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successful. These pioneering initiatives are 

beginning to link pharmaceutical compa-

nies, academia, and disease experts across 

the “gene to bedside” spectrum in the loca-

tions where these diseases have the greatest 

impact. The MMV provides free, open ac-

cess to a range of compounds with activity 

against a range of pathogens for indepen-

dent researchers to screen, with users re-

quested to publish their data in the public 

domain, thus continuing the drug develop-

ment research cycle ( 17).

The impact of bacterial AMR in low-

income countries is severe and likely to 

worsen. New antimicrobial agents may 

provide some respite against AMR and 

infections caused by such drug-resistant 

pathogens. However, introducing novel 

broad-range antimicrobials into the cur-

rent melee of antimicrobial use and mis-

use in lower-income countries would only 

have a short-term limited impact on infec-

tions caused by potentially life-threatening 

pathogens. Restricting the use of the same 

classes of antimicrobial compounds in ani-

mals and humans has to be an immediate 

priority, including a direct ban of any new 

antimicrobials developed for treating infec-

tions in humans. Lastly, new antimicrobial 

agents should only be administered to those 

who really need them. This means that the 

current capacity to perform microbial di-

agnostics and downstream antimicrobial 

susceptibility testing needs to be greatly 

improved, alongside the development of ra-

tional prescribing practice.          ■ 
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          M
ammalian proteins are expressed 

at ~103 to 108 molecules per cell 

( 1). Differences between cell types, 

between normal and disease 

states, and between individuals are 

largely defined by changes in the 

abundance of proteins, which are in turn 

determined by rates of transcription, mes-

senger RNA (mRNA) degradation, transla-

tion, and protein degradation. If the rates 

for one of these steps differ much more 

than the rates of the other three, that step 

would be dominant in defining the varia-

tion in protein expression. Over the past 

decade, system-wide studies have claimed 

that in animals, differences in translation 

rates predominate ( 2– 5). On page 1112 of 

this issue, Jovanovic et al. ( 6), as well as 

recent studies by Battle et al. ( 7) and Li et 

al. ( 1), challenge this conclusion, suggest-

ing that transcriptional control makes the 

larger contribution.

Earlier studies used mass spectrometry, 

DNA microarrays, and mRNA sequenc-

ing (mRNA-Seq) to measure protein and 

mRNA levels for thousands of genes ( 2– 5), 

and also to measure the rates of mRNA 

degradation, translation, and/or protein 

degradation (through labeling with stable 

isotopes) ( 4,  5). Some studies examined a 

single cell type at steady state ( 5), whereas 

others analyzed the differences between 

tissue types ( 4), between tumors ( 2), or be-

tween inbred mouse strains ( 3). Each study 

found a moderate to low correlation be-

tween protein and mRNA abundance data 

(coefficient of determination R2 ≤ 0.4). This 

was taken to suggest that no more than 

40% of the variance in protein levels is 

explained by variance in the rates of tran-

scription and mRNA degradation and, by 

implication, that the remaining variance in 

protein expression (≥60%) is explained by 

translation and protein degradation ( 2– 5). 

By employing degradation rate data for 

mRNAs and proteins in addition to abun-

dance data, it was further estimated that 

transcription explains 34% of the variance 

in protein abundance, mRNA degradation 

6%, translation 55%, and protein degrada-

tion 5% ( 5) (see the figure).

The high-throughput methods used in 

these studies, however, show substantial sto-

chastic variation between replica data and 

also suffer systematic, reproducible biases ( 1, 

 4– 6,  8,  9). For example, label-free mass spec-

trometry can underestimate amounts of all 

lower-abundance proteins by as much as a 

factor of 10 ( 1,  8), and mRNA-Seq data are 

biased by guanine-cytosine base pair content 

by a factor of up to 3 ( 9). Because each type 

of error has different causes and because 

RNA and protein techniques differ greatly, 

the errors should be uncorrelated. Thus, 

the correlation of protein versus mRNA as 

measured will be lower than that between 

error-free data. The papers by Jovanovic et 

al., Battle et al., and Li et al. used careful sta-

tistical efforts to estimate and/or reduce the 

impact of errors and thereby find the higher 

correlation expected between true protein 

and true mRNA levels.

Jovanovic et al. examined mouse bone 

marrow dendritic cells at steady state and 

during response to bacterial lipopolysac-

charide (LPS) ( 6). They used a Bayesian 

model to estimate the true rates of trans-

lation and protein destruction from noisy 

mass spectrometry data. In addition, three 

independent estimates of protein abun-

dance were made from three samples, each 

digested with a different protease. These 

three differently biased estimates were 

then used in separate parts of the analy-
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sis to avoid a confounding dependency 

on common errors that would result if 

a single estimate were used throughout. 

Filtering of unreliable data and estimates 

of stochastic mRNA-Seq errors, in addi-

tion, allowed Jovanovic et al. to calculate 

that at steady state, mRNA levels explain 

68% of the variance in protein expression, 

translation rates 26%, and protein degra-

dation rates 8%. Upon stimulation of cells 

with LPS, mRNA levels appear to explain 

90% of the changes in protein expression, 

with translation and protein degradation 

explaining only 4% and 6%, respectively. 

Jovanovic et al. did find, though, that upon 

LPS treatment, translation and protein 

degradation rates changed more for ribo-

somal, mitochondrial, and other highly 

expressed housekeeping proteins than for 

other genes, indicating an important role 

for these two steps in the control of some 

processes.

Battle et al. took a different tack, ex-

amining human protein variation among 

62 individuals from the Yoruba popula-

tion of Ibadan, Nigeria ( 7). Genomic DNA 

sequences for each individual were com-

pared to mRNA-Seq, ribosome footprinting 

(ribosome density per mRNA), and mass 

spectrometry data for lymphoblastoid cells 

derived from each person. Consistent with 

previous results ( 3), the variation in mea-

sured protein levels between individuals 

correlates poorly with the variation in mea-

sured mRNA abundances (mean R2 < 0.2) 

( 7). However, when only those differences 

in expression that are associated with vari-

ation in the DNA sequence of a nearby gene 

were considered, most gene loci showing 

changes in protein levels between individu-

als also showed correlated differences in 

mRNA expression, consistent with a domi-

nant role for transcription. In addition, 

there was “a scarcity” of DNA sequence 

changes that affected only ribosome foot-

print density and protein abundance, not 

mRNA levels. In effect, by constraining 

their analysis to only those differences in 

expression associated with DNA sequence 

variation, Battle et al. excluded much of the 

variation due to measurement errors to ob-

tain a more accurate answer.

Li et al. ( 1) (our own study) reanalyzed 

data in ( 5) with two approaches to account 

for measurement errors. In the first, a non-

linear scaling error in protein abundance 

estimates (from mass spectrometry data) 

was corrected using classic data from the 

literature, and a subset of the other errors 

in the mRNA-Seq and protein abundance 

data was estimated from replica and other 

control data. In the second approach, vari-

ance in translation rates measured directly 

by ribosome footprinting was substituted 

for a larger variance that had been inferred 

indirectly with a model in ( 5). The first ap-

proach suggests that the variance in true 

mRNA levels explains a minimum of 56% 

of the variance in true protein levels. The 

second implies that true mRNA levels ex-

plain 84% of the variance in true protein 

expression, transcription 73%, RNA deg-

radation 11%, and translation and protein 

degradation each only 8%.

Most controllers of gene expression 

identified by classic genetic or biochemical 

methods are either transcription factors 

or proteins (such as kinases and signaling 

receptors) that directly regulate the activi-

ties of proteins, not their abundances. In 

addition, translation and mRNA degrada-

tion rates change only modestly upon cel-

lular differentiation or when microRNA 

expression is perturbed ( 10– 12). More-

over, improved statistical analyses show 

that in contrast to earlier studies, mRNA 

levels explain most of the variance in pro-

tein abundances in yeast ( 13,  14). Finally, 

~40% of genes in a single mammalian cell 

express no mRNA ( 1,  15); thus, for these 

~8800 genes, transcriptional repression by 

chromatin is likely the sole determinant of 

the absence of protein expression.

Understanding the contributions of 

transcriptional versus posttranscriptional 

control is not simply a matter of academic 

interest. For example, variation in protein 

expression among 95 colorectal tumor 

samples is only poorly explained by mea-

sured mRNA abundances ( 2), which might 

imply that different responses of patients 

to anticancer treatments are posttran-

scriptional effects. If, however, most of the 

variation in protein levels is controlled by 

transcription but this fact is obscured by 

measurement errors, then differences in 

drug action could be mainly explained by 

variation at the transcriptional level.

Accurate quantitation of the control 

of gene expression is in its infancy. Ex-

perimental protocols with fewer inherent 

biases are needed, along with further im-

provements in statistical methods that can 

estimate and take error into account. Be-

fore gene expression can be correctly mod-

eled, an accurate accounting of molecular 

abundances and expression rate constants 

is vital.            ■
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Control of protein expression. The charts show the percent contributions of the variance in the rates of each step 

in gene expression to the variance in protein abundance for 4212 genes (from a mouse cell line). The left chart shows 

estimates from ( 5); the right chart shows estimates from ( 1) that take into account stochastic and systematic errors 

in the abundance data of ( 5).
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