
Review article https://doi.org/10.1038/s41467-025-56080-w

Categorizationof 34computationalmethods
to detect spatially variable genes from
spatially resolved transcriptomics data

Guanao Yan 1, Shuo Harper Hua2 & Jingyi Jessica Li 1,3,4,5,6

In the analysis of spatially resolved transcriptomics data, detecting spatially
variable genes (SVGs) is crucial. Numerous computational methods exist, but
varying SVG definitions and methodologies lead to incomparable results. We
review 34 state-of-the-art methods, classifying SVGs into three categories:
overall, cell-type-specific, and spatial-domain-marker SVGs. Our review
explains the intuitions underlying these methods, summarizes their applica-
tions, and categorizes the hypothesis tests they use in the trade-off between
generality and specificity for SVG detection. We discuss challenges in SVG
detection and propose future directions for improvement. Our review offers
insights for method developers and users, advocating for category-specific
benchmarking.

In multicellular organisms, cells work cooperatively in tissues and
organs to fulfill biological functions. Measuring cells’ spatial locations
along with transcriptome profiles can help unravel collaborative cell
organizations and molecular mechanisms in tissues and organs1. Spa-
tially resolved transcriptomics (SRT) technologies have been rapidly
evolving to enable high-throughput profiling of transcriptomes at
spatial locations, whichmay represent single cells or groups of cells, in
a tissue slice. SRT data provide unprecedented insights into genes’
spatial expression patterns, tissue’s cellular organizations, and cell-cell
communications2.

To date, major SRT technologies are either imaging-based or
sequencing-based, and the two types of technologies have com-
plementary advantages1. Imaging-based SRT technologies use fluor-
escence in situ hybridization (FISH) tomeasure the expression levels of
selected 200–400 target genes at the single-cell or subcellular spatial
resolution1. Examples of imaging-based SRT technologies include
in situ sequencing (ISS)3, sequential fluorescence in situ hybridization
(seqFISH)4–6, multiplexed error-robust fluorescence in situ hybridiza-
tion (MERFISH)7, STARmap8, ExSeq9, and 10x Xenium10. The high spa-
tial resolution of these approaches makes them particularly useful for
studies requiring precise localization of transcripts within tissue sec-
tions. For example, MERFISH is widely used to annotate cell types in

subregions of the mouse brain11,12 and to investigate the spatial inter-
action between specific cell types in the mouse somatosensory
cortex13. However, imaging-based SRT technologies cannot provide
transcriptome-wide gene expression levels.

In contrast, sequencing-based SRT technologies, such as Spatial
Transcriptomics5, 10x Visium14, Slide-seq15, and GeoMx16, capture
transcriptome-wide gene expression at a lower spatial resolution. Each
spot’s diameter ranges between 10μm and 100μm, containing multi-
ple cells of possibly different types1. Recently developed sequencing-
based SRT technologies17,18 can achieve higher, even single-cell, spatial
resolution, with spot diameters reduced to below 1μm, despite the
significantly higher cost. Sequencing-based SRT technologies enable
transcriptome-wide analyses, such as identifying novel marker genes
for tissue layers19, and sequencing-read analysis, such as inferring RNA
velocity from spliced and unspliced sequencing reads20.

Although imaging-based and sequencing-based SRT technologies
have different spatial resolutions, for simplicity, we use the same term
“spots” to refer to themeasured spatial locations for both technologies
in this review. Hence, SRT data encompass two components: (1) an
expression count matrix of p genes at n spots and (2) a spatial coor-
dinate matrix containing the two-dimensional (2D) coordinates of
n spots.
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As with other types of high-throughput data where hundreds or
thousands of genes aremeasured simultaneously, a crucial early step of
SRT data analysis is the identification of informative genes. Prior to SRT
data, single-cell RNA-seq data contain gene expression profiles of single
cells without spatial information. In typical single-cell RNA-seq data
analysis (Fig. 1), highly variable gene (HVG) detectionmethods are used
to screen a proportion of genes (e.g., 10%–20%) with the largest var-
iances (adjusting for cell library sizes in several methods) to reduce the
dataset’s dimensionality (from p genes to a smaller number of HVGs)
and remove the unimportant variations of many genes. The underlying
assumption of HVG detection is that genes exhibiting significant
expression variations across single cells are more likely to reflect bio-
logical variations rather than technical variations caused by sampling
effects in sequencing. Analogous to single-cell RNA-seq data analysis,
SRT data analysis typically includes an early step to detect spatially
variable genes (SVGs), which conceptually generalize HVGs by including
the spatial information (Fig. 1). Intuitively, SVGs are genes whose gene
expression levels exhibit non-random, informative spatial patterns.

In single-cell RNA-seq data analysis (Fig. 1), common steps after
HVGdetection include cell clustering anddifferentially expressedgene
(DEG) detection. The goal of cell clustering is to identify potential cell
types, and subsequent DEG detection aims to find the genes that are
significantly more highly expressed in each cluster. The resulting
highly-expressed DEGs of each cell cluster are then used to annotate
the cluster as a particular cell type (or subtype), serving as cell-type
markers. Similarly, in SRT data analysis, following SVGdetection, spots
are often partitioned into spatial domains, where each domain con-
tains proximal spots exhibiting similar gene expression profiles. Par-
allel to DEG detection between clusters in single-cell RNA-seq data
analysis, DEGs can be identified between spatial domains, and the
resulting highly-expressed DEGs of each spatial domain serve as
spatial-domain markers.

Many computational methods have been developed to detect
SVGs. However, the SVG definitions in these methods lack consensus,
resulting in diverse meanings for the detected SVGs and making
understanding difficult. Consequently, the inconsistent definitions of
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Fig. 1 | General analysis workflows of single-cell transcriptomic data and spa-
tially resolved transcriptomic (SRT) data. The left column shows a general ana-
lysis workflow for single-cell transcriptomic data with steps including highly
variable gene (HVG) detection, cell clustering, and cluster-marker gene

identification. The right column illustrates a workflow for analyzing SRT data with
steps including spatially variable gene (SVG) detection, spatial domain identifica-
tion, and domain-marker gene identification.
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SVGs may lead to ambiguous usage of computational methods.
Although 19 methods were reviewed previously21, the review did not
categorize SVG definitions but only focused on summarizing the
methodologies, including the input data type (count data vs. normal-
ized data), algorithm type (model-based vs. model-free), statistical
paradigm (frequentist vs. Bayesian), the availability of false discovery
rate (FDR) control, etc. Nor did the review discuss the biological
implications and downstream applications of SVGs.

Motivated by this gap in understanding SVGs, here we review 34
peer-reviewed SVG detection methods (Fig. 2) and define three SVG
categories: overall SVGs, cell-type-specific SVGs, and spatial-domain-
marker SVGs. For the first time, our review unveils the biological sig-
nificance underpinning the three categories of SVGs, summarizes the
frequentist hypothesis tests implemented in 23 SVG detection

methods, and discusses the limitations of existing methods and out-
lines future directions for improvement. Moreover, we construct a
hierarchy to summarize the 34 SVG detection methods in terms of
methodological differences in Fig. 3 and list the technical details in
Table 1 and Supplementary Figs. 1 and 2. Additionally, to help readers
better understand our review, we provide Table 2, which lists the
definitions of the frequently used terminologies.

Methods for detecting the three SVG categories serve different
purposes (Fig. 2a). First, the detection of overall SVGs screens infor-
mative genes for downstream analyses, including the identification of
spatial domains and functional gene modules. Second, detecting cell-
type-specific SVGs aims to reveal spatial variationwithin a cell type and
help identify distinct cell subpopulations or states within cell types.
Third, spatial-domain-marker SVG detection is used to find marker
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Fig. 2 | Conceptual visualizationof three SVGcategories and timeline of 34 SVG
detection methods. a Conceptual visualization of three SVG categories: overall
SVGs, cell-type-specific SVGs, and spatial-domain-marker SVGs. The top row shows
a tissue slice with two cell types and three spatial domains. From left to right,
exemplar genes with colors representing the expression levels are shown for an

overall SVG, a cell-type-specific SVG, and a spatial-domain-marker SVG, respec-
tively. b Publication timeline of 34 SVG detection methods. Colors represent three
SVG categories: overall SVGs (green), cell-type-specific SVGs (red), and spatial-
domain-marker SVGs (purple).
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genes to annotate and interpret spatial domains already detected.
Thesemarkers help understand themolecularmechanismsunderlying
spatial domains and assist in annotating tissue layers in other datasets.

The relationship among the three SVG categories depends on the
detection methods, particularly the null and alternative hypotheses
they employ. If an overall SVG detection method uses the null
hypothesis that a non-SVG’s expression is independent of spatial
location and the alternative hypothesis that any deviation from this
independence indicates an SVG, then its SVGs should theoretically
include both cell-type-specific SVGs and spatial-domain-marker SVGs.
For example, DESpace22 is amethod that detects both overall SVGs and
spatial-domain-marker SVGs, and its detected overall SVGs must be
marker genes for some spatial domains. This inclusion relationship
holds true except in extreme scenarios, such as when a gene exhibits
opposite cell-type-specific spatial patterns that effectively cancel each

other out. However, if an overall SVG detection method’s alternative
hypothesis is defined for a specific spatial expression pattern, then its
SVGs may not include some cell-type-specific SVGs or spatial-domain-
marker SVGs. For readers with a statistical background seeking deeper
insights, we provide a comprehensive discussion on the frequentist
hypothesis tests implemented by 23 SVG detection methods in the
Section “Theoretical characterization of SVG detection methods that
use frequentist hypothesis tests.” Other readers can skip this section
and still grasp the core content of our review.

Although three benchmark studies were conducted to compare
SVG detection methods23–25, they have three major differences from
our review. First, the benchmark studies performed numerical com-
parisons of SVG detection methods, while our review focuses on
categorizingmethods conceptually andmethodologically. Second, the
benchmark studies did not categorize SVGs but focused on detecting
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Fig. 3 | A hierarchical summary of 34 SVG detection methods. The hierarchical
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sion, kernel-based patterns, availability of statistical inference, statistical inference
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overall SVGs (green), cell-type-specific SVGs (red), and spatial-domain-marker SVGs
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the overall SVGs by our definition. For example, spaGCN, a method
that detects spatial-domain-marker SVGs, does not perform well in a
benchmark study25, possibly because the study focused on detecting
overall SVGs. This observation underscores the need to categorize
SVGs. Third, our review has a more comprehensive coverage of SVG
detection methods: 34 peer-reviewed methods (all methods to our
knowledge) compared to 6methods in Charitakis et al.23, 7 methods in
Chen et al.24, and 14 methods (12 peer-reviewed) in Li et al.25. In sum-
mary, existing benchmark studies complement our review by provid-
ing numerical evidence to rank methods in detecting certain types of
overall SVGs. Future benchmark studies are needed to compare
methods within the three SVG categories and examine more types of
null and alternative hypotheses.

To facilitate our discussion, we introduce the following mathe-
matical notations. For each gene with expression levels (in counts or

normalized)measured atn spatial spots, we use yi 2 R to represent its
expression level at spot i = 1, …, n. When gene expression levels are
considered random variables, we use Yi to emphasize the random
nature. The vector notation is Y= ðY 1, . . . ,YnÞ>. For each spot
i = 1, …, n, we denote its 2D spatial location as si = ðsi1, si2Þ> 2 R2. The
spatial coordinates of all n spots are represented by the matrix
s= s1, . . . , sn
� �> 2 Rn× 2, where each row corresponds to a spot. When

spots are annotated with L spatial domain labels, the spatial-domain
indicator vector for spot i is di = ðdi1, . . . ,diLÞ> 2 f0, 1gL, withPL

l = 1 dil = 1; that is, dil = 1means that spot i belongs to spatial domain l.
When spots are annotated with K cell type labels, the cell-type pro-
portion vector for spot i is ci = ðci1, . . . , ciK Þ> 2 ½0, 1�K , where cik indi-
cates the proportion of cell type k at spot i, with

PK
k = 1 cik = 1. In

summary, each spot i has three covariate vectors: spatial location si,
spatial-domain indicator di, and cell-type proportions ci. We sum-
marize the mathematical notations in Table 3.

Methods for detecting overall SVGs
We define overall SVGs as the genes that exhibit non-random spatial
expression patterns. This is the most general category of SVGs detec-
ted using only SRT data without incorporating external information
such as spatial domains or cell types (see Fig. 2a and Table 2).Methods
for detectingoverall SVGs are generally classified into Euclidean-space-
based and graph-based methods (Fig. 3). Euclidean-space-based
methods analyze spots in a tissue slice by considering their locations
in a 2D Euclidean space. In contrast, graph-based methods first con-
struct a graph of spatial spots and then analyze this graph, focusing on
the connections between spots rather than their Euclidean distances.
Both approaches, regardless of the spatial representation they use
(Euclidean space or graph), study how a gene’s expression levels vary
across spatial spots, examining the relationship between each gene
and its spatial context.

Euclidean-space-based methods
Euclidean-space-based methods are further divided based on whether
they use a kernel function to target a specific spatial pattern. Kernel-
based methods utilize a kernel function to specify the covariances of
spatial spots, enhancing their power to detect the targeted spatial
patterns. In contrast, kernel-freemethods do not use a kernel function
and instead rely on other approaches to capture spatial patterns.

Kernel-based methods. Kernel-based methods use a pre-defined
kernel function K(si, sj) to specify the covariance between spots i and j
based on their spatial locations. This kernel function usually decays as
the Euclidean distance between spots i and j increases. Define
K(s) = [K(si, sj)] as the n × nmatrix representing these covariances. The
most commonly used kernel functions include the Gaussian kernel for
detecting clustered or focal expression patterns, expressed as:

KGðsi, sjÞ= exp �
si � sj
��� ���2

2σ2

0
B@

1
CA , ð2:1Þ

and the cosine kernel for detecting periodic expression patterns,
denoted by:

KCðsi, sjÞ= cos 2π
si � sj
��� ���

ϕ

0
@

1
A : ð2:2Þ

For a given gene, the covariancematrix of its expression vectorY (may
be subject to transformation) can be decomposed into components,
one of which depends on K(s). If the contribution of this term is sig-
nificantly positive according to a hypothesis test, commonly known as
the “variance component test,” the gene is detected as an overall SVG.

Table 1 | Classification of 34 SVG detection methods along
with statistical inference types

Categories Overall SVGs Cell-
type-
specific
SVGs

Spatial-
domain-
marker
SVGs
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types
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aAlthoughBSPattempts toperform frequentist inferencebydefininganull distribution for its test
statistic, the null distribution is improperly defined as a distribution fitted to the test statistic
values of all genes, implying that all genes are non-SVGs. Hence, we do not label BSP as a
method with statistical inference in the table.
bPROST performs frequentist statistical tests for Moran’s I, instead of the PROST index it uses to
rank genes as SVGs.
cSpaGFT does not perform frequentist statistical tests for the GFT scores it uses to rank genes
as SVGs.
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Following this general idea, ten kernel-based methods (Fig. 3)
make different assumptions about the distribution of Y and the cov-
ariance matrix decomposition. Below, we briefly summarize these
methods and highlight their similarities and differences.

SpatialDE26 assumes that a gene’s normalized expression Y 2 Rn

follows an n-dimensional Gaussian distribution, with a covariance
matrix that includes a spatial covariance component involving K(s):

Y � MVN μ, σ2
s � KðsÞ+ δ � I� �

,

where MVN represents a multivariate Gaussian distribution with a
mean vector μ 2 Rn and a covariance matrix σ2

s � KðsÞ+ δ � I. Here, I is
an n-dimensional identity matrix, and σ2

s and δ are parameters repre-
senting the spatial covariance component and the error variance
component, respectively. This model is a realization of a Gaussian
process with the kernel function K( ⋅ , ⋅ ). To determine if a gene is an
overall SVG, SpatialDE employs a likelihood ratio test with the null
hypothesis H0 : σ2

s =0, comparing this model with a null model that
does not include the spatial covariance compo-
nent: Y � MVN μ, σ2 � I� �

.
Using the same model as SpatialDE, nnSVG27 improves computa-

tional efficiency by replacing the Gaussian process with the nearest-
neighbor Gaussian process28, providing a scalable approximation. This

enhancement allows nnSVG’s computational complexity and runtime
to scale linearlywithn, the number of spatial spots, rather than cubicly.

SOMDE29 also follows the statistical model of SpatialDE but adds a
data preprocessing step for scalability. Specifically, SOMDE condenses
the original spatial spots into fewer grid points and assigns each grid
point a “meta-expression,”which aggregates a gene’s expression levels
at the spots condensed into that grid point. After this preprocessing
step, SOMDE uses the same approach as SpatialDE to detect whether
the gene is an overall SVG, but it does so using the grid points instead
of the original spots.

Compared to the first three methods, SVCA30 modifies the cov-
ariance matrix decomposition by adding two additional components:

Y � MVN μ, Kint +Kc�c + σ
2
s � KðsÞ+ σ2 � I� �

,

where Kint denotes the intrinsic cell-state covariance, and Kc-c

represents the cell-cell interaction covariance. Specifically, Kint is
defined solely using gene expression data without spatial information,
while Kc-c incorporates both gene expression data and Euclidean
distances among spots.

Instead of using normalized gene expression data, SPARK31,
GPcounts32, and BOOST-GP33 directly model a gene’s expression count
at spot i, Y i 2 N, using Poisson, negative binomial (NB), and zero-
inflated negative binomial (ZINB) distributions, respectively. For
instance, SPARK assumes that:

Y i �
ind

Poisson μiðsiÞ
� �

, i= 1, 2, � � � ,n :

For spot i, the Poissonmeanparameter μi(si) is a function of the spatial
location si, specified by:

log μiðsiÞ
� �

=x>
i β+biðsiÞ+ ϵi ,

where xi indicates spot i’s covariates, and bi(si) is the random intercept
at spot i. The n random intercepts, b1(s1), …, bn(sn), are assumed to
follow a Gaussian process with the kernel function K( ⋅ , ⋅ ):

b1ðs1Þ,b2ðs2Þ, � � � ,bnðsnÞ
� �> � MVN 0, σ2

s � KðsÞ
� �

:

To decide whether the gene is an overall SVG, SPARK tests the null
hypothesis H0 : σ2

s =0. Thus, SPARK shares the same variance com-
ponent test idea with SpatialDE but uses a hierarchical model, incor-
porating a Gaussian process in the top layer and Poisson distributions
in the bottom layer, to account for count data.

Unlike the previous seven methods that use parametric models,
three methods—SPARK-X34, SMASH35, and singlecellHaystack36—employ
non-parametric tests to determine whether a gene’s expression is
independent of its spatial location.

SPARK-X34 tests whether two n × n spot similarity matrices are
independent to decide if a gene is an overall SVG. One similaritymatrix

Table 2 | Definitions of concepts for SVGs and frequentist statistical tests

Concept Definition

SVGs Overall SVGs Genes that exhibit non-random spatial expression patterns. This is the most general category of SVGs detected
using only SRT data without incorporating external information such as spatial domains or cell types.

Cell-type-specific SVGs Genes that exhibit non-random spatial expression patterns within a cell type. These genes are detected using
both SRT data and external cell-type annotations for the spatial spots.

Spatial-domain-
marker SVGs

Genes that exhibit significantly higher expression in a spatial domain compared to other domains. These genes
are detected using SRT data and spatial domains, which are usually detected from the same SRT data.

Frequentist tests Dependent test Examines the dependence between a gene’s expression level and the spatial location.

Fixed-effect tests Examineswhether someor all of thefixed-effect covariatesxicontribute to themeanof the responsevariable, i.e.,
a gene’s expression.

Random-effect tests Examines whether the random-effect covariates zi contribute to the variance of the response variable, i.e., a
gene’s expression.

Table 3 | Mathematical notations and interpretations

Symbol Interpretation

n 2 Z + Number of spatial spots

yi 2 R Expression level of a gene at spot i

Yi 2 R Random variable representing the expression
level of a gene at spot i

Y= ðY1, . . . ,YnÞ> 2 Rn Randomvectorof a gene’s expression levels at all
n spatial spots

si = ðsi1, si2Þ> 2 R2 2D spatial location of spot i

s= s1, . . . , sn
� �> 2 Rn × 2 Matrix of spatial coordinates for all n spots

di = ðdi1, . . . ,diLÞ> 2 f0, 1gL Spatial-domain indicator vector for spot i

ci = ðci1, . . . , ciKÞ> 2 ½0, 1�K Cell-type proportion vector for spot i

xi 2 Rp Fixed-effect covariates of spot i

zi 2 Rq Random-effect covariates of spot i

ϵi 2 R Random measurement error at spot i

ϵ = ðϵ1, . . . , ϵnÞ> 2 Rn Vector of random measurement errors with
assumed independence

β0 2 R (Fixed) intercept in the linear mixed model

β 2 Rp Fixed effects in the linear mixed model

γ 2 Rq Random effects in the linear mixed model

Σ 2 Rq×q Covariance matrix of random effects γ
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is based on the gene’s expression levels at the n spots, defined as

E=Y Y>Y
� ��1

Y>. The other is based on the kernel-transformed spatial

locations of the n spots, defined as K= s0 ðs0Þ>s0� ��1ðs0Þ>, where s0 is an
n × 2matrixwhose ith row s0i = ðs0i1, s0i2Þ> encode the kernel-transformed
spatial location of spot i = 1,…, n. Specifically, SPARK-X transforms the
spatial location si = ðsi1, si2Þ> of spot iusing twokernel-based functions:

a Gaussian transformation s0il = expð�s2
il

2σ2
l
Þ, l = 1, 2, to detect clustered or

focal patterns, and a cosine transformation s0il = cosð2πsilϕl
Þ, l = 1, 2, to

detect periodic patterns, where σ1, σ2, ϕ1, and ϕ2 are tuning para-
meters. Eventually, SPARK-X uses the Pearson correlation between the
two similarity matrices, trace(EK)/n, as the test statistic to decide if a
gene is an overall SVG.

SMASH35 generalizes SPARK-X by adding two alternatives to the
spatial location similarity matrix K. The two alternatives include the
Gaussian kernel covariance matrix KG = [KG(si, sj)] and the cosine ker-
nel covariancematrixKC = [KC(si, sj)], whereKG( ⋅ , ⋅ ) andKC( ⋅ , ⋅ ) are the
kernel functions defined in (2.1) and (2.2), respectively. Then, SMASH
uses the same test statistic as SPARK-X.

singlecellHaystack36 is a test of independence between a gene’s
expression level and its spatial location. It involves two pre-processing
steps: first, the gene’s expression levels at various spots are binarized
into two states: detected and undetected; second, the 2D Euclidean
space of a tissue slice is divided into a grid along both axes, with
intersection points defined as grid points, serving as coarse spatial
coordinates. After pre-processing, the method tests if the gene’s two
expression states are randomly distributed across the grid points. If
they are not, the gene is considered an overall SVG. singlecellHaystack
uses a Gaussian kernel to define three distributions of grid points: a
reference distribution based on all spatial spots, a conditional dis-
tribution based on spatial spots in the detected state, and another
conditional distribution based on spatial spots in the undetected state.
Technically, for a grid point with a 2D spatial location s= ðs1, s2Þ>, its
referencedistribution density is defined as

Pn
i = 1 expð�

si�sk k2

2 Þ, subject
to normalization. The two conditional distribution densities are simi-
larly defined, with the sumacross all spots replaced by sums across the
detected and undetected spots, respectively. The test statistic is
defined as the sum of two Kullback-Leibler (KL) divergences, each
representing the deviance of one conditional distribution from the
reference distribution. Intuitively, the larger the test statistic, themore
likely the gene is an overall SVG. Finally, the test statistic is converted
to a p value using a permutation test, which shuffles the gene’s
expression levels across spots.

To summarize, all ten kernel-based methods require pre-
specification of the kernel function K( ⋅ , ⋅ ) to target specific spatial
patterns. Consequently, the statistical power of these methods
depends on how well the kernel function captures the spatial expres-
sion patterns of biologically informative genes in the SRT data. Due to
the limited choices and subjectivity of kernel functions, thesemethods
may be insufficient for detecting complex spatial expression patterns,
such as those found in cancer SRT data.

Kernel-free methods. Nine kernel-free methods employ diverse
approaches to detect overall SVGs without relying on pre-specified
kernel functions (Fig. 3). Instead, they utilize various statistical and
computational techniques to capture spatial patterns. Below, we
briefly summarize each method.

Trendsceek37 tests if a gene’s expression level is dependent of the
spatial location using amarked point process, whichmodels the joint
probability distribution of spatial locations si, i = 1, …, n, as “points”
and a given gene’s expression levels yi, i = 1, …, n, as “marks.” If
deemed dependent, the gene is detected as an overall SVG. For a pair
of points (si, sj) and their corresponding marks (yi, yj), Trendsceek

parameterizes their joint probability density by the distance (called
“radius”) rij = ∣si � sj ∣ and the marks yi, yj as f(yi, yj, rij). Formally, the
dependence of the gene’s expression on spatial location is for-
mulated as a conditional distribution of a pair of gene expression
levels (yi = y1, yj = y2), given the radius rij = r:

Mðy1, y2jrÞ=
f ðy1, y2, rÞ

f ðrÞ :

This conditional distribution can then be summarized into four mark-
segregation summary statistics as functions of the radius r, such as
Stoyan’s mark-correlation function. To test if the gene is an overall
SVG, Trendsceek implements a permutation test by sampling marks
without replacement and randomly reassigning them to points. For
each radius r, summary statistics are calculated and compared to the
null distributions derived from the permutations to obtain p values,
which are then combined into a single p value across all radius values.
Note that Trendsceek has inspired the “markvariogram” approach
used in the single-cell and SRT analysis toolkit Seurat38 for SVG
detection.

MULTILAYER39, similar to singlecellHaystack, discretizes spatial
spots for each gene based on the gene’s expression levels. The dis-
cretization procedure in MULTILAYER consists of three steps. First,
each spot receives a log2 fold change, defined as the ratio of the gene’s
normalized expression level at the spot to its average normalized
expression level across all spots. The log2 fold changes with absolute
values greater than 1 are truncated to 1 with the corresponding sign.
Second, MULTILAYER applies agglomerative clustering to the spots
based on the log2 fold change values, using a pre-specified distance
threshold. Third, if a cluster contains contiguous spots with all positive
log2 fold change values, MULTILAYER assigns the cluster a label of “1.”
Finally,MULTILAYERuses the size of the largest cluster labeled as “1” as
a summary statistic for the gene and ranks genes from high to low
based on this statistic. Thus, if a gene has a large contiguous cluster
labeled as “1,” it is considered to have a high-expression neighborhood
and is regarded as an overall SVG. However, MULTILAYER does not
provide statistical significance for its overall SVG ranking.

sepal40 is a diffusion-process-based method that identifies a gene
as an overall SVG if its spatial expression pattern deviates from ran-
domness. To quantify this deviation, sepal simulates a diffusion process
from the gene’s observed expression pattern until it converges to
randomness, using the convergence time as a measure. The longer the
convergence time, the more likely the gene is an overall SVG. However,
this method ranks genes but does not provide statistical significance
for the detected overall SVGs. Specifically, sepal uses the diffusion
equation based on Fick’s second law41 to simulate the diffusion of the
gene’s transcripts in the 2D Euclidean space of a tissue slice. Note that
sepal is included in the SRT analysis toolkit squidpy42 for SVGdetection.

BSP 43 is built upon the intuition that an overall SVGshouldhave its
spatial expression pattern vary significantly at different spatial reso-
lutions; otherwise, the pattern should remain consistent. To imple-
ment this, BSP follows a four-step procedure. First, for each spot, it
defines “big” and “small” patches consisting of neighboring spots
within pre-specified large and small radii, respectively, soeach spot has
one big patch and one small patch. Second, for each gene, BSP cal-
culates the average expression levels within the big patches and the
variance of these averages, then similarly calculates the variance for
the small patches. Third, BSP uses the ratio of the big-patch variance to
the small-patch variance as a statistic to summarize the change in the
gene’s expressionpatternwith changing spatial resolution. Finally, BSP
ranks genes by this statistic, identifying those with large values as
overall SVGs. Although BSP attempts frequentist inference by defining
a null distribution for its statistic, this null distribution is improperly
defined as a distribution fitted to the statistic values of all genes,
implying that all genes are non-SVGs. Consequently, a p value
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threshold of 0.05 will always lead to 5% of genes being detected as
overall SVGs, regardless of how many genes are truly overall SVGs.
Therefore, we donot consider BSP to provide valid statistical inference
in our review.While the ranking of genes by the BSP statistic could still
be informative, the lack of valid statistical inference means that we do
not have a threshold on the statistic to reflect a target FDR.

PROST44 determines if a given gene is an overall SVG based on
computer image segmentation. First, treating the gene’s spatial expres-
sion in a tissue slice as an image, PROST applies image segmentation
techniques to detect multiple foreground regions, where the gene is
considered expressed, and one background region, where the gene is
treated as unexpressed. Second, PROST defines two statistics: (1) a sig-
nificance factor summarizing the overall elevation of the gene’s
expression from the background region to the foreground regions, and
(2) a separability factormeasuring the overall homogeneity of the gene’s
expression within each foreground region. Finally, PROST combines
these two statistics into a single index. Based on this index, PROST ranks
genes from high to low and selects the top-ranking genes as overall
SVGs. Although PROSTperforms frequentist statistical tests, they are for
Moran’s I45 rather than its index. Therefore,wedonot consider PROST to
provide valid statistical inference in our review.

HEARTSVG46 is a time-series-based method designed to detect
SVGs by first converting a gene’s expression levels in a 2D tissue slice,
structured as a matrix with nrow rows and ncol columns, into four one-
dimensional time series. Notably, HEARTSVG assumes that the tissue
slice is square, which may impose a limitation. These four time series,
termed “marginal expression series,” are generated through a process
called “semi-pooling.” For example, if a tissue slice has nrow = 120 and
ncol = 60, HEARTSVG defines the following four time series for each
gene: (1) a per-row-average time series with 120 entries, each repre-
senting the average expression level within the corresponding row; (2)
a within-row-window-average time series with 120× 60

lnð120Þ = 1440
entries, where each entry is derived from averaging expression levels
within a non-overlapping sliding window of size lnð120Þ= 5 within each
row; (3) a per-column-average time series with 60 entries, each
representing the average expression level within the corresponding
column; and (4) a within-column-window-average time series with
60× 120

lnð60Þ = 1800 entries, where each entry is derived from averaging
expression levels within a non-overlapping sliding window of size
lnð60Þ=4 within each column. HEARTSVG then applies the Portman-
teau test to each of these four time series to assess whether there are
significant autocorrelations, which would suggest that the time series
displays a trend or periodic pattern, potentially indicating an infor-
mative spatial pattern in the original 2D square. The four p values,
obtained from the Portmanteau tests on the four time series, are then
combined into a single p value using Stouffer’s method; that is, the
gene should be considered an overall SVG if the combined p value falls
belowa certain threshold. Finally, to determine the appropriatep value
threshold and account formultiple testing across all genes,HEARTSVG
applies Holm’s method to adjust the p values and control the family-
wise error rate (FWER). It is important to note that HEARTSVG may
have certain conceptual limitations, particularly the requirement for a
square tissue slice and the seemingly arbitrary definitions of the four
time series, especially regarding the chosen window sizes and the
construction of the time series, given the many possible alternatives.

SPADE47 leverages the hematoxylin-and-eosin (H&E) image
accompanying the SRT data (e.g., 10x Visium) to detect overall SVGs. It
defines a gene as an overall SVG if the gene’s expression levels can be
predicted by H&E features, which are extracted by a pre-trained con-
volutional neural network and expected to contain critical spatial
information, in a linear model. Specifically, SPADE first performs
principal component analysis (PCA) on the 512 H&E features for
dimensionality reduction. Then, it tests if the resulting principal
components can predict the gene’s expression levels in a linearmodel.
If so, the gene is defined as an overall SVG.

BOOST-MI48 and BOOST-HMI49 are Bayesian methods that detect
overall SVGs based on the Ising model and its extension to the geos-
tatistical mark interaction model, respectively. The Ising model, his-
torically used to model ferromagnetism, represents each magnetic
moment (or spin) in a material as a discrete variable that can take one
of two values: +1 or −1 (interpreted as spin up or spin down). In fer-
romagnetic materials, spins tend to align with their neighbors to
minimize the system’s energy. The Ising model exhibits a phase tran-
sition at a critical temperature, belowwhich spins align, resulting in net
magnetization corresponding to the ferromagnetic phase. Above this
temperature, thermal fluctuations dominate, and spins are randomly
oriented, corresponding to the paramagnetic phase. BOOST-MI
applies the Ising model to SRT data by treating spatial spots as spins,
with the positive and negative values corresponding to high and low
expression levels of a gene after dichotomization. BOOST-MI detects a
gene as an overall SVG if it finds the gene to be in a “ferromagnetic
phase.”BOOST-HMIextends this approach for imaging-basedSRTdata
to accommodate the irregular spatial distribution of measured spots.

Graph-based methods
In manifold learning, when data originate from a non-linear manifold
within Euclidean space, using a graph to represent the data effectively
captures the intrinsic geometry and preserves the local structures of
the manifold. Extending this concept to spatial spots on a non-linear
manifold within the 2D Euclidean space of a tissue slice, graph-based
SVG detection methods first construct a neighborhood graph by
connecting nearby spots in Euclidean space. These methods then
operate on the graph to detect overall SVGs. The way the graph is
constructed is crucial, as it determines how well the graph represents
the manifold, significantly impacting the performance of graph-based
methods.

In this section, we introduce ten graph-based methods (Fig. 3),
focusing on their graph construction approaches and subsequent
operations on the graph for detecting overall SVGs.

Hotspot50 aims to detect overall SVGs as the genes that exhibit
high expression levels in local spot neighborhoods (i.e., “hotspots”). It
first constructs a K-nearest neighbor (KNN) directed graph by treating
each spot as a node and connecting it to its closestK spots in Euclidean
distance. For a spot i connected to a spot j, with Euclidean distance
denoted by dij, the directed edge from i to j is assigned a weight
defined as wij = e

�d2
ij=σ

2
i , where σi represents the bandwidth of spot i

(defined as the distance from spot i to its [K/3]-th neighbor). Next, for
each gene, denoting its expression count at spot i by Yi, Hotspot uses
an autocorrelation statisticH to quantify the dependence of the gene’s
expression level on the graph structure:

H =
X
i

X
j≠i

wijY iY j ,

which is related to Moran’s I45, a spatial autocorrelation measure that
quantifies the degree to which similar expression levels are clustered
together in space. Moran’s I is defined as:

I =
nP

i

P
jwij

P
i

P
jwijðY i � �Y ÞðY j � �Y ÞP

iðY i � �Y Þ2
, ð2:3Þ

where n is the number of spatial spots, and �Y is the gene’s mean
expression level across spots. Similar to I, a largeH indicates that spots
where the gene is highly expressed are clustered in local neighbor-
hoods, suggesting the gene is an overall SVG. To assess the statistical
significance ofH, Hotspot convertsH to a z-statistic by subtracting the
expectation of H under the null model, where all spots are assumed to
be independent, and dividing by the standard deviation ofH under the
null model. Specifically, Hotspot assumes two null models where Yi
independently follows either an NB distribution or a Bernoulli
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distribution. The z-statistic is then assumed to follow the standard
Gaussian distribution under the null hypothesis, and a one-sided p
value is computed.

HRG51 differs from Hotspot in three key aspects. First, it replaces
the KNN graph with a shared-nearest-neighbors (SNN) graph, where
the edgeweightwijbetween spots i and j is defined as the Jaccard index
of their respectiveK-nearest neighbors. The Jaccard index is calculated
as the size of the intersection of the two sets dividedby the size of their
union. Second, HRG modifies Yi, the gene count at spot i, to a z-score

Zi =
Y i��Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

j = 1
ðY j��Y Þ2

q , where �Y is the mean gene count and n is the total

number of spots. Third, unlike Hotspot, HRG does not provide statis-
tical significance for its detected overall SVGs but instead ranks the
genes based on H.

SVGbit52 is also a spatial-autocorrelation-based method that ranks
genes as overall SVGs based on the spatial autocorrelations of local
neighborhoods. The method does not provide statistical significance
for its rankings. For each gene, SVGbit uses three steps to calculate a
summary statistic, called the “aggregation index,”which is used to rank
genes. First, SVGbit identifies “hotspots” as spatial spots with large and
statistically significant local Moran’s I values, using a z-test-based p
value thresholded at the 5% FDR. Specifically, for spot i, local Moran’s I
is defined as:

Ii = ðY i � �Y Þ
X
j

wijðY j � �Y Þ ,

where the terms are defined similarly to Moran’s I (2.3). A high Ii value
indicates that spot i is part of a neighborhood of similar values (either
high-high or low-low). Hence, spot i is treated as a hotspot if Ii is
deemed significantly large. Second, for each hotspot, SVGbit considers
its neighboring hotspots among the 6-nearest-neighbor spots and
defines the “local aggregationdensity” as the sumof theseneighboring
hotspots’ normalized log-transformed p values (i.e., the log-
transformed p value of each neighboring hotspot divided by the sum
of the log-transformed p values of the 6 neighboring spots). Thus, a
hotspot with more neighboring hotspots has a higher local aggrega-
tion density. Third, the gene’s aggregation index is computed as the
average of all hotspots’ local aggregation densities. Intuitively, the
overall SVGs with large aggregation indices are those whose expres-
sion patterns exhibit clustered hotspots.

SINFONIA53 aims to detect overall SVGs as those exhibiting posi-
tive spatial autocorrelations, where similar expression levels are clus-
tered in neighboring spots, either globally or locally. It begins by
constructing aKNNdirected graph, setting the edgeweight from spot i

to spot j (if connected) as wij = 1�
dij

max
j

dij
, where dij is the Euclidean

distance between spots i and j, and max
j

dij is the maximum distance

between spot i and itsK nearest neighbors. Given this graph, SINFONIA
calculates two measures of spatial autocorrelation for each gene: (1)
Moran’s I45, whichprovides a globalmeasure of spatial autocorrelation,
with values ranging from −1 to 1, where a value close to 1 indicates
strong positive spatial autocorrelation; (2) Geary’s C54, which is more
sensitive to local spatial differences, with values ranging from 0 to 2,
where a value close to 0 indicates strong positive spatial autocorrela-
tion. Geary’s C is defined as:

C =
ðn� 1Þ

2
P

i

P
jwij

P
i

P
jwijðY i � Y jÞ2P
iðY i � �Y Þ2

,

where the terms are defined similarly toMoran’s I (2.3). SINFONIA then
ranks genes from high to low based onMoran’s I and from low to high
based onGeary’sC. To identify overall SVGs, SINFONIA takes the union

of the top J genes from both rank lists, where J is a pre-specified
positive integer. However, SINFONIA does not provide statistical
significance for the detected overall SVGs.

MERINGUE55 also uses Moran’s I to detect overall SVGs but differs
from previous methods in its graph construction approach. Instead of
using a KNN graph, MERINGUE constructs a graph of spatial spots
using Delaunay triangulation, making it suited for spatial spots with
non-uniform density, such as cells in MERFISH data. Delaunay
triangulation56 connects points in a 2D space to form triangles such
that nopoint lies inside the circumcircle (the circle thatpasses through
all three vertices) of any triangle. In simpler terms, it maximizes the
minimumangle of the triangles, avoiding skinny triangles. Unlike KNN,
Delaunay triangulation does not require selecting an arbitrary K
parameter and automatically adapts to variations in point density,
providing more connections in denser regions and fewer in sparser
regions. Given the graph, MERINGUE assigns an edge weight between
spots i and j as wij = 1 if the two spots are connected, and wij= 0
otherwise. To determine if a gene is an overall SVG, MERINGUE uses
Moran’s I, transforms it to a z-statistic, and calculates a one-sided p
value based on the standard Gaussian distribution.

SpaGene57, similar to previousmethods that useMoran’s I, aims to
detect overall SVGs as those highly expressed at neighboring spots.
Starting from a KNN graph of spots, it uses an alternative approach to
boost computational efficiency. For each gene, it dichotomizes spots,
coding themas0or 1 corresponding to loworhigh expression levels of
the gene. It then extracts the high-expression spots (i.e., the spots
labeled as 1) from the graph and summarizes the distribution of these
spots’ degrees (the number of edges connected to each spot) in the
subgraph. Finally, it compares the degree distribution of these high-
expression spots to that of the whole graph, and calculates the earth
mover’s distance between the two distributions. A small distance
indicates that the high-expression spots aredensely connected to each
other and rarely connected to other spots, so the gene is likely an
overall SVG. Finally, SpaGene converts the distance to a p value using a
permutation test.

SpaGFT58 detects overall SVGs by leveraging a graph signal pro-
cessing approach. Starting from a KNN graph of spots, SpaGFT applies
the graph Fourier transform (GFT) to decompose each gene’s
expression levels on this graph into components of varying spatial
frequencies, analogous to decomposing a signal into sine and cosine
waves. While the components are common to all genes, each gene has
unique coefficients associated with these components. Low-frequency
components capture spatially organized patterns, while high-
frequency components primarily represent noise. The classification
of low- and high-frequency components is based on the eigenvalues
derived from the GFT, with thresholds determined at two inflection
points of the eigenvalue curve, identified using the Keedle algorithm59.
For eachgene, SpaGFT calculates a GFT score, which is a weighted sum
of the gene’s coefficients for all components, where lower-frequency
components are assigned larger weights. This GFT score reflects the
gene’s overall concentration in low-frequency components. Genes
with high GFT scores are considered to exhibit substantial spatial
variation and are potential SVGs. To identify SVGs, SpaGFT employs
two thresholds: a GFT score cutoff and a p value cutoff. The GFT score
cutoff is determinedby ranking genes in descending order of their GFT
scores and identifying the inflection point of the GFT score curve
across all genes. The p value calculated by SpaGFT for each gene is not
derived from the GFT score; rather, it is based on the Wilcoxon rank-
sum test comparing the coefficients of low-frequency and high-
frequency components. However, since the ranking of SVGs does not
depend on the p value and the detection threshold is not solely based
on the p value, we do not consider SpaGFT to provide valid statistical
inference in our review.

BinSpect, part of the Giotto toolbox60, detects overall SVGs by
examining whether the dichotomized spots (i.e., spots coded as 0 or 1
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corresponding to low and high expression levels of a gene, respec-
tively) are randomly distributed in a graph. Specifically, BinSpect
constructs a graph of spots either as a KNN graph or by Delaunay
triangulation. Then, for each gene, BinSpect follows three steps to
determine if the gene is an overall SVG. First, it assigns a binary label to
each spot by either thresholding at the top 30% expressed spots or
using k-means clustering (k = 2). Second, it constructs a 2-by-2 con-
tingency table by counting the edges that connect spots with labels
(0,0), (0,1), (1,0), or (1,1). Finally, it applies Fisher’s exact test to the
contingency table to decide whether spots with the same label tend to
be connected, thereby detecting a gene as an overall SVG.

Note that, unlike Giotto, two other popular toolkits with SRT
functionalities—Seurat and squidpy—implement different methods for
detecting overall SVGs. Seurat38 uses two approaches: Moran’s I and a
mark-point-process-based method called “markvariogram” similar to
Trendsceek37. On the other hand, squidpy42 employs sepal40, a
diffusion-process-based method.

scGCO61 is similar to BinSpect at a high level by testing whether a
gene’s discretized expression levels are dependent on spatial neigh-
borhoods. However, scGCO approaches the problem in a more com-
plex way. After constructing an undirected graph of spots using
Delaunay triangulation, scGCO performs three steps. First, it fits a
Gaussian mixture model to the gene’s log-transformed expression
levels to discretize the gene’s expression into a number of levels.
Second, using a graph cut algorithm, it fits a hidden Markov random
field to the gene’s log-transformed expression levels on the spot graph
to divide the spots into segments. Finally, it tests whether each dis-
cretized level is randomly distributed in each segment, using the
homogeneous Poisson process as the underlying null model. In sum-
mary, a gene is considered an overall SVG if at least one of its dis-
cretized levels is non-randomly distributed in any segment.

RayleighSelection62 is a theoretical approach that generalizes a
graph to a simplicial complex63, incorporating additional higher-
dimensional topological information about spatial spots compared to
a graph. The method first constructs the Vietoris-Rips complex, a type
of simplicial complex, of spatial spots by considering balls of a fixed
radius around each spot and forming edges, triangles, and higher-
dimensional simplices based on the intersections of these balls. For
each gene, it then computes the combinatorial Laplacian score, which
measures how well the gene respects the local structure of the sim-
plicial complex. If a gene has high expression levels in highly con-
nected regions, it will have a low combinatorial Laplacian score,
indicating a significant spatial pattern and suggesting it to be anoverall
SVG. Finally, RayleighSelection computes a p value for the combina-
torial Laplacian score using a permutation test.

Relationship between Euclidean-space-based methods and
graph-based methods
When it is reasonable to assume data lie on a non-linear manifold in
Euclidean space, using a graph to represent the data offers significant
advantages. A graph can capture the intrinsic geometry of the
manifold by representing data points as nodes and their similarity
relationships as edges based on some similarity or distance measure.
Graph-construction methods like KNN (where each node’s neigh-
borhood is defined by a fixed number of neighbors, K) or ϵ-neigh-
borhoods (where each node’s neighborhood is defined by a fixed
radius, ϵ) ensure that each node is connected to its nearest neigh-
bors, preserving the local relationships among nodes. The shortest-
path distance between two nodes in the graph approximates their
“geodesic distance” on the manifold, reflecting the data’s intrinsic
structure more accurately than the Euclidean distance. Additionally,
graph-based methods are more robust to the curse of dimension-
ality: in high-dimensional spaces, where Euclidean distances often
lose meaning, a graph can effectively capture relationships among
data points.

However, in the context of SVG detection, using Euclidean dis-
tance to represent distances between spots might be more appro-
priate. Biological relationships between spots inherently follow
Euclidean distances in a physical 2D Euclidean space in tissue. More-
over, since Euclidean distances are basedon 2D spatial locations rather
than high-dimensional gene expression data, the curse of dimension-
ality is not an issue.

It remains an open question how to construct a graph to accu-
rately represent a non-linear manifold of spatial spots. The choice of
graph-constructionmethod, such as KNN or Delaunay triangulation, is
crucial. KNN connects each spot to its K nearest neighbors, preserving
the local structure of the data. In contrast, Delaunay triangulation
handles the non-uniform spatial distribution of spots in SRTdata, such
as MERFISH or Slide-seq data. Delaunay triangulation connects spots
to form triangles such that no point is inside the circumcircle of any
triangle, resulting in a graph that more naturally respects the non-
uniform distribution of spots and preserves local density variations.
However, Delaunay triangulation is more computationally expensive
and more sensitive to outliers than KNN. Future studies could explore
whether the computational cost of using Delaunay triangulation for
imaging-based SRT data is justified, and how this decision may vary
depending on the tissue structure-whether the tissue is structured
(such as in the brain) or unstructured (such as in tumors). Additionally,
research could focus on improving the scalability and robustness of
Delaunay triangulation in these contexts. Additionally, thedefinitionof
edge weights in the graph is another important consideration. Edges
can be directional or undirectional, depending on whether the rela-
tionship between spots has a direction (e.g., one cell type influencing
another cell type’s gene expression). The edge weights can take mul-
tiple forms. For example, weights can be determined by a Gaussian
kernel, where weights decay exponentially with the Euclidean distance
between spots, emphasizing closer spots. Alternatively, weights can
decrease linearly with distance. These choices affect how the graph
captures the manifold structure of data and, consequently, how
effectively it can be used to detect spatial patterns of gene expression
that are biologically relevant.

Applications of overall SVGs
The detection of overall SVGsmainly serves as a pre-processing step in
SRT data analysis. While the definition of overall SVGsmay vary across
methods, the common objective is to select informative genes for
downstream analysis. A common downstream analysis is to identify
spatial domains (also referred to as spatial communities) by parti-
tioning a tissue slice into regions so that spots have similar expression
profiles of overall SVGs in each region.

Identifying spatial domains can help uncover tissue layers where
morphological architecture is less defined. For example, SPADE47, an
overall SVG detection method, uses its detected overall SVGs to
identify spatial domains as substructures in cortical layers and amyg-
dala in a 10x Visium mouse brain immunofluorescence dataset.
Another use of spatial domain identification is to reveal gene expres-
sion profiles underlying tissue structures. For example, scGCO61,
another overall SVG detectionmethod, identifies spatial domains from
a mouse breast cancer biopsy dataset sequenced by Spatial
Transcriptomics64, and the identified domains align with annotated
tissue structures including invasive ductal cancer, ductal cancer, and
normal tissue. This alignment confirms that these tissue structures
have distinct gene expression profiles, so the SRT data can potentially
lead to the discovery of newmarker genes for these tissue structures, a
task tackled by spatial-domain-marker SVG detection.

A common approach to identifying spatial domains is clustering
spatial spots using overall SVGs’ expression levels and spot locations.
For example, graph-based clustering (e.g., Louvain clustering) can be
applied after spatial spots are connected into a graph based on their
spatial proximity and gene expression levels; then, the identified
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clusters contain spatial spots in proximity and exhibiting similar gene
expression levels. For example, using Louvain clustering, the overall
SVGs detected by SPADE47 and SINFONIA53 resulted in spatial domains
in well-structured brain tissues in the mouse olfactory bulb Spatial
Transcriptomics dataset64, as well as in the mouse hippocampus
seqFISH5 and Slide-seq65 datasets.

The spatial domains identified fromoverall SVGs can be validated,
directly or indirectly, in three ways. First, spatial domains can be
compared with tissue layers annotated by pathologists from the H&E
image accompanying the SRT data (e.g., 10x Visium). For example, in
the SpaGCN66 method paper, three annotated layers of the primary
pancreatic cancer were compared to the spatial domains identified
from a Spatial Transcriptomics dataset67. Second, spatial domains can
be annotated with cell-type labels in external transcriptomic data to
verify if distinct domains have different cell-type compositions. For
example, in a study of the human dorsolateral prefrontal cortex 10x
Visium dataset19, researchers annotated the identified spatial domains
as cortical layers based on the cytoarchitecture and marker genes
obtained from external large-scale single nucleus RNA-seq datasets.
Third, for well-structured tissue types like the brain, spatial domains
can be verified by transferring tissue layer labels from external public
annotations. For instance, in the SINFONIA53 method paper, annota-
tions from Allen Brain Atlas68 and Mouse Brain Gene Expression Atlas
(http://mousebrain.org/) were transferred to several SRT datasets,
including the mouse brain coronal section 10x Visium dataset, the
mouse hippocampus Slide-seqV2 dataset65, and the mouse olfactory
bulb STEREO-seqdataset17. Although thedetectionof overall SVGsmay
serve as a feature screening step before spatial domain identification
to circumvent the curse of dimensionality (i.e., dealing with too many
genes as features), it is important to note that this screening step may
not be necessary for spatial domain detection methods that employ
alternative strategies to reduce feature dimensions. For example,
BayesSpace69 and StLearn70 implement spatial domain identification
using lower-dimensional representations of spatial spots based on
selected HVGs.

Besides spatial domain identification, another downstream ana-
lysis is the unsupervised identification of spatial gene modules among
thedetectedoverall SVGs. Eachmodule is a cluster ofoverall SVGswith
similar spatial expression patterns, representing a common spatial
pattern shared by these genes (also referred to as a co-expression
pattern). Compared to the spatial expression patterns of individual
overall SVGs, the patterns of gene modules are less noisy and can
provide clearer insights into the molecular architecture underlying
tissue structures—specifically, which genes co-determine a tissue
structure in a synchronized manner. For example, in downstream
applications of MULTILAYER39, MERINGUE55, and Binspect in Giotto60,
the detected overall SVGs were grouped into modules using hier-
archical clustering based on a constructed gene co-expression matrix
or a gene-gene similarity graph.

It is worth noting that the identification of spatial gene modules
can precede and facilitate the discovery of non-global spatial domains
that are specific to one or more gene modules. For example, among
the overall SVGs detected byMULTILAYER39, the genes ACTA2 and ELN
were found tobe spatially co-expressed, leading to the identificationof
five tissue substructures in human heart tissue. Similarly, spatial gene
modules derived from the overall SVGs detected by MERINGUE55

enabled the detection of functional spatial regions in mouse brain
tissue. Additionally, spatial gene modules identified from the overall
SVGs detected by Binspect in Giotto60 successfully recovered known
anatomical structures in mouse kidney tissue.

Methods for detecting cell-type-specific SVGs
In both sequencing- and imaging-based SRT data, a gene’s expression
variance across spots can result from the gene’s different expression
levels in distinct cell types. Given that cell types are typically distributed

non-uniformly within a tissue slice, neglecting the cell type information
of spatial spots may hinder the discovery of genes whose expression
patterns reflect informative spatial variation beyond the variation
attributed to cell-type composition71,72. Thus, we define cell-type-specific
SVGs as the genes that exhibit non-random spatial expression patterns
within a cell type. These genes are detected using both SRT data and
external cell-type annotations for the spatial spots (see Fig. 2a and
Table 2). Unlike the methods for detecting overall SVGs that do not
consider cell type annotations, the three methods for detecting cell-
type-specific SVGs—CTSV71,C-SIDE73, and spVC74—begin by annotating the
cell types of the spatial spots in SRT data and then use a regression
framework to identify SVGs within cell types by examining the interac-
tion effects between cell types and spatial locations (see section
“Regression tests” for a detailed discussion on the general framework).

CTSV assumes a ZINB distribution for a given gene’s expression
count Yi at spot i:

Y i �
ind

ZINBðμiðsiÞ,θÞ ,

where μi(si) is the mean expression function of the spatial location
si = ðsi1, si2Þ>, and θ indicates the other parameters (dispersion and
zero-inflated probability) necessary to describe the distribution. To
determine if the gene is a cell-type-specific SVG, CTSV includes K cell
types’ cell-type-level mean functions of si: ηk(si), k = 1, …, K, and
assumes that:

logμiðsiÞ= log ‘i +
XK
k = 1

ηkðsiÞwik ,

ηkðsiÞ=βk0 +βk1b1ðsi1Þ+βk2b2ðsi2Þ ,

where ℓi denotes spot i’s library size (i.e., total expression count), and
the weights wik, k = 1,…, K, are pre-estimated cell type proportions of
spot i obtained by spatial deconvolution methods such as SPOTlight75

and RCTD72, and b1(si1) and b2(si2) are two non-cell-type-specific, non-
parametric, univariate functions of the spatial coordinates in the two
dimensions.CTSV then tests ifβk1 andβk2 are both zero. If not, the gene
is considered an SVG specific to cell type k.

C-SIDE is similar to CTSV but has three major differences. First,
C-SIDE assumes a Poisson distribution for Yi. Second, C-SIDE assumes a
different relationship between μi(si) and ηk(si), k = 1, …, K. Third,
C-SIDE uses a different non-parametric function form for each ηk(si):

Y i �
ind

Poisson μiðsiÞ
� �

,

log μiðsiÞ
� �

= γ0 + log ‘i + log
PK
k = 1

ηkðsiÞwik

 !
+ ϵi ,

log ηkðsiÞ
� �

=βk0 +
PL
‘= 1

βk‘b‘ðsiÞ ,

where the common terms are defined similarly to CTSV, ϵi is a zero-
mean random-effect term, and

PL
‘= 1 βk‘b‘ðsiÞ is a cell-type-specific,

bivariate smooth-spline function of si consisting of L basis functions.
C-SIDE then tests if βk1,…, βkL are all zero. If not, the gene is considered
an SVG specific to cell type k.

spVC is similar to C-SIDE but assumes a different relationship
between μi(si) and ηk(si), k = 1, …, K:

log μiðsiÞ
� �

= γ0 + log ‘i +
XK
k = 1

wikβk +
XK
k = 1

ηkðsiÞwik + γðsiÞ ,

which considers cell types’ non-spatial effects as
PK

k = 1 wikβk and a
baseline spatial effect γ(si). Then, spVC implements a two-step testing
procedure. First, it tests whether β1, …, βK are all zero and whether
γ( ⋅ ) = 0 in a reducedmodel without the cell-type-specific spatial effect
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term
PK

k = 1 ηkðsiÞwik . If both null hypotheses are rejected, the second
step is to test whether ηk( ⋅ ) = 0. If not, the gene is considered a SVG
specific to cell type k.

Applications of cell-type-specific SVGs
Although the publications of the three cell-type-specific SVGdetection
methods71,73,74 did not specifically outline applications for cell-type-
specific SVGs, we envision potential applications that extend the two
major applications of overall SVGs—identifying spatial domains and
spatial gene modules—to a more granular, cell-type level. First, cell-
type-specific SVGs canbe used to identify and characterize distinct cell
subpopulations or states within particular cell types. Second, cell-type-
specific SVGs can enable the identification of gene modules within
specific cell types. These applications have the potential to provide
new molecular insights into tissues with complex structures and
diverse cell types, such as cancer and brain tissue. For example, in
cancer research, cell-type-specific SVGs can help identify distinct
states of cancer cells and immune cells, leading to a better under-
standing of tumor heterogeneity and the tumor microenvironment.
Additionally, cell-type-specific SVGs can facilitate the identification of
cell-type-specific gene modules that could be crucial for developing
targeted therapies and personalized treatment strategies. Similarly, in
brain tissue, cell-type-specific SVGs can identify diverse neuronal
subpopulations that may correspond to functional brain regions.
Furthermore, cell-type-specific SVGs can enable the discovery of cell-
type-specific gene modules that may regulate neuronal activity and
connectivity, potentially advancing our understanding of brain devel-
opment and neurodegenerative diseases.

Methods for detecting spatial-domain-
marker SVGs
We define spatial-domain-marker SVGs as the genes that exhibit sig-
nificantly higher expression in a spatial domain compared to other
domains. These genes are detected using SRT data and spatial
domains, which are usually detected from the same SRT data (see
Fig. 2a and Table 2). Unlike previous SVG detection methods, the two
methods for detecting spatial-domain-marker SVGs—SpaGCN66 and
DESpace22—first partition spatial spots into more than one spatial
domain. Then, they implement hypothesis tests to assess a gene’s
mean expression differences between these spatial domains. A gene is
defined as a marker SVG of a spatial domain if it shows significantly
higher expression in that domain than in other domains.

SpaGCN identifies spatial domains using a pre-trained graph
convolutional network applied to SRT data and the paired H&E image.
For each gene, it performs the Wilcoxon rank-sum test on normalized
expression levels between each domain and the neighboring spots. If
the gene is found to have significantly higher expression in a domain, it
is considered a marker SVG of that domain.

DESpace first applies existing spatial clustering methods, such as
BayesSpace69 and StLearn70, to SRT data to identify spatial clusters as
spatial domains. DESpace then offers two modes for detecting SVGs:
the firstmode identifies spatial-domain-marker SVGs,while the second
mode detects overall SVGs. In the first mode, DESpace uses an NB
generalized linear model to assess if the spatial domains have a sig-
nificant effect on a gene’s expression. If a significant effect is found, the
gene is identified as a spatial-domain-marker SVG, associated with the
domainwhere it has significantly higher or lower expression compared
to other domains. In the second mode, DESpace tests the null
hypothesis that all spatial domains have the same effect on a gene’s
expression. If this hypothesis is rejected, indicating that the gene
exhibits differences among spatial domains, the gene is detected as an
overall SVG. Therefore, the spatial-domain-marker SVGs detected by
DESpace must be included among the overall SVGs it identifies. Con-
versely, the overall SVGs detected by DESpace must serve as marker
genes for some spatial domains.

Applications of spatial-domain-marker SVGs
Spatial-domain-marker SVGs have two applications for characterizing
predefined spatial domains in a tissue slice, particularly when these
domains align with tissue structures. First, spatial-domain-marker
SVGs can help elucidate the underlying molecular mechanisms of tis-
sue structures. For example, SpaGCN66 detected spatial-domain-
marker SVGs KRT17 and MMP11 in a pancreatic cancer region, which
align well with pancreatic cancer biology. KRT17 functions as a tumor
promoter and regulates proliferation in pancreatic cancer, while
MMP11 is a prognostic biomarker for the disease. Second, spatial-
domain-marker SVGs can assist in annotating tissue structures in other
SRT datasets. For instance, the spatial-domain-marker SVGs identified
by SpaGCN66 from a human dorsolateral prefrontal cortex slice (No.
151673 in the LIBD (Lieber Institute for Brain Development) SRT data-
set) were used to annotate the tissue layers in a different brain slice
(No. 151507).

Theoretical characterization of SVG detection
methods that use frequentist hypothesis tests
Among the 34 SVG detection methods, 23 of them implement statis-
tical hypothesis tests to detect SVGs using frequentist inference (i.e.,
defining a test statistic, deriving the test statistic’s null distribution,
and converting the test statistic value to a p value). For these fre-
quentist hypothesis-testing-based methods, their null and alternative
hypotheses direct their SVG detection. In general, methods that use
different null hypotheses are not directly comparable. The reason is
that a gene may satisfy one null hypothesis (and is considered a true
non-SVG) but not the other null hypothesis (and is defined as a true
SVG). Hence, we would like to clarify and categorize the null hypoth-
eses used in the 23 methods to deepen our understanding of these
methods’ conceptual similarities and differences.

Based on the types of null hypotheses, in Table 1 we summarize
the hypothesis tests used in the 23 methods into three types: depen-
dence tests, regression fixed-effect tests, and regression random-
effect tests (also known as variance component tests). So far, depen-
dence tests and regression random-effect tests haveonly beenused for
overall SVG detection, while regression fixed-effect tests have been
used to detect all three categories of SVGs. For each method, besides
the test type, we also list the test statistic and null distribution in
Supplementary Fig. 2. Moreover, we define the three test types in
Table 2 and include a conceptual diagram in Fig. 4 that illustrates the
relationships between the three test types and the three SVG
categories.

Among the three types of hypothesis tests for SVG detection
(Fig. 4), dependence tests have the most general null hypothesis: a
gene’s expression level is independent of the spatial location. In con-
trast, the two types of regression tests rely on specific assumptions for
a regressionmodel,whichhas a gene’s expression level as the response
variable and the spatial location as the predictor (also known as the
covariate or explanatory variable). The co-existence of dependence
tests and model-specific regression tests is common in the statistics
literature76. In general, dependence tests, thanks to their general
independence null hypothesis, can capture SVGs with more diverse
patterns but can be less powerful for detecting SVGs of specific pat-
terns, compared to the regression tests. In contrast, relying on specific
model assumptions, regression tests are more powerful for discover-
ing the SVGs satisfying the assumptions but, meanwhile, more prone
to false discoveries when the model assumptions do not hold77.
Moreover, an advantage of regression tests is that they canmore easily
incorporate other covariates for adjustment compared to dependence
tests. Additionally, their test statistics typically have theoretical null
distributions,making p value calculation straightforward and efficient.
It remains an open question to benchmark the three types of tests
regarding robustness to model misspecification and the trade-off
between robustness and power. Additionally, it is important to identify
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which assumptions are more reasonable for SRT data generated from
various tissues and by different technologies.

Dependence tests
For a given gene, themost general hypothesis test for SVG detection is
to decide whether the gene’s expression level Y is independent of the
spatial location S, i.e., the null hypothesis is:

H0 : Y ? S:

In this formulation (Fig. 4), we assume that (y1, s1), …, (yn, sn) are
independently sampled from the joint distribution of (Y, S), where
(yi, si) indicates spot i’s expression level of the given gene and spatial
location. When the independent null hypothesisH0 does not hold, the
gene is a true overall SVG.

Out of the 23 frequentist hypothesis-testing-based SVG detection
methods, 11 methods adopt the dependent test formulation,

constructing a test statistic to summarize the dependence between a
gene’s expression level and the spatial location. The 11 methods are
SPARK-X, SMASH, singlecellHaystack, Trendsceek, HEARTSVG, Hot-
spot, MERINGUE, SpaGene, BinSpect, scGCO, and RayleighSelection.
We categorize the test statistics used in the 11 methods into two types:
test statistics with theoretical null distributions (SPARK-X, SMASH,
HEARTSVG, Hotspot, MERINGUE, BinSpect, and scGCO) and test sta-
tistics without theoretical null distributions (singlecellHaystack,
Trendsceek, SpaGene, and RayleighSelection).

Among the seven methods that use test statistics with theoretical
null distributions, SPARK-X is a representative method34. The SPARK-X
test statistic is defined to capture the “agreement” between two spot
similarity matrices (referred to as “covariancematrices” by the SPARK-X
authors), one defined based on a gene’s expression levels at the n spots
and the other based on the spatial locations of the n spots (subject to a
transformation of the locations before defining the similarity between
spots, so that the similaritymatrix reflects a specific spatial pattern such

Fig. 4 | Conceptual diagram for section “Theoretical characterization of SVG
detection methods that use frequentist hypothesis tests”. This diagram illus-
trates the logical relationships among the three types of statistical tests (depen-
dence test, regression fixed-effect test, and regression random-effect test) used by

the 23 SVG detection methods that rely on frequentist hypothesis tests. The dia-
gram also introduces the general form of statisticalmodels uponwhich regression-
based tests are performed and the corresponding null hypotheses for
detecting SVGs.
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as the Gaussian or cosine kernel). Specifically, the test statistic is defined
as (1/n) times the trace of the product of the two similarity matrices,
which is essentially the Pearson correlation between the two vectorized
matrices. The rationale is that under the independence null hypothesis,
the test statistic should be small and follow a theoretical, asymptotic
null distribution as a mixture chi-square distribution.

Four methods use test statistics that lack theoretical null dis-
tributions and therefore employ a permutation strategy. They generate
the null distribution of a test statistic by permuting a gene’s expression
levels across the n spots, thus removing any dependence between the
gene’s expression level and the spatial location. The permutation
procedure is a general solution for obtaining the null distribution when
the theoretical null distribution is difficult to derive, but it is compu-
tationally intensive due to the need for repetitive permutations to
generate the null distribution. For example, singlecellHaystack36

defines a test statistic based on the KL divergence of the conditional
density of spots’ spatial locations, which is conditional on a gene’s
dichotomized expression level (on or off), from the unconditional
density of spots’ spatial locations. Specifically, both densities are
defined for each spatial grid, which consists of many spots and is pre-
defined by the singlecellHaystack algorithm. Then, the test statistic is a
summation of the KL-divergence-like statistics across the spatial grids.
As this test statistic is complex and has no theoretical null distribution,
the permutation is used to generate the null distribution.

Regression tests
Thereare two types of regression tests (Fig. 4):fixed-effect tests, where
the effect of the spatial location is assumed to be fixed, and random-
effect tests, which assume the effect of the spatial location as random.
To explain these two types of tests, we start with a linear mixed model
for a given gene:

Y i =β0 +x
>
i β+ z>i γ + ϵi , ð5:4Þ

where the response variable Yi is the gene’s expression level at spot i,
xi 2 Rp indicates the fixed-effect covariates of spot i, zi 2 Rq denotes
the random-effect covariates of spot i, and ϵi is the random measure-
ment error at spot i with E½ϵi�=0. In the model parameters, β0 is the
(fixed) intercept, β 2 Rp indicates the fixed effects, and γ 2 Rq denotes
the random effects with zero means E½γ�=0 and the covariance matrix
VarðγÞ=Σ 2 Rq×q. In this linearmixedmodel, independence is assumed
between γ and ϵ = ðϵ1, . . . , ϵnÞ> and among ϵ1, …, ϵn.

Fixed-effect tests examine whether some or all of the fixed-effect
covariates xi contribute to the mean of the response variable E½Y i�. If
all fixed-effect covariates make no contribution, then E½Y ijxi�=E½Y i�.
The null hypothesis:

H0 : β =0 ,

implies E½Y ijxi�=E½Y i�, i = 1, …, n.
Random-effect tests examine whether the random-effect covari-

ates contribute to the variance of the response variable Var(Yi),
focusing on the decomposition:

VarðY iÞ=VarðE½Y ijzi�Þ+E½VarðY ijziÞ�= z>i Σzi +VarðϵiÞ ð5:5Þ

and testing if the contribution of the random-effect covariates
VarðE½Y ijzi�Þ is zero. The null hypothesis:

H0 : Σ=0

implies VarðE½Y ijzi�Þ=0, i = 1, …, n.
To generalize the linear mixed model (5.4) for data where the

response variable Yi is not continuous (e.g., binary or count), we can
decompose the model into a random structure, where each Yi

independently follows a distribution with mean μi =E½Y i�, and a sys-
tematic structure that links μi to the fixed-effect covariates xi. Specifi-
cally, for the model (5.4), if we assume that γ ~ MVN(0, Σ) and
ϵi ~ N(0, σ2), then the random structure is:

Y i �
ind

Nðμi, z
>
i Σzi + σ

2Þ ,

and the systematic structure is:

μi =β0 +x
>
i β :

The generalization of the linear mixed model can occur in both the
randomand systematic structures. For simplicity, we only focus on the
fixed-effect covariates xi for the generalization and omit the random-
effect covariates zi. If we change the random structure from the
Gaussian distribution to another exponential-family distribution, we
have:

Y i �
ind

Exponential Familyðμi,ϕÞ , ð5:6Þ

whereϕ is a nuisanceparameter not of primary interest. An example of
exponential-family distribution is the Poisson distribution
Yi ~ Poisson(μi). According to the random structure change, the
systematic structure can be written in general as:

gðμiÞ=β0 +x
>
i β , ð5:7Þ

where the function g( ⋅ ) is referred to as the link function and specified
based on the distribution in the random structure. We refer to the
model specified by (5.6)–(5.7) as a generalized linear model. If we fur-
ther generalize the systematic structure so that the effects of the p
covariates in xi = ðxi1, . . . , xipÞ> on μi is non-linear and additive:

gðμiÞ=β0 +
Pp
j = 1

f jðxijÞ , ð5:8Þ

we referred to the model specified by (5.6) and (5.8) as a generalized
additive model.

For regression models with different complexities (roughly
speaking, different numbers of parameters to estimate), model selec-
tion centers on the bias-variance trade-off. An oversimplified model
misses key data characteristics, leading to biased parameter estimates,
thoughwith low variance. In contrast, an overly complexmodel wastes
parameters on unimportant details, increasing variance in parameter
estimates. As a trade-off, a reasonable model appropriately addresses
the data characteristics without overfitting the data noise, thereby
being more powerful and robust.

For SVG detection, the effect of the spatial location si on the given
gene’s expression level Yi can be formulated as either fixed or random.
In the following two subsections, we will discuss the SVG detection
methods that adopt each formulation.

Regression fixed-effect tests. Among the 23 frequentist hypothesis-
testing-based SVG detection methods, six methods use the regression
fixed-effect test formulation: SPADE, C-SIDE, CTSV, spVC, SpaGCN, and
DESpace. Notably, unlike dependence tests and regression random-
effect tests, only regression fixed-effect tests cover all three SVG cate-
gories: overall SVGs, cell-type-specific SVGs, and spatial-domain-marker
SVGs.Methodswithin each category use the samefixed-effect covariates
xi for spot i, while methods of different categories use different x0

i s.
Below, we introduce the six methods in the three categories.

Among the six methods, SPADE47 is the only method that detects
overall SVGs. For a given gene, it uses a linear model without random-
effect covariates:

μi =β0 +xiðsÞ>β ,
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where the fixed-effect covariates xi(s) are defined as some processed
features from the n spots’ spatial locations s and an H&E image.
Specifically, the processed features are based on 512 features from a
pre-trained convolutional neural network applied to an H&E image.
The gene is a true overall SVG if β ≠ 0. SPADE uses the R package
limma78 to fit the linear model and tests if each component of β is zero
using a t-test.

For cell-type-specific SVG detection, the fixed-effect covariates
of spot i (i.e., xi) include the library size ℓi (i.e., spot i’s total
expression count), the cell type ci = ðci1, . . . , ciK Þ> 2 ½0, 1�K , and
the spatial location si 2 R2 (see section “Introduction” for
definitions). The considered fixed effects include themarginal effects
of ci and si and their interactive effects. Hence, in a generalized
additive model formulation for a given gene, the systematic struc-
ture is:

gðμiÞ=β0 + log ‘i +
XK
k = 1

cikβk + f 0ðsiÞ+
XK
k = 1

cikf kðsiÞ, ð5:9Þ

where β0 is the overall intercept, log ‘i is the intercept effect of spot i’s
library size, βk indicates the cell-type-specific spatial-invariant effect
for cell type k, f0(si) is the overall spatial effect at spot i, and fk(si) is the
cell-type-specific spatial effect for cell type k at spot i. For
identifiability, constraints are needed for β= ðβ1, . . . ,βK Þ> and f0( ⋅ ),
f1( ⋅ ), …, fK( ⋅ ). The gene is a true cell-type-specific SVG of cell type k
if fk( ⋅ ) ≠ 0.

C-SIDE, CTSV, and spCV are three methods for cell-type-specific
SVG detection. As an example method, spVC74 assumes a gene’s
expression count Yi follows a Poisson distribution (i.e., the random
structure (5.6)) with the systematic structure (5.9). To decide whether
the gene is a cell-type-specific SVG, spVC implements a two-step pro-
cedure for sequential hypothesis tests. First, it considers a reduced
model without interactive effects between ci and si, so the systematic
structure becomes:

gðμiÞ=β0 + log ‘i +
XK
k = 1

cikβk + f 0ðsiÞ :

Then it tests two null hypotheses: H0 : β= ðβ1, . . . ,βK Þ> =0 and
H0: f0( ⋅ ) = 0 using the likelihood ratio test and the Wald test, respec-
tively. If both null hypotheses are rejected, it proceeds to the second
step. Second, it considers the full model with interactive effects, with
the systematic structure (5.9). It tests if any of the interactive effects
f1( ⋅ ), …, fK( ⋅ ) are 0 using the Wald test. Similar to spVC, CTSV71

assumes a generalized additive model. However, CTSV has a different
random structure and testing procedure. Specifically, CTSV assumes
the random structure to be that Yi follows a ZINB distribution, and the
systematic structure is written as:

gðμiÞ= β0 + log ‘i +
XK
k = 1

cikβk +
XK
k = 1

cikf kðsiÞ, ð5:10Þ

where fk(si) is further assumed to be additive fk(si) = fk1(si1) + fk2(si2).
Unlike spVC’s two-step testing procedure, CTSV directly tests if any of
the interactive effects f1( ⋅ ),…, fK( ⋅ ) are 0 using theWald test. Same as
spVC, C-SIDE73 assumes the random structure to be Poisson. However,
it has a different systematic structure from those of spVC and CTSV,
allowing for randomeffects and additional non-linear transformations.
C-SIDE uses a two-sided z-test.

For spatial-domain-marker SVG detection, the fixed-effect cov-
ariates of spot i (i.e., xi) include the library size ℓi and the spatial
domain, indicated by di = (di1,…, diL)∈ {0, 1}L, with

PL
l = 1 dil = 1 (that is,

dil = 1 if spot i belongs to domain l). Then the systematic structure

becomes:

gðμiÞ=β0 + log ‘i +
PL
l = 1

dilβl , ð5:11Þ

where βl indicates the effect of spatial domain l on g(μi), i.e., the
transformed gene i’s true expression level. For identifiability, con-
straints are needed for β = ðβ1, . . . ,βLÞ>, e.g., β1 = 0. The gene is a true
spatial-domain-marker SVG (i.e., a DEG across spatial domains) ifβ ≠0.

SpaGCNandDESpace are twomethods for spatial-domain-marker
SVG detection. Following the systematic structure (5.11), DESpace22

assumes the gene expression Yi followsanNBdistribution and tests the
null hypothesis H0: β = 0 using the likelihood ratio test statistic, which
follows an asymptotic chi-square distribution under the null hypoth-
esis. For SpaGCN66, although it does not explicitly adopt a regression
frameworkbut instead uses theWilcoxon rank-sum test on normalized
gene expression levels (with the library size effect removed) to decide
if a gene is significantly more highly expressed in one spatial domain
compared to its neighboring spots, the Wilcoxon rank-sum is a score
test statistic of the proportional odds ordinal logistic regression
model. Hence, the test in SpaGCN can broadly be considered to follow
the systematic structure (5.11).

Regression random-effect tests. Unlike the 11 methods that adopt
dependence tests and the six methods that use regression fixed-effect
tests, the last six of the 23 frequentist hypothesis-testing-based
methods use regression random-effect tests: SpatialDE, nnSVG,
SOMDE, SVCA, SPARK, and GPcounts.

All the six methods generalize the linear mixed model (5.4) for
each gene, by encoding the spatial location si of spot i as the random-
effect covariate zi. With n spots, zi = ðzi1, . . . , zinÞ> 2 f0, 1gn is a binary
indicator vector with only one 1 indicating spot i. Without loss of
generality, we assume that zii= 1. Then, the corresponding random-
effect vector γ = ðγ1, . . . , γnÞ> 2 Rn has γi indicating the random effect
of si. The covariance matrix of γ1, …, γn, Var(γ), is assumed to depend
on the spatial proximity of s1, …, sn. Accordingly, γ can be explicitly
written as γ(s). When the null hypothesis H0: Var(γ(s)) = 0 does not
hold, the gene is a true overall SVG.

As an early and exemplar method, for each gene SpatialDE26

assumes a linear random-effect model that only contains zi as the
random-effect covariates:

Y i =β0 + z
>
i γðsÞ+ ϵi, ð5:12Þ

where the random errors ϵ1, …, ϵn independently follow a Gaussian
distribution N(0, δ), and the random effects γ(s) jointly follow a multi-
variateGaussiandistribution MVN ð0,σ2

s � KðsÞÞ, withKðsÞ= ½Kðsi, sjÞ�n×n
specified by a kernel function K( ⋅ , ⋅ ) applied to the n spatial locations.
This model is essentially a Gaussian process. The null hypothesis then
becomes H0 : σ2

s =0.
Two methods, nnSVG27 and SOMDE29, also use the Gaussian pro-

cess model as in SpatialDE but adopt more efficient computational
algorithms. The other three methods extend the Gaussian process
model. Specifically, SVCA30 considers two additional variance terms to
accommodate other covariates, such as cell-cell interactions. Instead
of assuming that Yi follows a Gaussian distribution, SPARK31 and
GPcounts32 assume Poisson and NB distributions, respectively, and
generalize the linear mixed effect model (5.12) to generalized linear
mixed effect models.

All six methods use the likelihood ratio test with an asymptotic
chi-square distribution under the null hypothesis.

Discussion and future directions
Below, we discuss the comparative advantages and trade-offs of
existing SVG detection methods in terms of detection power,
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specificity, and scalability. Further,we outline two futuredirections for
improving SVG detection methods: (1) accommodating differences
among various SRT technologies and tissue types, as well as support-
ing multi-sample SRT data and (2) enhancing statistical rigor and
method validation. Last, we summarize the limitations of existing
benchmark studies and provide guidance for future benchmark
studies.

Power, specificity, and scalability of SVG detection methods
Among the methods for detecting overall SVGs, the Euclidean-space-
based, kernel-based methods define more specific spatial patterns for
overall SVGs than the Euclidean-space-based, kernel-freemethods and
the graph-based methods. The statistical power of these kernel-based
methods depends on the alignment between the pre-defined kernels’
spatial patterns and the biologically relevant spatial patterns in SRT
data. This alignment is often questionable because biologically rele-
vant patterns are rarely as regular as the pre-defined kernel patterns.
As a result, kernel-basedmethods may lose statistical power when this
alignment is poor. To address this, some kernel-based methods, such
as SPARK31, incorporate multiple pre-defined kernels to capture a
broader diversity of spatial patterns. Despite the potential loss of
overall power, kernel-based methods are more specific and powerful
for discovering overall SVGs whose spatial expression patterns align
with the kernels compared to methods that do not use kernels. In
short, there is a trade-off between overall power and specificity:
methods targeting specific spatial patterns are less powerful at dis-
covering other patterns, leading to a loss of overall power, but more
powerful at discovering the targeted patterns with higher specificity.

Four types of genes that exhibit interesting but non-global
expression patterns can be easily missed by methods that detect
overall SVGs. First, some genes of interest may only be highly
expressed in small regions of interest (ROIs) and can be overlooked by
methods that do not distinguish small ROIs. For such genes, methods
that detect spatial-domain-marker SVGs, such as SpaGCN66, might be
more appropriate because these methods can identify small ROIs as
spatial domains in the first step before identifying marker genes in the
second step. Second, there are genes that exhibit spatial expression
patterns within spatial domains. These genes, referred to as spatial-
domain-specific SVGs, may be a subset of spatial-domain-marker SVGs
because, although marker SVGs are highly expressed within a spatial
domain, they may not exhibit informative spatial variation within that
domain. While no existing methods are specifically designed to detect
these spatial-domain-specific SVGs, methods for detecting overall
SVGs can likely be applied to specific spatial domains to discover these
genes. Identifying spatial-domain-specific SVGs may help uncover
spatial subdomains, capturing the internal variation within spatial
domains. An alternative approach is to perform clustering within a
spatial domain and then identify the resulting subdomain marker
genes. However, these genes are not conceptually equivalent to those
identified by an overall SVG detection method within the spatial
domain, reflecting the same conceptual difference as that between
overall SVGs and spatial-domain-marker SVGs. Third, cell-type-specific
SVGs might also be easily missed bymethods that detect overall SVGs
if the cell types of interest have small proportions. To address this,
methods for detecting cell-type-specific SVGs have been developed,
including CTSV71, C-SIDE73, and spVC74. These methods rely on
regression models, whose goodness-of-fit to SRT data remains to be
explored. Ensuring a good fit is essential to avoid spurious discoveries.
Fourth, some genes may exhibit sharp expression changes at tissue
layer boundaries, which are too local to be detected by methods
looking for overall SVGs. Belayer79 aims to detect such genes by
examining gene expression change rates (gradients) in the 2D space.
As a future direction, adding the accompanying H&E image can help
refine tissue boundaries, ensuring that the identified genes are inter-
pretable. Moreover, if users have prior knowledge on some interesting

genes that should be detected as SVGs, how to incorporate this
knowledge into SVG detection to improve the specificity remains an
open question.

The scalability of an SVG detection method is determined by the
computational time of two steps: calculating a summary statistic for
eachgene and converting the summary statistic to a p value based on a
null distribution. The second step is only included in methods that
provide statistical significance for the detected SVGs in a frequentist
manner. In the first step of summary statistic calculation, computa-
tional time is measured in terms of n, the number of spatial spots. For
example, fitting a Gaussian process takesO(n3) time in SpatialDE26 and
SPARK31, but this time is reduced toO(n) by using the nearest-neighbor
Gaussian process approximation in nnSVG27. By changing the model-
ing framework from a Gaussian process to a Pearson correlation
between two similarity matrices, SPARK-X34 also achieves a fast com-
putational time of O(n). In the second step of p value calculation,
computational time is fast if the summary statistic is a test statisticwith
a closed-form theoretical null distribution, as is the case for most
methods that use regression tests. However, methods that use test
statistics without theoretical null distributions require hundreds to
thousands of rounds of permutation to calculate the null distribution,
making themcomputationally intensive. To improve the scalability of a
method, considerations canbeput into expeditingboth steps.Thefirst
step can be accelerated using approximation algorithms. The number
of permutations in the second step can be reduced through approa-
ches such as p value-free FDR control80, parametric smoothing of the
permutation-based null distribution81, and adaptive strategies that use
a large number of permutations only for potentially small p values82.

Future direction 1: accommodating differences in SRT technol-
ogy and tissue types, and supporting the analysis of multi-
sample SRT data
There are two key differences among SRT technologies, yet most
current SVGdetectionmethods donot account for these differences in
the pre-processing and modeling of SRT data. Below, we introduce
these differences and discuss their potential impact on SVG detection:
(1) Spatial resolution: imaging-based SRTmeasures per transcript’s

spatial localization at a single-cell or subcellular resolution,
whereas sequencing-based SRT captures data at a multicellular
level with relatively coarse resolution. In imaging-based SRT
data, detected SVGs might result from the irregular distribution
of cell types, such as cancer cells spreading across tumor tissue
ormixed cell types at theboundaries of tissue layers. In contrast,
the coarse resolution of sequencing-based SRT likely results in
smaller variance of gene expression levels across spatial spots
compared to imaging-based SRT data. Consequently, the spatial
resolution differences between the two types of SRT technol-
ogies necessitate different interpretations for the detected
SVGs. However, most existing SVG detection methods do not
distinguish between the SRT technologies but use the same
approach to identify SVGs, indicating a need for improvement.

(2) Positional randomness of spatial spots: different SRT technolo-
gies use various strategies to record the positions of spatial
spots, resulting in differences in positional randomness. For
instance, technologies like Spatial Transcriptomics and 10x
Visium capture transcripts in predefined rectilinear or hex-
agonal grids on micro-slides, leading to structured spatial spots
that lack positional randomness. In contrast, technologies like
Slide-seq, MERFISH, and SeqFISH capture transcripts wherever
they are located, without using predefined grids, leading to
unstructured spatial spots with positional randomness. This
difference in spatial positional randomness necessitates differ-
entmodeling strategies for spatial variance. For example, sepal40

designs distinct spatial modeling frameworks—rectilinear, hex-
agonal, and unstructured spots—for Spatial Transcriptomics,
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10x Visium, and Slide-seq, respectively. MERINGUE55 and several
other graph-based methods use Delaunay triangulation to
account for the nonuniform density of unstructured spots.
BOOST-HMI49 uses the mark interaction model, an extension of
the Ising model used in BOOST-MI, to address the irregular
distribution of spatial spots for imaging-based SRT data.
However, the majority of SVG detection methods have not
considered the positional randomness differences among SRT
technologies, potentially leading to biased detection of SVGs.

Moreover, the type of tissue plays a crucial role in SVG detection.
Whether a tissue is morphologically structured or not should be con-
sideredwhendefining SVGs to ensure they arebiologicallymeaningful.
In well-structured tissues, such as the main olfactory bulb or cere-
bellum, meaningful SVGs are expected to exhibit regular expression
patterns that align with the tissue’s morphological structures. There-
fore, kernel-based SVG detection methods, which identify SVGs based
on regular kernel patterns, may be particularly relevant in these cases.
In contrast, for tissues without clear morphological structures, such as
tumors or diseased tissues, meaningful SVGs may display irregular
patterns. In other words, the expression patterns of SVGs can differ
significantly between well-structured and unstructured tissues. Con-
sequently, SVG detection should account for the morphological
characteristics of the tissue. Among existing methods, SpaGCN66 fol-
lows this rationale by defining spatial domains through the joint ana-
lysis of SRT data and H&E images, encouraging the identified spatial
domains to reflect the underlying tissue structures. The SVGs identi-
fied by SpaGCN then serve as spatial-domain markers that explain
these spatial domains. However, it remains an open question whether
incorporating H&E images into overall SVG detection is necessary,
especially if overall SVGs are primarily used as pre-screened features
for further analysis and computational efficiency is a primary concern.
For cell-type-specific SVG detection, H&E images have not yet been
incorporated into existing methods. This raises an interesting future
research question: how do cell types interact with morphological
structures?

Another open question and future direction is the detection of
SVGs frommulti-sample SRTdata, such as consecutive slices of a single
tissue or tissue slices from different patients. Existing methods typi-
cally detect SVGs from a single tissue slice; however, intuitively, SVGs
should be meaningful features that can be compared across multiple
tissue slices. The challenge, therefore, is how to effectively identify
SVGs frommulti-sample SRT data to enable downstreammulti-sample
comparisons (e.g., normal vs. diseased tissue). In multi-sample SRT
data of well-structured tissues, a common strategy is to align the tissue
slices into a common 2D coordinate system83–86. This alignment facil-
itates the detection of SVGs. However, for unstructured tissues (e.g.,
tumors), alignment may not be feasible or reasonable, necessitating
new strategies for SVG detection that can summarize the common,
meaningful spatial variations inmulti-sample SRTdata of unstructured
tissues.

Future direction 2: enhancing statistical rigor and method
validation
Similar to single-cell RNA-seq data analysis87–89, SRT data analysis
faces the “double-dipping” challenge: the same data are analyzed
more than once, and the final statistical tests rely on variables
inferred from the same data in previous steps, leading to a “con-
firmation bias”. This issue is prominent in spatial-domain-marker SVG
detection, where the genes involved in identifying spatial domains
would inherently be identified as spatial-domain markers in a sub-
sequent step, even if they do not exhibit significant expression
changes between spatial domains. Therefore, strategies are needed
to remove false-positive discoveries resulting from double-dipping,
such as ClusterDE89.

Moreover, as many SVG detection methods use complex algo-
rithms with implicit assumptions, interpretable ways for sanity checks
on the detected SVGs are essential. For example, using in silico negative
control SRTdata can help users test SVGdetectionmethods and identify
spurious discoveries. Additionally, fast visualization tools will assist
users in interpreting the top detected SVGs, providing a clearer under-
standing of the results and enhancing the reliability of the findings.

Nomethod canbeoptimal in every aspect,makingmethodchoice
for users’ goals crucial. Users should select methods that capture the
spatial patterns of interest, ensuring the method’s strengths align with
their research needs. Consequently, the diversity of methods is indis-
pensable to cater to various user needs, and method validation and
benchmarking are necessary for users to choose the appropriate
methods. However, benchmarking is challenging due to the lack of
well-annotated datasets with SVG ground truths. As a result, methods
often justify their effectiveness indirectly, which may or may not
reflect the biological questions users seek answers for. Early methods
like SpatialDE and Trendsceek validate their detected SVGs by visual
inspection. Another prevalent strategy is to use synthetic datasets with
artificial spatial patterns, such as hotspots, streaks, and rings (Fig. 5a),
to evaluate methods’ detection power. However, these artificial pat-
terns are oversimplified and might not be biologically relevant
(Fig. 5b). Hence, benchmarking needs well-annotated SRT datasets
from diverse tissues (e.g., structured tissues like the brain and
unstructured tissues like tumors) and realistic SRT data simulators90,91,
not only for comprehensive method validation but also for the
potential development of supervised methods. We curated the SRT
datasets used by the existing SVG detection methods in Supplemen-
tary Data 1. Future research is needed to enhance the realism, com-
prehensiveness, and scalability of SRT data simulators.

Guidance for future benchmark studies
Todate, three benchmark studies havebeen conducted to evaluate the
performance of selected SVG detection methods23–25. These studies
highlight the complexity of the SVG detection task and the variability
in the performance of existing methods. In Supplementary Table 1, we
summarize the three benchmark studies, detailing their choices of
methods, benchmark datasets, evaluation metrics, and conclusions.

A limitation of the existing benchmark studies is their lack of
consideration for the conceptual differences among SVG detection
methods (in our categorization: overall SVGs, cell-type-specific SVGs,
and spatial-domain-marker SVGs). This limitation can lead to unne-
cessary comparisons that are essentially like comparing apples to
oranges. For instance, two benchmark studies23,25 compared overall
SVG detection methods (such as SpatialDE and SPARK) with spatial-
domain-marker SVG detection methods (such as SpaGCN), using the
number of SVGs detected as the evaluationmetric.However, these two
types of methods have distinct goals: overall SVG detection methods
are intended to serve as a preprocessing step for feature selection and
are inherentlymore likely to detect a greater number of genes as SVGs,
while spatial-domain-marker SVG detection methods are specific to
pre-defined spatial domains and tend to identify fewer genes as spatial
domain markers. Conceptually, the number of detected genes is not a
fair metric for comparing these two types of methods. Indeed, this
anticipated result was confirmed in both benchmark studies. Had this
conceptual categorization been recognized before the benchmark
studies were conducted, computational resources could have been
conserved by avoiding such comparisons.

A second limitation of the existing benchmark studies is that,
although they compared SVG detection methods using diverse meth-
odologies, their conclusions did not adequately summarize or
emphasize how different core methodologies (e.g., graph-based or
kernel-based approaches) affect the methods’ performance within the
benchmarks. This limitation means that the impact of fundamental
methodological choices on the effectiveness of SVG detection remains
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underexplored, potentially limiting the insights that could guide
future method development.

A third limitation of the existing benchmark studies is their varied
selection of SRT datasets and benchmarking scenarios, leading to
evaluation results and conclusions that are not fully comparable. Using
limited benchmarking scenarios may favor methods that performwell
under specific conditions while overlooking their robustness across a
broader range of spatial expression patterns. Consequently, without a
consensus on benchmark design, the conclusions drawn from these
studies may not provide a comprehensive assessment of the strengths
and weaknesses of the methods being compared.

In light of the three identified limitations in existing benchmark
studies, we offer three recommendations for future benchmark stu-
dies, guided by our conceptual categorization of SVG detection
methods. Recognizing that the definitions of SVGs differ among the
three conceptual categories (overall SVGs, cell-type-specific SVGs, and
spatial-domain-marker SVGs), it is both unfair and uninformative to
compare methods across these categories. Therefore, our first
recommendation is that future benchmark studies should evaluate
methods within each conceptual category, providing more accurate
and insightful assessments of SVG detection methods, and better
guiding researchers in selecting the most appropriate methods for
their specific needs.

Our second recommendation is to benchmark distinct meth-
odologies aimedat achieving the samedetectiongoal. This approach is
valuable formethod developers, as it provides a clearer understanding
of the sensitivity and specificity of differentmethodologies, helping to
avoid reinventing thewheel or encountering unknownpitfalls in future
method development. For example, in the context of overall SVG
detection, it would be insightful to compare the performance of
dependence tests (with a general independence null hypothesis)
against regression tests (with amodel-based null hypothesis). Another
question worth investigating is whether graph-based methods using
Delaunay triangulation, such as MERINGUE and Binspect, can better
capture cellular adjacency compared to KNN-based methods like
SpaGene and Hotspot in tissues where cells are non-uniformly
arranged.

Our third recommendation is to include SRT datasets from
diverse tissue types and technologies, along with comprehensive and
carefully designed simulations, to ensure broad coverage of informa-
tive spatial expression patterns. While this practice is challenging, it is
essential to avoid benchmark conclusions that may biasedly favor
certain types of SVG detection methods. For instance, if SRT data is
simulated based on a specific kernel pattern, benchmark results will
inherently favor SVG methods tailored to that kernel. Similarly, if the
simulation design includes only a limited range of spatial expression
patterns, methods using dependence tests—which operate under a
general independence null hypothesis and can detect SVGs with
diverse patterns—may be unfairly disfavored. We curated the SRT
datasets used by the existing SVG detection methods in Supplemen-
tary Data 1. Looking forward, it is essential for the community to col-
laboratively curate a benchmark database to ensure fair benchmarking
and foster future method development.
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