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Abstract

To investigate molecular mechanisms underlying cell state changes, a crucial analysis is
to identify differentially expressed (DE) genes along the pseudotime inferred from
single-cell RNA-sequencing data. However, existing methods do not account for
pseudotime inference uncertainty, and they have either ill-posed p-values or restrictive
models. Here we propose PseudotimeDE, a DE gene identification method that adapts
to various pseudotime inference methods, accounts for pseudotime inference
uncertainty, and outputs well-calibrated p-values. Comprehensive simulations and
real-data applications verify that PseudotimeDE outperforms existing methods in false
discovery rate control and power.

Introduction
In recent years, single-cell RNA-sequencing (scRNA-seq) technologies have undergone
rapid development to dissect transcriptomic heterogeneity and to discover cell types or
states in complex tissues [1, 2]. Embracing the capacity to measure transcriptomes of
numerous cells simultaneously, scRNA-seq provides a powerful means to capture contin-
uous cell-state transition across cells, and it has been used to study key cellular processes
such as immune response [3] and cell development [4]. For example, a study of human
fibroblasts identified distinct fibroblast subtypes responsible for mediating inflammation
or tissue damage in arthritis [5]; a study of maternal-fetal interface tissue revealed new cell
states and the importance of this tissue inmaternal immune tolerance of paternal antigens
[6]; a study of thymic development elucidated new principles of naïve T cell repertoire
formation [7].
Pseudotime inference, also known as trajectory inference, is one of the most thriving

scRNA-seq data analysis topics. The concept of “pseudotime” was first proposed in 2014
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[8], and since then, more than 40 pseudotime inference methods have been developed
[9]. Pseudotime inference aims to infer the ordering of cells along a lineage based on
the cells’ gene expression profiles measured by scRNA-seq, and the inferential target is
“pseudotime,” a time-like variable indicating the relative position a cell takes in a lineage.
By establishing a temporal dimension in a static scRNA-seq dataset, pseudotime inference
allows the probing of individual genes’ expression dynamics along with continuous cell-
state changes. If a gene’s mean expression changes along pseudotime, the gene is referred
to as differentially expressed (DE) and is likely to play an important role in the underlying
cellular process that gives rise to the pseudotime. Identifying DE genes is the most crucial
analysis after pseudotime inference because genes are the most fundamental functional
units for understanding biological mechanisms.
Several methods have been developed to identify DE genes along inferred cell pseu-

dotime. Popular pseudotime inference methods—TSCAN [10], Slingshot [11], Monocle
[8], and Monocle2 [12]—include a built-in functionality for identifying DE genes after
pseudotime inference. Their common approach is to use the generalized additive model
(GAM) [13–15] to fit each gene’s expression level in a cell as a smooth-curve function of
the cell’s inferred pseudotime. However, these built-in methods for DE gene identification
are restricted as an add-on and downstream step of the pseudotime inference method
in the same software package, and they cannot take external, user-provided pseudotime
as input. Therefore, if users would like to use a new pseudotime inference method, they
cannot use these built-in DE methods.
To our knowledge, only two DE gene identification methods can take any user-provided

pseudotime. The first and state-of-the-art one is tradeSeq, which uses the negative bino-
mial generalized additive model (NB-GAM) to model the relationship between each
gene’s expression in a cell and the cell’s pseudotime [16]. Its p-value calculation is based
on a chi-squared distribution, an inaccurate approximation to the null distribution. As
a result, its p-values lack the correct probability interpretation. This issue is noted in
the tradeSeq paper: “Rather than attaching strong probabilistic interpretations to the
p-values (which, as in most RNA-seq applications, would involve a variety of hard-to-
verify assumptions and would not necessarily add much value to the analysis), we view
the p-values simply as useful numerical summaries for ranking the genes for further
inspection.” Hence, the uncalibrated p-values of tradeSeq cannot be used for p-value-
based statistical procedures such as the type I error control and the false discovery
rate (FDR) control. The second method is Monocle3, better known as a pseudotime
inference method [17], yet it also allows DE gene identification based on user-provided
cell covariates via regression analysis. For clarity, we refer to the pseudotime infer-
ence and differential expression functionalities in Monocle3 as “Monocle3-PI” and
“Monocle3-DE,” respectively. (Note that by “Monocle3-DE,” we mean the “regression
analysis fit_models(),” not the “graph-autocorrelation analysis graph_test(),”
in the Monocle3 R package; only the former works for user-provided pseudotime.)
Monocle3-DE uses the generalized linear model (GLM) to identify DE genes for a user-
provided covariate, e.g., pseudotime. However, GLM is more restrictive than GAM in
that GLM assumes the logarithmic transformation of a gene’s expected read count in a
cell is a strictly linear function of the cell’s pseudotime, while this assumption does not
hold for many genes [18]. Hence, Monocle3-DE would miss those complex relationships
between gene expression and pseudotime that do not satisfy its GLM assumption. In
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other words, Monocle3-DE’s restrictive GLM assumption impairs its power in identifying
DE genes.
Besides the scRNA-seq methods we mentioned above, there are methods devel-

oped for identifying physical-time-varying DE genes from bulk RNA-seq time-course
data. Among those methods, the ones allowing for continuous time can in principle
be used to identify DE genes along pseudotime. Two examples of such methods are
NBAMSeq [19] and ImpulseDE2 [20]. NBAMSeq is similar to tradeSeq in the use of
NB-GAM, but it uses the Bayesian shrinkage method in DESeq2 [21] to estimate gene
variances, while tradeSeq does not. ImpulseDE2 [20], a method favorably rated in a
benchmark study for bulk RNA-seq data [22], models gene differential expression by
a unique “impulse” model. A later study modified ImpulseDE2 to identify DE genes
along pseudotime from scRNA-seq data [16]. However, the performance of NBAM-
Seq and ImpulseDE2 on scRNA-seq data lacks benchmarking. Loosely related, many
methods can identify DE genes between discrete cell clusters, groups, or conditions
[23–27]; however, these methods are inapplicable to finding DE genes along continuous
pseudotime.
More importantly, the existing methods that identify DE genes along pseudotime have

a common limitation: they ignore the uncertainty of inferred cell pseudotime, which they
consider as one fixed value per cell. This issue arises from the fact that most pseudotime
inference methods only return point estimates of cell pseudotime without uncertainty
quantification (i.e., every cell only receives an inferred pseudotime without a standard
error), with few exceptions [28, 29]. Hence, downstream DE gene identification methods
treat these point estimates as fixed and ignore their uncertainty. However, this ignorance
of uncertainty would result in invalid p-values, leading to either failed FDR control or
power loss. This critical problem has been noted in several pseudotime inference method
papers [10, 11, 28] and in the tradeSeq paper [16], yet it remains an open challenge to our
knowledge.
Motivated by the ill-posed p-value issue of existing pseudotime-based differential

expression methods, we propose PseudotimeDE, the first method that accommodates
user-provided pseudotime inference methods, takes into account the random nature of
inferred pseudotime, and outputs well-calibrated p-values. PseudotimeDE uses subsam-
pling to estimate pseudotime inference uncertainty and propagates the uncertainty to its
statistical test for DE gene identification. As themost notable advantage of PseudotimeDE
over existing methods, PseudotimeDE’s well-calibrated p-values ensures the reliability of
FDR control and other downstream analyses, as well as avoiding unnecessary power loss
due to overly-conservative p-values.

Results
Overview of the PseudotimeDEmethod

The statistical method of PseudotimeDE consists of four major steps: subsampling, pseu-
dotime inference, model fitting, and hypothesis testing (Fig. 1). The first two steps are
performed at the cell level and include all informative genes (whose selection depends on
the pseudotime inference method, e.g., Slingshot and Monocle3-PI), while the last two
steps are performed on every gene that is potentially DE.
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Fig. 1 An illustration of the PseudotimeDE method (Created with BioRender.com). The core of
PseudotimeDE is to obtain a valid null distribution of the DE gene test statistic Sj for each gene j. To achieve
that, PseudotimeDE subsamples 80% cells from the original scRNA-seq data. Then on each subsample,
PseudotimeDE performs pseudotime inference (using a user-specified method such as Slingshot and
Monocle3-PI) and permutes the inferred pseudotime across cells. Next, PseudotimeDE fits a model (NB-GAM
or ZINB-GAM) to the permuted subsamples to obtain the values of Sj under the null hypothesis and uses
these values to approximate the null distribution of Sj . In parallel, PseudotimeDE fits the same model to the
original dataset and calculate the observed value of Sj . Finally, PseudotimeDE derives the p-value from the
observed value and the null distribution of Sj . Detail is described in the “Methods” section

1 In the subsampling step, PseudotimeDE subsamples 80% of cells from the original
dataset to capture the uncertainty of pseudotime inference, the same technique as
used in [9, 11, 30].

2 In the pseudotime inference step, PseudotimeDE applies a user-specified
pseudotime inference method to the original dataset and each subsample, so that
every cell receives its inferred pseudotime in the original dataset and all the
subsamples that include it. To construct null cases where genes are non-DE for
later hypothesis testing, PseudotimeDE permutes the inferred pseudotime in each
subsample, independent of other subsamples.

3 In the model fitting step, PseudotimeDE fits NB-GAM or zero-inflated negative
binomial GAM (ZINB-GAM) to every gene in the original dataset to obtain a test
statistic that indicates the effect size of the inferred pseudotime on the gene’s
expression.

4 In the hypothesis testing step, for every gene, Pseudotime fits the same model used
for the original dataset to the permuted subsamples to obtain approximate null
values of the gene’s test statistic (the null values are approximate because the
subsamples do not have the same number of cells as in the original dataset). To
save the number of subsamples needed and to improve the p-value resolution,
Pseudotime fits a Gamma distribution or a mixture of two Gamma distributions to
these null values. It subsequently uses the fitted parametric distribution as the
approximate null distribution of the test statistic. Finally, PseudotimeDE calculates
a right-tail p-value for the gene from the gene’s test statistic in the original dataset
and the approximate null distribution.

Further detail of PseudotimeDE is described in the “Methods” section.
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Simulations verify that PseudotimeDE outperforms existing methods in the validity of

p-values and the identification power

We use a widely-used simulator dyntoy [9, 16] to generate four synthetic scRNA-seq
datasets, among which three are single-lineage datasets with low-, medium-, and high-
dispersion levels, and the other is a bifurcation dataset. Since the single-lineage high-
dispersion dataset best resembles the real scRNA-seq data (Additional file 1: Fig. S1), we
use it as our primary case. We apply two pseudotime inference methods—Slingshot and
Monocle3-PI—to each synthetic dataset to infer cell pseudotime.
First, we find that PseudotimeDE successfully captures the underlying uncertainty of

inferred pseudotime. The first layer—“linear uncertainty”—reflects the randomness of
inferred cell pseudotime within a cell lineage (Fig. 2a, & c). Figure 2b, & d shows the
distributions of individual cells’ inferred pseudotime by Slingshot and Monocle3-PI,
respectively, across 1000 subsampled datasets, confirming that linear uncertainty is spe-
cific to pseudotime inference methods. Between the two methods, Monocle3-PI demon-
strates greater linear uncertainty. The second layer—“topology uncertainty”—reflects
the randomness of lineage construction. The synthetic bifurcation dataset contains two
cell lineages. Slingshot correctly constructs the bifurcation topology from the original
dataset and the 1000 subsampled datasets. While Monocle3-PI captures the bifurcation
topology from the original dataset (Fig. 2e), it fails to capture the topology from over 50%

Fig. 2 PseudotimeDE captures the uncertainty in pseudotime inference. a Visualization of synthetic
single-lineage cells marked with inferred pseudotime by Slingshot (using PCA). The black curve denotes the
inferred lineage. b The distributions of individual cells’ inferred pseudotime by Slingshot across subsamples.
In the vertical axis, cells are ordered by their true time in the lineage used in simulation; for every cell (a
vertical coordinate), black dots have horizontal coordinates corresponding to the cell’s inferred pseudotime
in the subsamples that include the cell. The more horizontally spread out the black dots, the greater
uncertainty the pseudotime inference has. c Visualization of synthetic single-lineage cells marked with
inferred pseudotime by Monocle3-PI (using UMAP). The black curve denotes the inferred lineage. Compared
with (a), the inferred lineage is more wiggling. d The distributions of individual cells’ inferred pseudotime by
Monocle3-PI across subsamples. Compared with (b), the uncertainty in pseudotime inference is greater. e
Visualization of synthetic bifurcating cells marked with inferred pseudotime by Monocle3-PI (using UMAP).
Monocle3-PI recovers the bifurcation topology. f Visualization of ten subsamples of the cells in (e), marked
with inferred pseudotime by Monocle3-PI (using UMAP) on each subsample. Four out of the ten subsamples
do not have the bifurcation topology correctly inferred (labeled with red “F”), revealing the uncertainty in
pseudotime inference by Monocle3-PI. In panels a, c, e, and f, inferred pseudotime is represented by a color
scale from 0 (the earliest pseudotime) to 1 (the latest pseudotime)
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of subsamples (Fig. 2f shows randomly picked 10 subsamples), demonstrating its greater
topology uncertainty than Slingshot’s.
After confirming pseudotime inference uncertainty, we benchmark PseudotimeDE

against four DE gene identification methods: tradeSeq, Monocle3-DE, NBAMSeq, and
ImpulseDE2. The first two methods, tradeSeq and Monocle3-DE, are the state-of-the-art
for scRNA-seq data analysis and thus serve as the main competitors of PseudotimeDE. In
our benchmark, we first evaluate these methods in terms of the validity of their p-values,
which should be uniformly distributed between 0 and 1 under the null hypothesis (i.e., a
gene is not DE). Our results show that, among the five methods, PseudotimeDE generates
the best-calibrated p-values that follow the expected uniform distribution most closely
(Fig. 3a, & f and Additional file 1: Figs. S3–S5a & f). Among the existing four methods,
only Monocle3-DE provides roughly calibrated p-values, while tradeSeq, NBAMSeq, and
ImpulseDE2 output p-values that are much deviated from the expected uniform distri-
bution. This observation is confirmed by the Kolmogorov–Smirnov test, which evaluates
how closely p-values follow the uniform distribution. Since the identification of DE genes
relies on a small p-value cutoff, the smaller p-values are more important than the larger
ones. Hence, we re-plot the p-values on − log10 scale to closely examine the calibration of
small p-values (Fig. 3b, & g and Additional file 1: Figs. S3–S5b & g). Again, PseudotimeDE
returns the best-calibrated p-values, while the other four methods generate overly small
p-values that would inflate false discoveries. This is reflected in our results: at a target 5%
FDR threshold, PseudotimeDE leads to the best FDR control among all methods (Fig. 3c,
& h and Additional file 1: Figs. S3–S5c & h).
Next, we compare these methods in terms of their ability to distinguish DE genes from

non-DE genes, ability measured by the area under the receiver operating characteristic
curve (AUROC) values (Fig. 3d, & i and Additional file 1: Figs. S3–S5d & i). Pseudo-
timeDE achieves the highest AUROC values. Among the other four methods, tradeSeq
and NBAMSeq have slightly lower AUROC values than PseudotimeDE’s, and Monocle3-
DE and ImpulseDE2 have much lower AUROC values than the other three methods’. The
reason is that PseudotimeDE, tradeSeq, and NBAMSeq all use the flexible model NB-
GAM, while Monocle3-DE and ImpulseDE2 use much more restrictive models, which
limit their power.
Realizing that the ill-calibrated p-values of the existing four methods invalidate their

FDR control, we compare all five methods in terms of their power under an actual
5% false discovery proportion (FDP, defined as the proportion of false discoveries
among the discoveries in one synthetic dataset) instead of the nominal 5% FDR. Our
results show that PseudotimeDE achieves the highest power on all datasets except for
the bifurcation dataset, where PseudotimeDE has slightly lower power than tradeSeq’s
(Fig. 3e, & j and Additional file 1: Figs. S3–S5e & j). These results demonstrate the
high power of PseudotimeDE and its effective FDR control, which is lacking in existing
methods.
In summary, our simulation results verify that PseudotimeDE outperforms existing

methods in terms of generating well-calibrated p-values, which are essential for FDR
control, and identifying DE genes with high power. Notably, the two bulk RNA-seq meth-
ods, NBAMSeq and ImpulseDE2, yield worse results than the three scRNA-seq methods
do. Hence, we only focus on the scRNA-seq methods in the following three real data
applications.
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Fig. 3 PseudotimeDE outperforms four state-of-the-art methods (tradeSeq, Monocle3-DE, NBAMSeq, and
ImpulseDE2) for identifying DE genes along cell pseudotime. Left panels a–e are based on pseudotime
inferred by Slingshot; right panels f–j are based on pseudotime inferred by Monocle3-PI. a, f Distributions of
non-DE genes’ observed p-values by five DE methods with inferred pseudotime. Top: quantile-quantile plots
that compare the empirical quantiles of the observed p-values against the expected quantiles of the
Uniform[ 0, 1] distribution. Bottom: histograms of the observed p-values. The p-values shown on top of
histograms are from the Kolmogorov–Smirnov test under the null hypothesis that the distribution is
Uniform[ 0, 1]. The larger the p-value, the more uniform the distribution is. Among the five DE methods,
PseudotimeDE’s observed p-values follow most closely the expected Uniform[ 0, 1] distribution. b, g
Quantile-quantile plots of the same p-values as in a and f on the negative log10 scale. PseudotimeDE returns
better-calibrated small p-values than the other four methods do. c, h FDPs of the five DE methods with the
target FDR 0.05 (BH adjusted-p ≤ 0.05). PseudotimeDE yields the FDP closest to 0.05. d, i ROC curves and
AUROC values of the five DE methods. PseudotimeDE achieves the highest AUROC. e, j Power of the five DE
methods under the FDP = 0.05 cutoff. PseudotimeDE achieves the highest power

Real data example 1: dendritic cells stimulated with lipopolysaccharide

In the first application, we compare PseudotimeDE with tradeSeq and Monocle3-DE on
a dataset of mouse dendritic cells (DCs) after stimulation with lipopolysaccharide (LPS, a
component of gram-negative bacteria) [31]. In this dataset, gene expression changes are
expected to be associated with the immune response process. We first apply Slingshot
and Monocle3-PI to this dataset to infer cell pseudotime, and then, we input the inferred
pseudotime into PseudotimeDE, tradeSeq, and Monocle3-DE for DE gene identification.
Consistent with our simulation results, the p-values of tradeSeq are ill-calibrated: their
bimodal distributions indicate that they do not follow the uniform distribution under
the null hypothesis; instead, many of them are inflated, and this inflation would lead
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to power loss in DE gene identification (Fig. 4a, & e). Indeed, at a nominal Benjamini-
Hochberg (BH) adjusted p-value ≤ 0.01 threshold (which corresponds to controlling the
FDR ≤ 1% when p-values are valid), tradeSeq identifies the smallest number of DE genes,
while PseudotimeDE identifies the most DE genes, followed by Monocle3-DE. Notably,
most of the DE genes identified by tradeSeq are also identified by PseudotimeDE (Fig. 4b,
& f), a result consistent with the over-conservativeness of tradeSeq due to its inflated
p-values. Unlike tradeSeq, Monocle3-DE does not exhibit the inflated p-value issue; how-
ever, it uses a more restrictive model than PseudotimeDE and tradeSeq do. Hence, we use
functional analyses to investigate whether Monocle3-DE misses certain DE genes due to
its restrictive modeling. We also investigate whether the additional DE genes found by
PseudotimeDE but missed by tradeSeq or Monocle3-DE are biologically meaningful.
Our first strategy is to perform gene ontology (GO) analysis on the DE genes identified

by each method and compare the enriched GO terms. We find that more GO terms are
enriched (with enrichment p-values < 0.01) in the DE genes identified by PseudotimeDE
(Additional file 1: Fig. S6a & c) and that the PseudotimeDE-specific GO terms are related

Fig. 4 Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the LPS-dendritic cell dataset. Left panels
a–d are based on pseudotime inferred by Slingshot; right panels e–h are based on pseudotime inferred by
Monocle3-PI. a, e Histograms of all genes’ p-values by the three DE methods. The bimodal distributions of
tradeSeq’s p-values suggest a violation of the requirement that p-values follow the Uniform[ 0, 1] distribution
under the null hypothesis. b, f Venn plots showing the overlaps of the significant DE genes (BH
adjusted-p ≤ 0.01) identified by the three DE methods. PseudotimeDE’s DE genes almost include tradeSeq’s.
c, g Numbers of GO terms enriched (p < 0.01) in the significant DE genes specifically found by PseudotimeDE
or tradeSeq/Monocle3-DE in pairwise comparisons between PseudotimeDE and tradeSeq/Monocle3-DE in b
and f. Many more GO terms are enriched in the PseudotimeDE-specific DE genes than in the tradeSeq- or
Monocle3-DE-specific ones. d, h Example GO terms enriched in the Pseudotime-specific DE genes in c and g.
Many of these terms are related to LPS, immune process, and defense to bacterium
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to immune responses (Additional file 1: Fig. S6b & d). However, comparing enriched GO
terms does not directly reflect the difference of DE genes identified by different methods.
Hence, our second strategy is to probe the functions of the DE genes that are uniquely
identified by one method in pairwise comparisons of PseudotimeDE vs. tradeSeq and
PseudotimeDE vs. Monocle3-DE. We first perform GO analysis on each set of uniquely
identified DE genes. For a fair comparison of two methods, we remove the overlapping
DE genes found by both methods from the background gene list in GO analysis. Our
results show that many more GO terms are enriched (with enrichment p-values < 0.01)
in Pseudotime-specific DE genes than in tradeSeq- or Monocle3-DE-specific DE genes
(Fig. 4c, & g). Moreover, many of those PseudotimeDE-specific GO terms are directly
related to the immune responses of DCs to LPS stimulation, including the GO terms “cel-
lular response to lipopolysaccharide” and “defense response to Gram-negative bacterium”
(Fig. 4d, & h; Additional file 2: Table S1). To focus more on immune responses, we next
perform enrichment analysis using the immunologic signatures (C7) in the Molecular
Signatures Database (MSigDB) [32]. Our results show that only PseudotimeDE-specific
DE genes have enriched MSigDB C7 terms (with BH adjusted p-values < 0.01), while
tradeSeq- and Monocle3-DE-specific DE genes have almost no enrichment (Additional
file 1: Fig. S7a & c). More importantly, many enriched terms in PseudotimeDE-specific DE
genes were found by previous studies of DCs stimulated with LPS (see examples in Addi-
tional file 1: Fig. S7b & d; Additional file 2: Table S1); this is direct evidence that supports
the validity of PseudotimeDE-specific DE genes. For illustration purpose, we visualize the
expression levels of some known and novel DE genes identified by PseudotimeDE using
UMAP, and clear DE patterns are observed (Additional file 1: Fig. S8–S9). In conclusion,
our functional analyses verify that PseudotimeDE identifies biologically meaningful DE
genes missed by tradeSeq and Monocle3-DE, confirming that PseudotimeDE has high
power in addition to its well-calibrated p-values.

Real data example 2: pancreatic beta cell maturation

In the second application, we compare PseudotimeDE with tradeSeq and Monocle3-DE
on a dataset of mouse beta cell maturation process [33]. We first apply Slingshot and
Monocle3-PI to this dataset to infer cell pseudotime, and then, we input the inferred
pseudotime into PseudotimeDE, tradeSeq, and Monocle3-DE for DE gene identification.
Consistent with previous results, the p-values of tradeSeq follow a bimodal distribution,
suggesting that many of them are incorrectly inflated (Fig. 5a, & f). At the nominal BH-
adjusted p-value ≤ 0.01 level, PseudotimeDE identifies the second most DE genes, fewer
than Monocle3-DE’s identified DE genes and much more than tradeSeq’s (Fig. 5b, & g).
As the numbers of identified DE genes cannot reflect these methods’ performance, we
use three approaches to evaluate the DE genes identified by each method.
We first perform GO analysis on each set of uniquely identified DE genes, using

the same pairwise comparisons of PseudotimeDE vs. tradeSeq and PseudotimeDE vs.
Monocle3-DE as for the LPS-dendritic data. Our results show that more GO terms are
enriched (with enrichment p-values < 0.01) in PseudotimeDE-specific DE genes than
in tradeSeq- or Monocle3-DE-specific DE genes (Fig. 5c, & h). Moreover, many of those
PseudotimeDE-specific GO terms are directly related to pancreatic beta cell develop-
ment, e.g., “positive/negative regulation of Notch signaling pathway” [34] and “endocrine
pancreas development” (Fig. 5c, & h; Additional file 3: Table S2). As a complementary



Song and Li Genome Biology          (2021) 22:124 Page 10 of 25

Fig. 5 Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the pancreatic beta cell maturation
dataset. Left panels a–e are based on pseudotime inferred by Slingshot; right panels f–j are based on
pseudotime inferred by Monocle3-PI. a, f Histograms of all genes’ p-values by the three DE methods. The
bimodal distributions of tradeSeq’s p-values suggest a violation of the requirement that p-values follow the
Uniform[ 0, 1] distribution under the null hypothesis. b, g Venn plots showing the overlaps of the significant
DE genes (BH adjusted-p ≤ 0.01) identified by the three DE methods. PseudotimeDE’s DE genes almost
include tradeSeq’s. c, h Numbers of GO terms enriched (p < 0.01) in the significant DE genes specifically
found by PseudotimeDE or tradeSeq/Monocle3-DE in pairwise comparisons between PseudotimeDE and
tradeSeq/Monocle3-DE in b and g. Many more GO terms are enriched in the PseudotimeDE-specific DE
genes than in the tradeSeq- or Monocle3-DE-specific ones. d, i Example GO terms enriched in the
Pseudotime-specific DE genes in c and h. Many of these terms are related to related to insulin, beta cell
regulation, and pancreas development. e, j Two examples genes: Slc39a10 (DE) and Sst (non-DE). For
Slc39a10, both PseudotimeDE and Monocle3-DE yield small p-values (p < 1e − 6), while tradeSeq does not
(p > 0.1). For Sst, PseudotimeDE yields larger p-values than tradeSeq and Monocle3-DE do. Dashed blue lines
are the fitted curves by NB-GAM

result, we also perform GO analysis on the DE genes identified by each method. We find
that the GO terms, which are only enriched in the DE genes identified by PseudotimeDE,
are related to beta cell development and thus more biologically meaningful than the GO
terms that are only enriched in the DE genes identified by tradeSeq or Monocle3-DE
(Additional file 1: Fig. S10b & d).
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Second, we utilize the DE genes identified from bulk RNA-seq data in the original
paper [33] to evaluate the DE gene rankings established by PseudotimeDE, tradeSeq, and
Monocle3-DE from scRNA-seq data. Taking the bulk DE genes as a gene set, we perform
the gene-set enrichment analysis (GSEA) [32] on all genes’ − log10 p-values output by
PseudotimeDE, tradeSeq, and Monocle3-DE. Among the three methods, PseudotimeDE
leads to the highest normalized enrichment score (NES) (Additional file 3: Table S2), sug-
gesting that the bulk DE genes are most enriched in the top-ranked DE genes found by
PseudotimeDE.
Third, we examine a highly credible DE gene Slc39a10 [33, 35] and a verified non-

DE gene Sst [33] as representative examples. For Slc39a10, both PseudotimeDE and
Monocle3-DE yield small p-values (< 10−6), while tradeSeq outputs a p-value > 0.1 and
thus misses it (Fig. 5e, & g). For Sst, PseudotimeDE yields the largest p-value (> 0.001),
while tradeSeq andMonocle3-DE yield extremely small p-values (< 10−10) and thus mis-
taken it as a DE gene. Hence, PseudotimeDE has the best performance on these two
representative genes.
For illustration purpose, we visualize the expression levels of some known and novel

DE genes identified by PseudotimeDE using UMAP, and clear DE patterns are observed
(Additional file 1: Figs. S11–S12).

Real data example 3: bonemarrow differentiation

In the third application, we compare PseudotimeDE with tradeSeq and Monocle3-DE on
a dataset of mouse bone marrow differentiation [36]. We apply Slingshot with UMAP
for dimensionality reduction to infer cell pseudotime as described in the tradeSeq paper
[16]. Slingshot constructs the reported bifurcation topology (in the tradeSeq paper) on
the original dataset (Fig. 6a), but it infers trifurcation topology, instead of bifurcation
topology, on 40% of subsamples (Fig. 6b shows randomly picked ten subsamples). Note
that the third lineage consisting of the cell type megakaryocyte (MK) was reported in the
Monocle2 paper ([12]), suggesting the observed topology uncertainty may be biologically
meaningful.
For a fair comparison, we only make PseudotimeDE use the subsamples with bifur-

cation topology inferred, because both tradeSeq and Monocle3-DE use the inferred
bifurcation topology from the original data to identify DE genes. Consistent with pre-
vious results, the tradeSeq p-values follow a bimodal distribution that is unexpected
for well-calibrated p-values. At a nominal BH-adjusted p-value ≤ 0.01 threshold, the
three methods identify highly similar DE genes (Fig. 6e, & g). For instance, Pseudo-
timeDE and tradeSeq share about 80% of their identified DE genes (Jaccard index).
From the few method-specific DE genes, functional analyses cannot indicate which
method performs better. Therefore, we use GSEA instead to evaluate methods’ p-values.
Surprisingly, although the three methods identify highly similar DE genes, their p-
values lead to vastly different GSEA results. At the q < 0.25 level, PseudotimeDE and
Monocle3-DE yield hundreds of enriched gene sets, while tradeSeq only yields a few
or no enriched gene sets (Fig. 6f, & h; Additional file 4: Table S3). This result indi-
cates that, besides the ranking of p-values, the nominal values of p-values are also
crucial for downstream analysis such as GSEA. Hence, the well-calibrated p-values make
PseudotimeDE superior to existing methods for DE gene identification and downstream
analyses.
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Fig. 6 Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the mouse bone marrow dataset. a
UMAP visualization and inferred pseudotime by Slingshot. Pre-defined cell types are marked by colors.
Slingshot returns a bifurcation topology, denoted as lineage 1 (left) and lineage 2 (right). b UMAP
visualization and inferred pseudotime by Slingshot on ten random subsamples. Four out of ten subsamples
do not yield bifurcation topology but trifurcation topology, where the third lineage mainly contains the cell
type “MK” and was reported in [12]. c Histograms of all genes’ p-values calculated by the three DE methods in
the first lineage. d Histograms of all genes’ p-values calculated by the three DE methods in the second
lineage. e Venn plot showing the overlaps of the significant DE genes (BH adjusted-p ≤ 0.01) identified by
the three DE methods in lineage 1. PseudotimeDE and tradeSeq share 77.6% (Jaccard index) DE genes. (f)
Numbers of enriched gene sets (q < 0.25) by GSEA using the p-values in lineage 1 by the three DE methods.
Although the DE genes are similar in e, PseudotimeDE yields 270 enriched gene sets, while tradeSeq only
yields 9. g Venn plot showing the overlaps of the significant DE genes (BH adjusted-p ≤ 0.01) identified by
the three DE methods in lineage 2. Similar to lineage 1 in g, PseudotimeDE and tradeSeq share 77.2%
(Jaccard index) DE genes. h Numbers of enriched gene sets (q < 0.25) by GSEA using the p-values in lineage
2 by the three DE methods. PseudotimeDE and Monocle3-DE yield hundreds of enriched gene sets, while
tradeSeq does not yield any enriched gene sets

Real data example 4: natural killer T cell subtypes

In the fourth application, we compare PseudotimeDEwith tradeSeq andMonocle3-DE on
a dataset of natural killer T cell (NKT cell) subtypes [37].We apply Slingshot with PCA for
dimensionality reduction to infer cell pseudotime and construct the trifurcation topology
(Fig. 7a) reported in the original study. We apply the three DE methods to identify DE
genes in each of the three lineages. Consistent with the previous results, the p-values
of tradeSeq follow a bimodal distribution, suggesting that many of them are incorrectly
inflated (Fig. 7b).
For validation purpose, we utilize the lineage-specific DE genes identified from bulk

RNA-seq data in the original study [37] to evaluate the DE gene rankings established by
PseudotimeDE, tradeSeq, and Monocle3-DE from scRNA-seq data. Specifically, we per-
form the GSEA using the bulk DE gene sets in the same way as for the pancreatic beta cell
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Fig. 7 Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the natural killer T cell dataset. a PCA
visualization and inferred pseudotime by Slingshot. Pre-defined NKT subtypes are marked by colors.
Slingshot returns a trifurcation topology, where the three lineages are NKT0 to NKT1, NKT0 to NKT17, and
NKT0 to NKT2. b Histograms of all genes’ p-values in the three lineages calculated by the three DE methods. c
Heatmaps of normalized enrichment scores (NESs, marked by colors) and their corresponding p-values (in
numbers) from the GSEA. Each NES value and its corresponding p-value are calculated for each DE method
and each lineage, based on the p-values of a DE method for a lineage and that lineage’s DE genes found
from bulk RNA-seq data, denoted by “NKT1 bulk”, “NKT17 bulk,” or “NKT2 bulk” [37]. Note that among the
three DE methods, PseudotimeDE outputs p-values that best agree with the lineage-specific DE genes from
bulk data and thus most distinguish the three lineages. For instance, for the NKT1 lineage, PseudotimeDE’s
small p-values are enriched in the “NKT1 bulk” gene set only, while tradeSeq and Monocle3-DE have small
p-values enriched in at least two lineage-specific DE gene sets

maturation dataset. The GSEA shows that PseudotimeDE’s p-values best agree with the
lineage-specific DE genes from bulk data and thus most distinguish the three lineages. For
example, for the NKT1 lineage, PseudotimeDE’s small p-values are exclusively enriched in
the “NKT1 bulk” gene set, while tradeSeq andMonocle3-DE have small p-values enriched
in at least two lineage-specific DE gene sets (Fig. 7c). This result confirms that, compared
with the DE genes identified by the other two DE methods, the top DE genes identified
by PseudotimeDE are more biologically meaningful.

Real data example 5: cell cycle phases

In the fifth application, we compare PseudotimeDE with tradeSeq andMonocle3-DE on a
dataset of human induced pluripotent stem cells (iPSCs) measured with cell cycle phases
(FUCCI labels) [38]. The original study has reported 101 cyclic genes whose expression
levels have large proportions of variance explained (PVE) by cells’ FUCCI labels [38];
that is, cells’ FUCCI labels are regarded as the predictor, a gene’s expression levels in the
same cells are regarded as the response, and a PVE is calculated from a nonparametric
smoothing fit; hence, the larger the PVE, the better the gene’s expression levels can be
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predicted by the cell cycle phases. The original study has also developed an R package
peco to infer cell cycle phases from scRNA-seq data.
In our study, we first construct a benchmark dataset by treating the 101 cyclic

genes as true DE genes and using the same genes with expression levels ran-
domly shuffled across cells as the true non-DE genes; hence, our positive and neg-
ative sets both contain 101 genes. Then, we apply the R package peco to this
dataset to infer each cell’s cycle phase, which is equivalent to pseudotime; that
is, we use peco as the pseudotime inference method. Finally, we apply the three
DE methods.
Our results show that, for the true non-DE genes, only PseudotimeDE generates valid p-

values that approximately follow the Uniform[ 0, 1] distribution (Fig. 8a, & c). For the true
DE genes, PseudotimeDE’s (− log10 transformed) p-values, one per gene, have the highest
correlation with these genes’ PVE, indicating that PseudotimeDE successfully identi-
fies the top DE genes as those with the strongest cyclic trends (Fig. 8b). PseudotimeDE
also yields successful FDR control, the highest AUROC value, and the highest power,
among the three DE methods (Fig. 8d–f). Therefore, we conclude that PseudotimeDE

Fig. 8 Application of PseudotimeDE, tradeSeq, and Monocle3-DE to the cell cycle phase dataset. a
Distributions of non-DE genes’ p-values by three DE methods with inferred pseudotime. Top:
quantile-quantile plots that compare the empirical quantiles of non-DE genes’ p-values against the expected
quantiles of the Uniform[ 0, 1] distribution. Bottom: histograms of non-DE genes’ p-values. The p-values
shown on top of histograms are from the Kolmogorov–Smirnov test under the null hypothesis that the
distribution is Uniform[ 0, 1]. The larger the p-value, the more uniform the distribution is. Among the three DE
methods, PseudotimeDE’s p-values follow most closely the expected Uniform[ 0, 1] distribution. b
Distributions of DE genes’ p-values by three DE methods with inferred pseudotime. Top: scatter plots of DE
genes’ p-values against the proportions of variance explained (PVE), which measure the strengths of genes’
inferred cyclic trends in the original study [38]. PseudotimeDE’s p-values (− log10 transformed) have the
highest correlation with the PVE, indicating that PseudotimeDE identifies the genes with the strongest cyclic
trends as the top DE genes. Bottom: histograms of all genes’ p-values. Blue and red colors represent the
p-values of DE genes and non-DE genes (same as in (a) bottom), respectively. PseudotimeDE yields the best
separation of the two gene groups’ p-values. c Quantile-quantile plots of the same p-values as in a on the
negative log10 scale. PseudotimeDE returns the best-calibrated p-values. d FDPs of the three DE methods
with the target FDR 0.05 (BH adjusted-p ≤ 0.05). e ROC curves and AUROC values of the three DE methods.
PseudotimeDE achieves the highest AUROC. f Power of the three DE methods under the FDP = 0.05 cutoff.
PseudotimeDE achieves the highest power
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outperforms tradeSeq and Monocle3-DE in identifying cell cycle-related genes from this
iPSC scRNA-seq dataset.

PseudotimeDE allows users to inspect the uncertainty of inferred cell pseudotime

Besides the identification of DE genes, PseudotimeDE offers functionality for inspecting
the uncertainty of pseudotime inference via its intermediate subsampling step. In Figs. 2e,
f and 6a, b, PseudotimeDE reveals the uncertainty of inferred cell lineages. Users usu-
ally want to fix the lineage topology, e.g., a bifurcation topology, for downstream analysis;
however, the topology can vary across subsamples. Hence, we recommend that users
check if the inferred topology from the original data can also be inferred from more than
half of the subsamples. If not, users may consider using another pseudotime inference
method with less uncertainty or adding additional constraints on the inferred topology.
Otherwise, the great uncertainty of inferred cell lineage would impair the reliability of
downstream analyses.
Next, conditioning on a given lineage topology, PseudotimeDE allows users to visualize

the uncertainty of pseudotime within a lineage (Fig. 2a–d), also guiding the choice of
pseudotime inference methods in terms of uncertainty.

Computational time

The only feasible way to accommodate all pseudotime inference methods and to account
for their uncertainty in DE gene identification is to use subsampling and permutation, the
approach taken by PseudotimeDE. However, a common concern of permutation-based
methods is that they are computationally intensive. Admittedly, PseudotimeDE is slower
than existing non-permutation-basedmethods, but its computational time is nevertheless
acceptable to server users. For example, with 24 cores (Intel “Cascade Lake” CPU), 36 GB
RAM and 1000 subsamples, PseudotimeDE takes 3–8 h to analyze each of the first three
scRNA-seq datasets in our study. Specifically, the LPS-dendritic cell dataset (4016 genes,
390 cells) takes 3 h, the pancreatic beta cell maturation dataset (6121 genes, 497 cells)
takes 3.5 h, and the bone marrow dataset (3004 genes, 2660 cells, two lineages) takes 8 h.
The computational time is proportional to the number of genes, the number of lineages,
and the number of subsamples. Of course, it is inversely proportional to the number of
available cores.
To reduce the computational time of PseudotimeDE, users have two options. First, users

may reduce the number of genes to be tested. For instance, lowly expressed genes, such
as those with more than 90% of zero counts, are recommended to be filtered out because
they are usually of less interest to biologists. Second, users may reduce the number of
subsamples. Due to its parametric estimation of the null distribution of the test statistic,
PseudotimeDE does not require an enormous number of subsamples. We find that Pseu-
dotimeDE with only 100 subsamples generates similar p-values to those based on 1000
subsamples (Additional file 1: Fig. S20). If using 100 subsmaples, the computational time
is within 0.5 h for each of the first three datasets.
In an undesirable scenario that computational resources are too limited, users have

to abandon the consideration of pseudotime uncertainty and treat inferred pseudotime
as fixed. Then they do not need the subsampling procedure, and PseudotimeDE will
calculate p-values from the asymptotic null distribution of the test statistic [39], with short
computational time similar to non-permutation-based methods’.
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Discussion
We propose a statistical method PseudotimeDE to identify DE genes along inferred cell
pseudotime. PseudotimeDE focuses on generating well-calibrated p-values while taking
into account the randomness of inferred pseudotime. To achieve these goals, Pseu-
dotimeDE first uses subsampling to estimate the uncertainty of pseudotime. Second,
PseudotimeDE fits the NB-GAM or ZINB-GAM to both the original dataset and the
permuted subsampled datasets to calculate the test statistic and its approximate null
values. Next, PseudotimeDE fits a parametric distribution to estimate the approximate
null distribution of the test statistic. Finally, PseudotimeDE calculates p-values with a
high resolution. PseudotimeDE is flexible to accommodate cell pseudotime inferred in a
standard format by any method. Its use of NB-GAM and ZINB-GAM allows it to cap-
ture diverse gene expression dynamics and to accommodate undesirable zero inflation
in data.
Comprehensive studies on simulated and real data confirm that PseudotimeDE yields

better FDR control and higher power than four existing methods (tradeSeq, Monocle3-
DE, NBAMSeq, and ImpulseDE2) do. On simulated data, PseudotimeDE generates
well-calibrated p-values that follow the uniform distribution under the null hypothe-
sis, while existing methods except Monocle3-DE have p-values violating the uniform
assumption. Well-calibrated p-values guarantee the valid FDR control of PseudotimeDE.
Moreover, thanks to its use of flexible models NB-GAM and ZINB-GAM, Pseudo-
timeDE has higher power than Monocle3-DE, which uses a more restrictive model GLM
and thus has less power. PseudotimeDE also outperforms the other three methods—
tradeSeq, NBAMSeq, and ImpulseDE2—that generate ill-calibrated p-values in terms of
power. On three real scRNA-seq datasets, the DE genes uniquely identified by Pseudo-
timeDE embrace better biological interpretability revealed by functional analyses, and the
p-values of PseudotimeDE lead to more significant GSEA results.
An interesting and open question is what pseudotime inference method works the best

with PseudotimeDE. While we observe that PseudotimeDE has higher power with Sling-
shot than with Monocle3-PI in simulation studies, we realize that the reason may be
associated with the simulation design (e.g., the lineage structures), and thus, we can-
not draw a conclusion from this observation. Due to the diversity of biological systems
and the complexity of pseudotime inference [9], we decide to leave the choice of pseu-
dotime inference methods open to users, and this is the advantage of PseudotimeDE
being flexible to accommodate inferred pseudotime by any methods. In practice, we
encourage users to try popular pseudotime inference methods and use PseudotimeDE
as a downstream step to identify DE genes, so that they can analyze the identification
results and decide which pseudotime inference method is more appropriate for their
dataset.
The zero inflation, or “dropout” issue, remains perplexing and controversial in the

single-cell field [40–44]. The controversy is regarding whether excess zeros that cannot
be explained by Poisson or negative binomial distributions are biological meaningful or
not. Facing this controversy, we provide two models in PseudotimeDE: NB-GAM and
ZINB-GAM, with the former treating excess zeros as biologically meaningful and the lat-
ter not. Specifically, the negative binomial distribution in NB-GAM is fitted to all gene
expression counts including excess zeros, while the fitting of the negative distribution in
ZINB-GAM excludes excess zeros, which ZINB-GAM implicitly treats as non-biological
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zeros. PseudotimeDE allows the choice between the two models to be user specified or
data driven. From our data analysis, we realize that the choice often requires biological
knowledge of the dataset to be analyzed. Specifically, on the LPS-dendritic cell dataset
and pancreatic beta cell maturation dataset, we observe that ZINB-GAM leads to power
loss: some potential DE genes cannot be identified by ZINB-GAM because zero counts
contain useful information (Additional file 1: Figs. S15-S18). Our observation is consis-
tent with another recent study [42], whose authors observed that “zero-inflated models
lead to higher false-negative rates than identical non-zero-inflated models.” Hence, our
real data analysis results are based on NB-GAM. However, realizing the complexity of
biological systems and scRNA-seq protocols, we leave the choice between NB-GAM
and ZINB-GAM as an option for users of PseudotimeDE, and we encourage users
to plot their known DE genes as in Additional file 1: Figs. S15-S18 to decide which
of NB-GAM and ZINB-GAM better captures the gene expression dynamics of their
interest.
The current implementation of PseudotimeDE is restricted to identifying the DE genes

that have expression changes within a cell lineage. While methods including GPfates [45],
Monocle2 BEAM [46], and tradeSeq can test whether a gene’s expression change is associ-
ated with a branching event leading to two lineages, they do not consider the uncertainty
of lineage inference. How to account for such topology uncertainty is a challenging open
question, as we have seen in Figs. 2f and 6b that the inferred lineage may vary from a
bifurcation topology to a trifurcation topology on different subsets of cells. A possible
direction is to use the selective inference [47, 48], and we will leave the investigation of
this question to future research. Due to this topology uncertainty issue, PseudotimeDE
is most suitable for single-cell gene expression data that contain only one cell lineage
(including cyclic data) or a small number of well separated cell lineages (e.g., bifurcation
and trifurcation). The reason is that these data can maintain stable inferred cell topology
after subsampling, an essential requirement of PseudotimeDE. That said, PseudotimeDE
is not designed for data with many equivocal cell lineages or a complex cell hierarchy, the
data that cannot maintain stable inferred cell topology across subsamples, because for
such data, it is difficult to find one-to-one matches between cell lineages inferred from a
subsample and those inferred from the original data. Then, a practical solution for such
data is to first define a cell lineage of interest and then apply PseudotimeDE to only the
cells assigned to that lineage.
There are other open questions to be explored. An important question is: when do we

want to identify DE genes along pseudotime? As we have shown in the “Results” section,
inferred pseudotime can be highly uncertain. As biologists often sequence cells at multi-
ple physical time points if they want to investigate a biological process, a straightforward
analysis is to identify the DE genes that have expression changes across the physical time
points. Then, we have two definitions of DE genes: the genes whose expression changes
across pseudotime vs. physical time. Understanding which definition is more biologi-
cally relevant is an open question. Another question is whether it is possible to integrate
pseudotime with physical time to identify biologically relevant DE genes. Answering
either question requires a statistical formulation that is directly connected to a biological
question.
Another question is how to explore gene-gene correlations along cell pseudotime. Cur-

rent DE methods only detect marginal gene expression changes but ignore gene-gene
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correlations. It remains unclear whether gene-gene correlations are stable or varying
along cell pseudotime. Hence, a new statistical method to detect gene-gene correla-
tion changes along inferred pseudotime may offer new biological insights into gene
co-expression and regulation at the single-cell resolution.

Methods
PseudotimeDEmethodology

Here we describe the methodological detail of PseudotimeDE, a pseudotime-based dif-
ferential expression testing method. As an overview, PseudotimeDE takes a scRNA-seq
count matrix and a pseudotime inference method as input, estimates the uncertainty of
pseudotime, performs a differential expression test, and returns a p-value of each gene.
The core of PseudotimeDE is to obtain a valid null distribution of each DE gene test
statistic so that the resulting p-value is well-calibrated.

Mathematical notations

We denote by Y = (Yij) an n×m gene expression count matrix, whose rows and columns
correspond to n cells and m genes, respectively; that is, Yij is the read count of gene j
in cell i. Taking Y as input, a pseudotime inference method would return a pseudotime
vector T = (T1, . . . ,Ti, . . . ,Tn)T, where Ti ∈[ 0, 1] denotes the normalized inferred pseu-
dotime of cell i (i.e., the cells with the smallest and largest pseudotime have Ti = 0 and 1,
respectively; normalization is used for visualization simplicity). Note that Ti is a random
variable due to the random-sampling nature of the n cells and the possible uncertainty
introduced by the pseudotime inference method.

Uncertainty estimation

To estimate the uncertainty of pseudotime T, we subsample 80% cells (rows) in Y for
B times. Although there are some theoretical results about the optimal subsample size
[49], they do not apply to our problem setting. Hence, we simply choose 80% because
it is widely used [50, 51], similar to the popularity of 5-fold cross validation in machine
learning [52]. Simulation results also supports that 80% is a reasonable choice, and Pseu-
dotimeDE is robust to various subsampling proportions (Additional file 1: Fig. S22; see
Additional file 1 for detail). It is worth noting that the bootstrap technique is inapplica-
ble to our problem because it leads to repeated sampling of the same cell, causing issues
for some pseudotime inference methods such as Monocle2. If the cells have pre-defined
groups (i.e., cell types), we use the stratified sampling by first subsampling 80% cells within
each group and then combining these within-group subsamples into one subsample. By
default, we set B = 1000. For each subsample Yb = (Yb

ij ), an n′ × m matrix where
n′ = �.8n�, we perform pseudotime inference with the same parameters used for the orig-
inal dataset Y. As a result, we obtain B subsample-based realizations of pseudotime T:
{
T1, · · · ,Tb, · · · ,TB}

, where Tb ∈[ 0, 1]n′ , and each cell appears in approximately 80% of
these B realizations. Note that we have to apply pseudotime inference to each subsample
before permutation to account for pseudotime inference uncertainty; otherwise, if each
subsample’s pseudotime is just a subsample of all cells’ pseudotime, we are essentially
treating all cells’ pseudotime as fixed, and the uncertainty in pseudotime inference would
be ignored. Here is the mathematical explanation. Given that we have n cells with inferred
pseudotime as T1, . . . ,Tn, if we use direct subsampling, then in the b-th subsampling,
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the subsampled n′ cells’ pseudotime is just a size-n′ subsample of {T1, . . . ,Tn}. Instead, in
PseudotimeDE, the subsampled n′ cells’ inferred pseudotime Tb

1 , . . . ,Tb
n′ may be n′ val-

ues that are not in T1, . . . ,Tn. In other words, the uncertainty in pseudotime inference is
reflected in Tb

1 , . . . ,T
b
n′ .

PseudotimeDEmodel

We use the negative binomial–generalized additive model (NB-GAM) as the baseline
model to describe the relationship between every gene’s expression in a cell and the cell’s
pseudotime. For gene j (j = 1, . . . ,m), its expression Yij in cell i and the pseudotime Ti of
cell i (i = 1, . . . , n) are assumed to follow

{
Yij ∼ NB(μij,φj) ,
log(μij) = βj0 + fj(Ti) ,

where NB(μij,φj) denotes the negative binomial distribution with mean μij and disper-
sion φj, and fj(Ti) = ∑K

k=1 bk(Ti)βjk is a cubic spline function. The number of knots k is
predefined as 6 and usually has little effect on results [53]. For gene j, PseudotimeDE fits
the NB-GAM to (Y1j, . . . ,Ynj)T and T = (T1, . . . ,Tn)T using the R package mgcv (version
1.8.31), which estimates model parameters by penalized-restricted maximum likelihood
estimation.
To account for excess zeros in scRNA-seq data that may not be explained by the NB-

GAM, we introduce a hidden variable Zij to indicate the “dropout” event of gene j in cell i,
and the resulting model is called the zero-inflated negative binomial–generalized additive
model (ZINB-GAM):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Zij ∼ Ber(pij) ,
Yij|Zij ∼ Zij · NB(μij,φj) + (1 − Zij) · 0 ,
log(μij) = βj0 + fj(Ti) ,
logit(pij) = αj0 + αj1 log(μij) .

For gene j, PseudotimeDE fits the ZINB-GAM to (Y1j, . . . ,Ynj)T and T = (T1, . . . ,Tn)T

using the expectation-maximization (EM) algorithm, which is partially based on R pack-
age zigam [54]. To use PseudotimeDE, users can specify whether to use the ZINB-GAM
or NB-GAM. If users do not provide a specification, PseudotimeDE will automatically
choose between the two models for each gene by the Akaike information criterion (AIC).
By default, PseudotimeDE uses NB-GAM unless the AIC of ZINB-GAM exceeds the AIC
of NB-GAM by at least 10, a threshold suggested by [55].

Statistical test and p-value calculation

To test if gene j is DE along cell pseudotime, PseudotimeDE defines the null and
alternative hypotheses as

H0 : fj(·) = 0 vs. H1 : fj(·) �= 0

We denote the estimate of
(
fj(T1), . . . , fj(Tn)

)T by f̂ j, whose estimated covariance matrix
(of dimensions n × n) is denoted by V̂fj . Then, the test statistic is

Sj = f̂
T
j V̂

r−
fj f̂ j ,
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where V̂r−
fj is the rank-r pseudoinverse of V̂fj , where r is determined in the way described

in [39]. When the Ti’s are fixed, the asymptotic null distribution of Sj is described in [39],
and the p-value can be calculated by the R package mgcv.
A key novelty of PseudotimeDE is its accounting for the uncertainty of inferred pseudo-

time. When the Ti’s are random, the asymptotic null distribution of Sj given that Ti’s are
fixed [39] and the p-value calculation in the R package mgcv no longer apply. To address
this issue and estimate the null distribution, PseudotimeDE uses the following permuta-
tion procedure: (1) PseudotimeDE randomly permutes each subsample-based realization
Tb = (Tb

1 , . . . ,T
b
n′)T into T∗b = (T∗b

1 , . . . ,T∗b
n′ )T; (2) PseudotimeDE fits the above model

to (Yb
1j, . . . ,Y

b
n′j)

T and T∗b and calculates the test statistic Sj’s value as sbj using the R pack-
age mgcv; and (3) PseudotimeDE performs (1) and (2) for b = 1, . . . ,B and collects the
resulting {s1j , . . . , sBj } as the null values of the test statistic Sj.
Then, PseudotimeDE estimates the null distribution of Sj in two ways. Based on the

estimated null distribution in either way and the observed test statistic value sj, which is
calculated from the original dataset by the R package mgcv, PseudotimeDE calculates a
p-value for gene j.

1 Empirical estimate. PseudotimeDE uses the empirical distribution of {s1j , . . . , sBj }
as the estimated null distribution. Following the suggestion in [56], PseudotimeDE
calculates the p-value of gene j as

pemp
j =

∑B
b=1 I(sbj ≥ sj) + 1

B + 1
,

where I(·) is the indicator function. We refer to this p-value as the “empirical
p-value.”

2 Parametric estimate. The resolution of pemp
j depends on the number of

permutations B, because the smallest value pemp
j may take is 1/(B + 1). Although

users often cannot afford a too large B due to limited computational resources,
they still desire a high resolution of p-values to control the FDR to a small value
(e.g., 5%) when the number of tests (i.e., the number of genes in DE gene
identification) is large. To increase the resolution of p-values, PseudotimeDE fits a
parametric distribution to {s1j , . . . , sBj } and uses the fitted distribution as the
estimated null distribution. Driven by the empirical distribution of {s1j , . . . , sBj },
PseudotimeDE considers two parametric distributions: (1) a gamma distribution
�(α,β) with α,β > 0 and (2) a two-component gamma mixture model
γ�(α1,β1) + (1 − γ )�(α2,β2) with 0 < γ < 1 and α1,β1,α2,β2 > 0. After fitting
both distributions to {s1j , . . . , sBj } using the maximum likelihood estimation
(gamma distribution fit by the R package fitdistrplus (version 1.0.14) [57]
and gamma mixture model fit by the R package mixtools (version 5.4.5) [58]),
PseudotimeDE chooses between the two fitted distributions by performing the
likelihood ratio test (LRT) with 3 degrees of freedom (i.e., difference in the
numbers of parameters between the two distributions). If the LRT p-value is less or
equal than 0.01, PseudotimeDE uses the fitted two-component gamma mixture
model as the parametric estimate of the null distribution of Sj; otherwise,
PseudotimeDE uses the fitted gamma distribution. The Anderson-Darling
goodness-of-fit test verifies that such a parametric approach fits the empirical
distributions well (Additional file 1: Fig. S21). Denoting the cumulative distribution
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function of the parametrically estimated null distribution by F̂j(·), PseudotimeDE
calculates the p-value of gene j as

pparamj = 1 − F̂j(sj) ,

where is referred to as the “parametric p-value.”

PseudotimeDE outputs both pemp
j and pparamj for gene j, j = 1, . . . ,m. Empirical

evidence shows that parametric p-values agree with empirical p-values well across the
[ 0, 1] interval (Additional file 1: Fig. S19). All the findings in the “Results” section are
based on pparam1 , . . . , pparamm due to their higher resolution.

Pseudotime inference methods

We apply two state-of-the-art methods, Slingshot and Monocle3-PI, to inferring the cell
pseudotime of each dataset. For single-lineage data, we specify the start cluster in Sling-
shot and the start node in Monocle3-PI. For bifurcation/trifurcation data, we specify the
start cluster/node and the end clusters/nodes in Slingshot/Monocle3-PI. By default, the
dimensionality reduction methods used for pseudotime inference are PCA and UMAP
for Slingshot and Monocle3-PI, respectively. The R Bioconductor package slingshot

(version 1.4.0) and the R package monocle3 (version 0.2.0) are used.

DE analysis methods

We compare PseudotimeDE with four existing methods for identifying DE genes along
pseudotime/time-course from scRNA-seq data (tradeSeq and Monocle3-DE) or bulk
RNA-seq data (ImpulseDE2 and NBAMSeq). All these methods take a count matrix
Y and a pseudotime vector T as input, and they return a p-value for each gene. For
tradeSeq, we use the functions fitGAM and associationTest (https://statomics.
github.io/tradeSeq/articles/tradeSeq.html). The number of knots parameter K in trade-
Seq is chosen by 100 random genes based on the tradeSeq vignette. For Monocle3-DE,
we use the function fit_models (https://cole-trapnell-lab.github.io/monocle3/docs/
differential/). Since ImpulseDE2 cannot be applied to scRNA-seq data directly, we follow
the modified implementation of ImpulseDE2 in the tradeSeq paper (https://github.com/
statOmics/tradeSeqPaper). The R Bioconductor packages tradeSeq (version 1.3.15),
monocle3 (version 0.2.0), ImpulseDE2 (version 1.10.0), and NBAMSeq (version 1.10.0)
are used.

Functional (gene ontology and gene-set enrichment) analyses

We use the R package topGO (version 2.38.1) [59] to perform the gene-ontology (GO)
enrichment analysis on identified DE genes. We use the R package clusterProfiler
(version 3.14.3) [60] to perform the gene-set enrichment analysis (GSEA) on ranked gene
lists, where genes in each list are ranked by their ranking sores defined as − log10 trans-
formed p-values (the gene with the smallest p-value is ranked the top); p-values that are
exactly zeros are replaced by one-tenth of the smallest non-zero p-value. If unspecified,
the GO terms are “biological process (BP)” terms.

Simulation study

Weuse the R package dyntoy (0.9.9) to generate single-lineage data and bifurcation data.
For single-lineage data, we generate three datasets with increasing dispersion levels (low

https://statomics.github.io/tradeSeq/articles/tradeSeq.html
https://statomics.github.io/tradeSeq/articles/tradeSeq.html
https://cole-trapnell-lab.github.io/monocle3/docs/differential/
https://cole-trapnell-lab.github.io/monocle3/docs/differential/
https://github.com/statOmics/tradeSeqPaper
https://github.com/statOmics/tradeSeqPaper
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dispersion, medium dispersion, and high dispersion). Each single-lineage dataset consists
of 500 cells and 5000 genes (with 20% as DE genes). For bifurcation data, we use the
medium dispersion level. The bifurcation dataset consists of 750 cells and 5000 genes
(with 20% as DE genes).

Case studies

LPS-dendritic cell dataset: this Smart-seq dataset contains primary mouse dendritic
cells (DCs) stimulated with lipopolysaccharide (LPS) [31], available at Gene Expression
Omnibus (GEO) under accession ID GSE45719. In our analysis, we use the cells from 1h,
2h, 4h, and 6h in the pre-processed data from the study that benchmarked pseudotime
inference methods [9]. After the genes with > 90% zeros are removed, the final dataset
consists of 4016 genes and 390 cells, which are expected to be in a single lineage. When
applying tradeSeq, we use the recommended ZINB-WaVE [61] + tradeSeq procedure to
account for potential zero-inflation. The R Bioconductor package zinbwave (version
1.8.0) is used.
Pancreatic beta cell maturation dataset: this Smart-seq2 dataset measures the matu-

ration process of mouse pancreatic beta cells [33], available at GEO under accession ID
GSE87375. We use the cells from cell type “beta” in the pre-processed data from the study
that benchmarked pseudotime inference methods [9]. After the genes with > 90% zeros
are removed, the final dataset consists of 6121 genes and 497 cells, which are expected to
be in a single lineage. When applying tradeSeq, we use the recommended ZINB-WaVE +
tradeSeq procedure to account for potential zero-inflation. The R Bioconductor package
zinbwave (version 1.8.0) is used.
Mouse bone marrow dataset: this MARS-seq dataset contains myeloid progenitors

in mouse bone marrow [36], available at GEO under accession ID GSE72859. We use
the pre-processed data provided by the tradeSeq vignette. After the genes with > 90%
zeros are removed, the final dataset consists of 3004 genes and 2660 cells. We follow
the procedure of combining UMAP and Slingshot to infer pseudotime as described in
tradeSeq paper [16]
Natural killer T cell dataset: this Smart-seq2 dataset measures four natural killer T cell

(NKT cell) subtypes in mouse [37], available at GEO under accession ID GSE74597. We
use the pre-processed data from the study that benchmarked pseudotime inference meth-
ods [9]. After the genes with > 90% zeros are removed, the final dataset consists of 5270
genes and 197 cells, which are expected to have three lineages.We use PCA + Slingshot to
infer the pseudotime. When applying tradeSeq, we use the recommended ZINB-WaVE +
tradeSeq procedure to account for potential zero-inflation. The R Bioconductor package
zinbwave (version 1.8.0) is used.
Cell cycle phase dataset: this Fluidigm protocol dataset measures human induced

pluripotent stem cells (iPSCs) [38]. The iPSCs were FUCCI-expressing so that their
cell cycle phases were tracked. The authors also developed an R package peco for
predicting cell cycle phases from single-cell gene expression data. We use the exam-
ple dataset provided by peco, which consists of 101 known cell cycle-related genes
(DE genes). To construct null cases, we randomly shuffle the 101 DE genes’ expres-
sion levels across cells to create 101 non-DE genes. The final dataset consists of
202 genes and 888 cells. We use the R package peco (version 1.1.21) to infer cell
cycle phases.
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