, i41–i50.

Liu, B., Li, C., Li, Z., et al. 2020. An entropy-based metric for assessing the purity of single cell populations. Nat.

Commun. 11, 1–13.

Stuart, T., Butler, A., Hoffman, P., et al. 2019. Comprehensive integration of single-cell data. Cell. 177, 1888–1902.

Sun, T., Song, D., Li, W.V., et al. 2021. scDesign2: A transparent simulator that generates high-fidelity single-cell gene

expression count data with gene correlations captured. Genome Biol. 22, 1–37.

Address correspondence to:

Dr. Jingyi Jessica Li

Department of Statistics

University of California, Los Angeles

8125 Math Sciences Building

Los Angeles, CA 90095-1554

USA

E-mail: jli@stat.ucla.edu

4 SUN ET AL.

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ity

 o
f

C
al

if
or

ni
a

L
os

 A
ng

el
es

 (
U

C
L

A
)

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

1/
14

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

