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Understanding how cells respond differently to perturbation is crucial 
in cell biology, but existing methods often fail to accurately quantify and 
interpret heterogeneous single-cell responses. Here we introduce the 
perturbation-response score (PS), a method to quantify diverse perturbation 
responses at a single-cell level. Applied to single-cell perturbation datasets 
such as Perturb-seq, PS outperforms existing methods in quantifying 
partial gene perturbations. PS further enables single-cell dosage analysis 
without needing to titrate perturbations, and identifies ‘buffered’ and 
‘sensitive’ response patterns of essential genes, depending on whether 
their moderate perturbations lead to strong downstream effects. PS reveals 
differential cellular responses on perturbing key genes in contexts such as 
T cell stimulation, latent HIV-1 expression and pancreatic differentiation. 
Notably, we identified a previously unknown role for the coiled-coil domain 
containing 6 (CCDC6) in regulating liver and pancreatic cell fate decisions. PS 
provides a powerful method for dose-to-function analysis, offering deeper 
insights from single-cell perturbation data.

Perturbation is essential for understanding the functions of the mam-
malian genome that encodes protein-coding genes and non-coding 
elements (for example, enhancers). Single-cell profiling of cells 
undergoing genetic, chemical, environmental or mechanical per-
turbations is commonly used to examine perturbation responses at 
the single-cell level. Recently, high-throughput approaches of per-
turbation have been developed using single-cell RNA sequencing 
(scRNA-seq) readout, including multiplexing of perturbations and 
single-cell CRISPR screen (for example, Perturb-seq, CROP-seq)1–7. This 
concept has been extended to study changes in single-cell chromatin 
accessibility8,9, spatial transcriptomics10 on perturbations or perturba-
tion combinations11–13, and other phenomena.

Decoding how perturbations lead to different cellular responses 
is critical for understanding fundamental biology. Technical factors, 

such as single-cell assays and the on-target/off-target effects of per-
turbations, drive differences in single-cell profiles14–16. In Perturb-seq 
experiments using CRISPR–Cas9 for knockouts, in-frame deletions16 
and chromosomal losses17 can alter expression profiles and cluster-
ing patterns. More interestingly, the heterogeneity of perturbation 
responses is often driven by underlying biological factors (Fig. 1a). 
These may be cell-intrinsic (for example, the activities of coding and 
non-coding genomic elements, cell states or types) or cell-extrinsic (for 
example, environmental factors), which together define the context 
of a perturbation response. For example, the combined expression 
of transcription factors is critical for many cellular state conversions. 
Decoding transcription factor functions via perturbation requires 
accounting for the effects of the cell state and the activities of com-
panion transcription factors. Therefore, defining the heterogeneity 
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constrained quadratic optimization, quantifies the strength of the 
perturbation outcome at the single-cell level. Our comprehensive 
benchmarks show that PS outperforms existing methods across simu-
lated datasets, genome-scale Perturb-seq and published CRISPR-based 
Perturb-seq datasets. PS offers two key advances: enabling the dosage 
analysis of genetic perturbation and identifying biological factors that 
govern response heterogeneity. In essential gene Perturb-seq data, PS 
revealed two dosage response patterns, depending on whether mod-
erate perturbation strongly affected downstream gene expression. 
PS also uncovered intrinsic and extrinsic factors governing critical 
gene functions in latent HIV-1 expression and pancreatic–liver devel-
opment, including a previously unknown role for CCDC6 in driving 
duodenum cells toward liver commitment. These findings illustrate 
the power of PS in decoding heterogeneous perturbation outcomes 
from single-cell assays.

Results
PS for detecting diverse outcomes
Perturbing the same gene (or non-coding elements) may result in 
different phenotypic changes or transcriptional outcomes (Fig. 1a), 
depending on technical factors (for example, perturbation efficiency) 
and biological factors (for example, cell type, cell state, the activities 
of cofactors). Unfortunately, most existing methods are designed to 
detect and mitigate the effect of technical factors16, while the effects 

in perturbation responses and identifying the factors that shape these 
outcomes is key to understanding how cells respond to perturbations.

Current computational frameworks are inadequate for decoding 
the diverse outcomes of perturbations. Methods such as MUSIC18, 
MIMOSCA3, scMAGeCK15 and SCEPTRE19 estimate the average effects 
of perturbations but fall short of capturing response heterogeneity. 
Recently, HiDDEN20, a machine learning method, was developed to 
refine perturbation labels in scRNA-seq studies, although it is limited to 
single types of perturbation (for example, drug treatment or disease). 
Generative models such as SC-VAE21 separate perturbation effects from 
other confounding factors in Perturb-seq data. For handling techni-
cal factors, mixscape detects and mitigates confounding variations 
such as incomplete knockouts16, with its extension Mixscale22 model-
ling cellular variations in perturbation efficiency and downstream 
gene expression. However, these methods were primarily designed 
for CRISPR–Cas9 knockout and do not account for partial gene per-
turbations using techniques such as CRISPR interference (CRISPRi). 
Furthermore, they are not designed to uncover biological insights 
from heterogeneous perturbation outcomes, such as how partial gene 
perturbations affect a phenotype of interest (that is, ‘dosage’ analysis) 
or how biological factors influence differential perturbation responses.

Here we present a computational framework, the perturbation- 
response score (PS), to quantify heterogeneous perturbation out-
comes in single-cell transcriptomics datasets. PS, estimated through 
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of biological factors remain unexplored. PS is built to bridge this gap 
by quantifying perturbation outcomes in single-cell datasets using 
scRNA-seq as readout, including single-cell CRISPR screens (for exam-
ple, Perturb-seq), or simply multiplex scRNA-seq profiling of various 
perturbations (for example, sci-Plex; Fig. 1b,c). We define the PS to 
quantify the strength of perturbation, where PS = 0 indicates no per-
turbation effect and PS = 1 indicates the maximum perturbation effect 
observed within a dataset; for example, effects that correspond to 
homozygous knockouts on both gene alleles. We use the expression 
changes of multiple downstream targets of a perturbation to infer the 
(unknown) values of PS (Fig. 1b). For example, if one cell has dramatic 
expression changes of downstream genes, then its value of PS should 
be higher than cells with weak expression changes of these genes.

The PS framework consists of three steps (Fig. 1c). In the first 
optional step, PS identifies differentially expressed genes (DEGs) on 
perturbation (for example, perturbing a protein-coding gene X), by 
comparing the transcriptome profiles between perturbed cells and 
unperturbed cells. These DEGs serve as ‘signature’ genes of perturb-
ing X. Alternatively, users may also provide their own signature genes 
of perturbing X (Fig. 1c). Second, PS uses a previously developed 
scMAGeCK15 model to estimate the average effect of perturbation on 
these signature genes. Third, a constraint optimization procedure is 
used to find the value of PS that minimizes the sum of mean squared 
error between predicted and measured changes of signature genes 
(Methods). The constraints are used such that PS is non-negative for 
cells with X is perturbed and is zero otherwise. Such constraints can be 
established on the basis of the previous information of perturbations; 
for example, the expression matrix of single-guide RNAs (sgRNAs).

Among published methods, mixscape16 is notable for detect-
ing and removing technical factors, particularly incomplete gene 
knockouts from CRISPR–Cas9, that influence single-cell perturba-
tion outcomes. mixscape uses a nearest-neighbour subtraction to 
calculate the ‘perturbation signature’ expression, then fits a Gaussian 
mixture model to classify cells into either ‘KO’ (fully knocked out) or 
‘NP’ (non-perturbed). In contrast, PS models perturbation responses 
as a continuous variable ranging from 0 to 1, allowing users to specify 
gene lists as perturbation signature genes. This provides a more flex-
ible framework for analysing perturbation responses, including in a 
cell-type-specific manner.

PS outperforms mixscape in quantifying partial perturbations
Here we compare PS with mixscape using multiple benchmark datasets. 
We first generated synthetic datasets, because finding a real scRNA-seq 
dataset that contains ground truth (that is, accurate measurements of 
loss-of-function on perturbation) is challenging. We used scDesign3 
(ref. 23) to simulate the single-cell transcriptomic responses on per-
turbing different levels of Nelfb function (25, 50, 75, 100%), based on 
a real scRNA-seq dataset that deletes Nelfb in mouse T cells24 (Fig. 2a, 
Extended Data Fig. 1 and Methods). We specified different numbers 
of DEGs (from 10 to 500) and simulated their expression changes on 
perturbations of Nelfb functions. In all the cases of partial perturbation 
(that is, 0.25–0.75), PS outperforms mixscape in terms of the percent-
age of cells with correct efficiency estimation (defined as absolute error 
≤0.1, Fig. 2b–e). In contrast, mixscape uniformly assigned the posterior 
probability of perturbation to one, leading to its better performance in 
quantifying 100% perturbation, but less suited to analyse partial gene 
perturbations. This is possibly due to the bimodal statistic model of 
mixscape, which only considers 100 or 0% knockout effects16.

Next, we evaluated different methods using several public 
CRISPRi-based Perturb-seq datasets, as CRISPRi modulates gene 
expression directly, allowing perturbation efficiency to be accessed 
from the data. Specifically, we used two published K562 CROP-seq 
datasets25. In the first dataset, each cell expresses only one guide RNA 
(gRNA) (low multiplicity of infection or MOI), while in the second 
dataset, multiple gRNAs are expressed per cell (high MOI). We focused 

on cells where the transcription start sites (TSS) of highly expressed 
protein-coding genes were targeted. For each gene perturbation, we 
excluded the expression of the perturbed gene (X) from the evaluation 
(Fig. 2f). PS correctly estimated CRISPRi efficiency in more than 40% 
of these genes (10 out of 23 for low MOI, 139 out of 342 for high MOI; 
Fig. 2g,h), defined as a Pearson correlation coefficient (PCC) < −0.1 and 
P ≤ 0.05. In contrast, mixscape correctly identified none of these genes 
for the low MOI dataset (Fig. 2g), or in less than 5% of all the genes for 
the high MOI dataset (Fig. 2h). Beyond that, PS detects a much greater 
number of cells that have a strong perturbation effect (PS or mixscape 
score >0.5, Fig. 2i,j), whose scores are strongly negatively correlated 
with gene expression (Fig. 2k). We also tested both methods in another 
CRISPRi-based Perturb-seq dataset, where sgRNAs with mismatches 
were introduced during the guide design, leading to partial perturba-
tion effects26 (Extended Data Fig. 1b,c). PS has a high sensitivity and a 
good balance between sensitivity and specificity, evidenced by the 
higher areas under the receiver-operating characteristic (ROC) curve 
(AUC) values (Extended Data Fig. 1b) and PCC values (Extended Data 
Fig. 1c).

To further benchmark methods in terms of a phenotype of interest, 
we designed and performed a genome-scale CRISPRi Perturb-seq on 
both unstimulated and stimulated Jurkat, a T lymphocyte cell model 
(Fig. 3a), and evaluated the performances of different methods in iden-
tifying known regulators of T cell activation. We designed Perturb-seq 
library that contains sgRNAs targeting the TSS of 18,595 genes (4–6 
guides per gene) and used a TAP-seq-based27 multiplex primer panel to 
detect the expressions of 374 genes with high sensitivity (Supplemen-
tary Tables 1 and 2 and Methods). We obtained high-quality scRNA-seq 
data on over 586,000 single cells after quality control, and the uniform 
manifold approximation and projection (UMAP) for dimension reduc-
tion clustering of Perturb-seq datasets clearly demonstrated the dif-
ferences between stimulated and non-stimulated cells (Fig. 3b). As an 
independent validation, we reanalysed a published genome-scale T cell 
CRISPR screening dataset28, and identified 385 (and 1,297) genes that 
regulate (or do not regulate) T cell stimulation, respectively (Methods). 
To compare these genes with PS and mixscape scores, which are at a 
single-cell level, we calculated a ‘cumulative score’ for each gene in 
Perturb-seq, by summing up all PS and mixscape scores of that gene 
across all single cells. Because our system focuses on T cell stimulation, 
the cumulative score of a gene should reflect the relative importance 
of this gene on T cell stimulation, making it comparable with genes in 
pooled CRISPR screens. Indeed, both PS and mixscape identified many 
known positive regulators of T cell activation, such as components of 
the T cell receptor complex (for example, CD3D) and proximal signal-
ling components (for example, LCK, Fig. 3c). For many positive genes, 
cells with higher values of PS or mixscape score are skewed towards 
the non-stimulating state, consistent with their negative selections in 
pooled CRISPR screens using T cell stimulation as readout (Fig. 3c and 
Extended Data Fig. 2). However, when comparing the ROC score, PS 
reaches a higher AUC score than mixscape (Fig. 3d), indicating its bet-
ter performance in accurately separating positive from negative hits.

Finally, we tested different methods using a published ECCITE-seq 
dataset, simultaneously measuring single-cell transcriptomes, surface 
proteins and perturbations16. PDL1 protein expression was chosen as an 
independent metric for evaluation (Fig. 3e) due to its well-understood 
regulatory role. Of the 25 genes perturbed in the ECCITE-seq library, 
17 are known regulators of PDL1 expression (Fig. 3f). We compared PS 
and mixscape in their ability to predict changes in PDL1 expression 
(Fig. 3f and Extended Data Fig. 3), alongside a naïve approach that 
simply used the expression of the perturbed genes. PS outperformed 
mixscape and the naïve method in predicting PDL1 expression for 19 out 
of 25 genes (76%), including 12 out of 17 (71%) known PDL1 regulators. 
Notably, for genes causing strong transcriptomic changes (for exam-
ple, IFNGR1, IFNGR2, JAK2, STAT1), both PS and mixscape performed 
well, achieving AUC scores above 0.8 (Fig. 3f). However, for genes with 
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moderate or weak perturbation effects, PS consistently outperformed 
mixscape, especially for confirmed PLD1 regulators (genes marked 
in red in Fig. 3f). Overall, these results demonstrate the outstanding 
performance of PS over existing methods.

Analysing dose-dependent effects of perturbation
The dosage analysis of gene or drug functions requires a careful, 
time-consuming adjustment of perturbation strength26,29. Since the 
quantifying partial gene perturbation by PS is highly accurate (for exam-
ple, Fig. 2), we ask whether PS can be used to analyse dose–response 
perturbation responses from single-cell perturbation data. By examin-
ing ECCITE-seq data in which PDL1 expression was measured directly 

(Fig. 3e), we found correlations between PDL1 expression and the PS 
of known PDL1 regulators (Fig. 4a). The PSs of positive PDL1 regula-
tors (for example, IFNGR1/2, STAT1; Fig. 4b) are negatively correlated 
with PDL1 expression, while the scores of negative regulators (for 
example, CUL3, BRD4) are positively correlated (Fig. 4c and Extended 
Data Fig. 3). One example is CUL3, which is known to destabilize and 
degrade PDL1 protein expression30. Consequently, higher CUL3 PSs, 
indicating higher CUL3 functional perturbation, correspond to higher 
PDL1 protein expressions (Fig. 4c). Compared with mixscape, PS more 
accurately predicts the quantitative changes in PDL1 expression, evi-
denced by stronger Pearson correlations between the two (for example, 
Extended Data Fig. 3).

PCC = –0.36

PS
 (A

C
TB

)

0.25

0.50

0.75

1.00

Normalized expression (ACTB)
0 1 2

f

G
en

es
 (t

ot
al

 2
3)

0

20 Correct genes
(%)

Mixscape PS

0
(0%)

10
(43.5%)

Low-MOI CROP-seq

G
en

es
 (t

ot
al

 3
42

)

0

300

Mixscape PS

16
(4.7%)

139
(40.6%)

Correct genes
(%)

g

h

C
el

ls
 ×

 p
er

tu
rb

ed
 g

en
es

(to
ta

l 2
37

,10
5)

0

200,000

Mixscape PS

4,378
(1.8%)

102,463
(43.2%)

Correct cells
(%)

i

Si
ng

le
 c

el
ls

 (t
ot

al
 1,

27
3)

0

1,000

Mixscape PS

Correct cells
(%)

0
(0%)

443
(34.8%)

j k

Other genes

Si
ng

le
 c

el
ls

PS or
Mixscape

Correct estimation
PCC < –0.1

and
P ≤ 0.05

Sc
or

e 
(P

S 
or

 M
ix

sc
ap

e)

Perturbed 
gene X

Gene X expression

PCC > –0.1
or

P > 0.05

Incorrect estimation

Gene X expression

Low-MOI
CROP-seq

High-MOI
CROP-seq

High-MOI
CROP-seq

10 50 10
0

20
0

50
0 10 50 10
0

20
0

50
0 10 50 10
0

20
0

50
0 10 50 10
0

20
0

50
0

PS
Mixscape

DE genes
simulated
efficiency 25% 50% 75% 100%

a

Estimated efficiency
(PS or mixscape)

b c

ed

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 c
el

ls

100

75

50

25

0

C
ou

nt

0

500

1,000

1,500

0 0.25 0.50 0.75 1.00
Estimated efficiency

(PS or mixscape)

0

200

400

0 0.25 0.50 0.75 1.00

Estimated efficiency
(PS or mixscape)

C
ou

nt

0

300

600

900

0 0.25 0.50 0.75 1.00

1,200

Estimated efficiency
(PS or mixscape)

0

500

1,000

1,500

0 0.25 0.50 0.75 1.00

PS
Mixscape

Expression matrix
(excluding  X) 

Fig. 2 | Benchmark using synthetic and real datasets. a, Benchmark results of 
both PS and mixscape using simulated datasets with different settings, including 
perturbation effects (25–100%) and different number of DEGs from bulk RNA-seq 
(Nelfb knockout versus WT). For each cell, its efficiency is correctly estimated if 
its absolute error is no more than 0.1; that is, |

|

ψ

true

− ψ

pred

|

|

< 0.1, where Ψtrue is 
the true efficiency score and Ψpred is the estimated score. b–e, The score 
distribution of PS and mixscape using 50 DEGs and different values of true 
efficiencies: DE, 50; true efficiency, 25% (b), DE, 50; true efficiency, 50% (c), DE, 
50; true efficiency, 75% (d) and DE, 50; true efficiency, 100% (e). Source numerical 
data are available in the source data. f, Benchmark pipeline using real CRISPRi-
based Perturb-seq datasets, where perturbation efficiency is directly assessed 
through gene expression. g–j, Benchmark results comparing PS and mixscape 

using a published Perturb-seq dataset. The numbers (and percentage) of genes 
with accurate efficiency estimation are defined by PCC < −0.1 and P value ≤0.05. 
The Perturb-seq experiments were conducted under low and high MOI 
conditions, where most cells express only one guide in low MOI and multiple 
guides in high MOI. The benchmark includes 23 in the low MOI dataset and 342 
genes in the high MOI dataset. Correctly estimated genes in low MOI (g) and high 
MOI (h), and correctly estimated cells in low MOI (i) and high MOI (j).  
k, A representative gene (ACTB) where PS correctly estimated the efficiency of 
CRISPRi. A linear regression line is shown, and the shaded area indicates a 95% 
confidence interval of linear regression. PCC = −0.36, n = 54, and the associated 
Pearson’s test P value is P = 0.008. Source numerical data are available in the 
source data. DE, differential expression.

http://www.nature.com/naturecellbiology


Nature Cell Biology

Article https://doi.org/10.1038/s41556-025-01626-9

0.5

0.7

0.9

IN
FG

R1
IN

FG
R2

ST
AT

1
JA

K2
C

UL
3

M
YC

BR
D4 SP

I1
C

M
TM

6
PD

C
D1

LG
2

M
AR

C
H

8
UB

E2
L6

IR
F7

IR
F1

N
FK

BI
A

C
D8

6
C

AV
1

SM
AD

4
ET

V7
PO

U2
F2

ST
AT

3
TN

FR
SF

14
ST

AT
2

AT
F2

ST
AT

5A

AU
C

PS
Mixscape
Gene expression

Best-performing method

Red gene names:
known PDL1 regulators

d

b

e

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

Tr
ue

-p
os

iti
ve

 ra
te

AUC
PS, 0.80
Mixscape, 0.56

False-positive rate

LCP2

CD247

VAV1

CD3D

LCK

SLC35B1

TAF8

TMX1

RASGRP1

DOCK2

CCND3

GPR350

200

400

0 100 200

Cumulative PS score

C
um

ul
at

iv
e 

m
ix

sc
ap

e 
sc

or
e

Positive genes
Negative genes

c

UMAP_1
–5.0 0 5.0

UM
AP

_2

–4.0

0

4.0

UM
AP

_2

–4.0

0

4.0

Density

0 0.06
Stimulated

UMAP_1
–5.0 0 5.0

Unstimulated

PDL1 protein
expression

a

Genes

Si
ng

le
 c

el
ls

PS
mixscape

perturbed gene expression
Evaluation

f

dCas9-KRAB
expressing Jurkat

cells
Transduction

Genome-scale
Perturb-seq

UM
AP

_2

UMAP_1

Pooled T cell genome-scale
CRISPR screen

Analysis and
benchmark

KRAB
dCas9

Fig. 3 | Additional benchmarks using genome-scale Perturb-seq and ECCITE-
seq. a, Benchmark procedure using a genome-scale Perturb-seq and a published, 
pooled T cell CRISPR screen. b, The distribution of unstimulated and stimulated 
Jurkat cells along the UMAP plot. c, The correlation of predicted cumulative 
scores by PS and mixscape. The cumulative score of each gene is the sum of 
scores of that gene across all cells, and measures the relative contribution of 
perturbing each gene on affecting T cell stimulation. Positive and negative genes, 

identified from a published, genome-scale CRISPR screen on stimulated T cells28, 
are marked in cyan and red, respectively. d, the ROC curve of both methods 
in separating positive and negative hits. e,f, Benchmark using a published 
ECCITE-seq where PDL1 protein expression is used as gold standard (e), and 
the performance of different methods in terms of predicting PDL1 protein 
expression (f). In f, red gene names indicate known PDL1 regulators. Source 
numerical data are available in the source data.

http://www.nature.com/naturecellbiology


Nature Cell Biology

Article https://doi.org/10.1038/s41556-025-01626-9

We further investigated the relationships between perturbation 
efficiency and the strength of perturbation responses, which is meas-
ured by PS (Fig. 4d). We are interested in two types of gene: ‘buffered’ 
genes, where genes have high PSs only when higher perturbation 
efficiency is achieved, and ‘sensitive’ genes whose PSs are high even 
with moderate or weak perturbation efficiency. We use a nonlinear 
Hill equation to fit the values of normalized perturbed gene expres-
sion and PS (Fig. 4d and Methods), which has been previously used to 
determine transcription factor dosages31. The fitted Hill curve yields 
the empirical dosage 50 (half-maximum effective dose, ED50) value, 
which represents the expression value that corresponds to 50% of its 
maximal PS value. The Hill equation is fitted on the basis of the mean 
values of PS and perturbed gene expression across ten expression 
quantile groups, to get reliable results from noisy scRNA-seq meas-
urements. In a published Perturb-seq32 that targets 2,285 common 
essential genes using CRISPRi (Fig. 4e), 488 genes underwent suc-
cessful Hill equation modelling. Among them, 395 genes are buffered 
(ED50 ≤ 0.5), indicating high robustness to perturbation, possibly due 
to their essential roles in cellular functions that require buffers. Many 
buffered genes form protein complexes, including proteosomes (for 
example, PSMA3) and ribosomal subunits (for example, RPL5; Fig. 4f 
and Extended Data Fig. 4a,b). Ninety-three genes are sensitive genes 
(ED50 > 0.5), showing strong transcriptome responses even with mod-
erate or weak efficiencies on perturbing gene expression (Extended 
Data Fig. 4c–f). Many sensitive genes also display buffering effects, 
demonstrating complex, heterogeneous responses of cells undergo-
ing the same perturbation of essential genes. Notably, a 50% reduction 
of HSPA5 expression achieved near-maximal transcriptional response 
(and the associated growth defect), as is shown in previous studies26.

Perturbing one member of the protein complex usually leads to 
the expression upregulation of other members of the complex, indi-
cating a possible mechanism for compensation (Fig. 4g). For example, 
perturbing proteosome subunits led to a strong expression reduction 
of the perturbed gene (for example, PSMA5; blue squares in Fig. 4g) and 
concurrent upregulation of other members of the proteosomes (for 
example, PSMB7, PSMD2). Similarly, perturbing genes in ribosomal 
subunit, mediator and RNA polymerases leads to the upregulation of 
members of the same functional unit (Extended Data Fig. 4g–j). To con-
firm our findings on a different cellular system, we examined the effects 
of perturbing proteasomes in our genome-scale Perturb-seq dataset 
(Fig. 3a). Indeed, perturbing members of the proteasome subunits lead 
to the upregulation of other proteosomes (Extended Data Fig. 4h), con-
sistent with the known transcriptional feedback loop that is observed 
between proteasome genes33. Overall, the widespread existence of 
such compensatory effect may explain the perturbation-expression 
phenotype of buffered genes, where a strong perturbation efficiency 
is needed to achieve strong expression changes.

PS reveals factors in latent HIV and T cell activation
Reversing latent HIV-1 expression in resting CD4+ T cells is critical for 
curing HIV. Several genetic and epigenetic factors in CD4+ T cells have 
been identified as targets for latency reversal agents (LRAs), which aim 
to eliminate the latent HIV-1 reservoir. However, blocking these factors 
can also globally activate T cells, increasing LRA toxicity34,35. There-
fore, understanding how key genes regulating latent HIV expression 
affect T cell states is crucial. We performed a Perturb-seq experiment 
using a previously established Jurkat HIV cell model36, which stably 
expresses Cas9 and is latently infected with an HIV-GFP viral vector. The 
Perturb-seq library targeted ten protein-coding genes (Supplementary 
Table 3), including known regulators of HIV-1 expression and T cell acti-
vation (for example, BIRC2), and top hits from previous CRISPR screens 
(for example, BRD4)36. Three Perturb-seq experiments were conducted: 
stimulated Jurkat cells (with phorbol 12-myristate 13-acetate (PMA) 
and ionomycin (I), referred to as PMA/I), followed by green fluores-
cent protein (GFP) sorting (GFP+ or GFP−) and unstimulated DMSO 

(dimethylsulfoxide)-treated cells (Fig. 5a). Single-cell transcriptomes 
and sgRNA expressions were obtained using the 10X Genomics Chro-
mium platform. After quality controls, 7,063–8,811 single cells per 
sample were retained, with at least 69,888 reads per cell and a median 
of 4,744 genes expressed per cell (Extended Data Fig. 5a). sgRNAs were 
detected in more than 96% of cells, with 85% assigned a unique sgRNA 
(Supplementary Table 4). Cells clustered primarily by stimulation status 
(stimulated versus unstimulated, Fig. 5b).

We investigated gene functions using our PS framework. Among 
the perturbed genes, BRD4 (bromodomain containing 4) showed 
a distinct cell state-specific pattern, where a subset of cells exhib-
ited higher BRD4 PS values (BRD4-PS+ cells) compared with others 
(BRD4-PS− cells; Fig. 5c). BRD4-PS+ cells overexpress genes involved 
in BRD4-related functions37,38, such as NF-kB/TNF signalling, hypoxia 
and apoptosis (Extended Data Fig. 5b–d). These cells also have lower 
expression of BRD4 signature genes from an independent study39 
(Extended Data Fig. 5e), indicating a stronger BRD4 perturbation. BRD4 
is a known regulator of HIV transcription and activation36,40, which is 
consistent with the strong upregulation of HIV-GFP in BRD4-PS+ cells 
(Extended Data Fig. 5f). Additionally, BRD4-PS+ cells exhibit stronger 
GFP expression (Fig. 5d), confirming a greater BRD4 perturbation. 
To explore the dosage effect of BRD4 perturbation, we recalculated 
BRD4 PS without HIV-GFP and examined its association with HIV-GFP 
expression in different conditions (Fig. 5e). The correlation between 
BRD4 PS and HIV-GFP expression depends on cell state. In stimulated 
T cells (PMA/I treatment), BRD4 PS and HIV-GFP expression showed a 
linear, positive correlation. In unstimulated T cells (DMSO), however, 
a nonlinear relationship was observed, with stronger BRD4 PS (>0.5) 
leading to a sharp increase in HIV-GFP (Fig. 5e).

Another gene, cyclin T1 (CCNT1), also shows heterogeneity in PS 
distribution. Cells with CCNT1 perturbation have high PS values only 
in stimulated cells (Fig. 5f), and mixscape scores show a similar pat-
tern (Extended Data Fig. 6a). In contrast, CCNT1 gene expression and 
guide distribution remain consistent across cell states (Extended Data 
Fig. 6b). Confirming our findings, the number of DEGs in cells with 
CCNT1 perturbation compared with cells non-targeting guides is over 
100 in stimulated cells, but only one in non-stimulated cells (adjusted 
P < 0.001; Extended Data Fig. 6c). Notably, HIV-GFP is the strongest 
DEG, consistent with the known role of CCNT1 in HIV transcription 
activation.

CCNT1 is a key subunit of P-TEFb (positive transcription elonga-
tion factor b)/CDK9 complex that drives RNA transcription, including 
HIV. Transcription elongation control of P-TEFb/CDK9 is regulated by 
multiple mechanisms, such as T cell signalling pathways (for example, 
NF-kB), translation control and epigenetic modification41. These factors 
vary between T cell states (for example, NF-kB; Extended Data Fig. 6d), 
probably explaining the cell state-specific differences in CCNT1 PS. 
Despite this dependency, CCNT1 PS weakly correlates with HIV-GFP 
within a single-cell state, unlike BRD4 PS (Fig. 5e and Extended Data 
Fig. 6e).

To further validate that CCNT1 perturbation response is cell 
state-dependent, we stimulated Jurkat cells using TNF. We measured 
HIV-GFP expression as an indicator of CCNT1 perturbation, because 
CCNT1 knockout strongly reduces HIV-GFP expression42,43. With TNF 
stimulation, CCNT1 knockout reduced HIV-GFP expression by more 
than 50%, compared with less than 5% in unstimulated cells (Fig. 5g), 
confirming that the T cell state is critical for CCNT1 function.

Cell states, including T cells, often exist in a continuous space, 
which can be captured through scRNA-seq. We investigated whether 
PS can identify factors regulating continuous T cell states, beyond the 
discrete states of stimulated versus non-stimulated cells (Fig. 5b). CD69 
messenger RNA (mRNA) expression was used as a marker for continu-
ous T cell stimulation (Extended Data Fig. 6f), as CD69 is an early T cell 
activation marker44. The PS of CD247, a top hit from pooled CRISPR 
and TAP-seq screens (Fig. 3), showed a strong negative correlation with 
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CD69 expression (Wilcox test P = 1.26 × 10−51; Extended Data Fig. 6g,h), 
consistent with the essential role of CD247 in T cell activation (Fig. 3). In 
contrast, the PS of PDCD1 (PD-1), a checkpoint protein that inhibits T cell 
activation, was positively correlated with CD69 expression (Wilcox 

test P = 1.3 × 10−3; Extended Data Fig. 6i,j). These findings highlight the 
power of PS as a computational framework for identifying cofactors 
that drive transcriptomic responses across both discrete and continu-
ous cell states.
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PS uncovers gene functions in pancreatic differentiation
To study the functions of lineage regulators during human pancreatic 
differentiation, we used an established in vitro human embryonic stem 
(hES) cell pancreatic differentiation system to generate cells corre-
sponding to early-stage (definitive endoderm, DE) and middle-stage 
(pancreatic progenitor, PP) pancreas development. We generated ten 

clonal hES cell lines with the homozygous knockout of four genes (Sup-
plementary Table 5), including two known pancreatic lineage regulators 
(HHEX, FOXA1) and two uncharacterized candidate regulators from pre-
vious genetic screens (OTUD5, CCDC6)45,46. These clones were labelled 
with distinct LARRY (lineage and RNA recovery) DNA barcodes47, pooled 
and differentiated into DE and PP stages using established protocols45. 

a

Antibiotic
selection

+PMA/ILenti-sgRNA
library

transduction

2 days 5 days

Sort

Perturb-seq
Latently infected

Jurkat cell
(expressing Cas9)

DMSO

ge

b

f

0

0.5

1.0

BRD4 PS

PS
value

UM
AP

_2

–4

4

0

UM
AP

_2

–4

4

0

0

2

4

6

HIV-GFP

Expression

dc

PMA/I, GFP+,
PCC = 0.54

DMSO
PCC = 0.71

PMA/I, GFP–,
PCC = 0.39

H
IV

-G
FP

 e
xp

re
ss

io
n

0 0.5 1.0
0

4

8

–4

0

4

5 0 5

UMAP_1

BRD4 PS (without HIV-GFP)

CCNT1 PS

10

UM
AP

_2

PS
value

0

0.5

1.0

TNF – +

W
T

C
C

N
T1

 K
O

Q3
8.45%

GFP

PE

100

102

104

106

100 102 104 106 100 102 104 106

100

102

104

106

100

102

104

106

100 102 104 106 100 102 104 106

100

102

104

106

Q4
91.5%

Q1
0.049%

Q2
0.049%

Q3
58.2%Q4

41.7%

Q1
0.019%

Q2
0.052%

Q3
0.66%Q4

99.3%

Q1
0.033%

Q2
0.011%

Q3
6.47%Q4

93.5%

Q1
0.037%

Q2
0.016%

GFP+

GFP–

PMA/I, GFP–

PMA/I, GFP+

–5 0 5 10
UMAP_1

–5 0 5 10
UMAP_1

–5 0 5 10
UMAP_1

UM
AP

_2

0

–6

6

Condition
DMSO

Fig. 5 | Perturb-seq on HIV latency. a, The experimental design of Perturb-seq.  
b, The UMAP plot of single-cell transcriptome profiles. Cells are coloured by 
three different conditions. c, The distribution of BRD4 PS. d, The expression of 
HIV-GFP. e, The correlations between HIV-GFP expression and BRD4 PS that does 
not use HIV-GFP as the target gene. The PCC P values (calculated from Pearson’s 
test) are 1.40 × 10−65, 1.96 × 10−6, 6.26 × 10−29; n = 457, 179, 402 for DMSO, GFP− 

and GFP+ conditions, respectively. The shaded area indicates a 95% confidence 
interval of locally estimated scatterplot smoothing regression. f, The distribution 
of CCNT1 PS. g, The protein expression of HIV-GFP in response to CCNT1 knockout 
in different cell states (TNF versus non-stimulated). Source numerical data are 
available in the source data.

http://www.nature.com/naturecellbiology


Nature Cell Biology

Article https://doi.org/10.1038/s41556-025-01626-9

Single-cell gene expression was then profiled using the 10X genomics 
Chromium platform (Fig. 6a), with clone identity determined from 
LARRY barcodes.

Among 26,286 single cells that passed the quality control, over 
97% (25,694 of 26,286) had at least one barcode detected, and over 80% 
(20,678 of 25,694) were identified as singlets, which were retained for 
downstream analysis. UMAP clustering revealed different known cell 
types during pancreatic differentiation on the basis of the expression 
of cell-type-specific markers (Fig. 6b and Extended Data Fig. 7). These 
included DE, PP, liver/duodenum progenitor (LV/DUO), endocrine 
precursor and cells in transition stages (for example, DE in transition, 
PP in transition).

Among the knockout genes, HHEX showed high PS in cells tran-
sitioning between PP and LV/DUO stages (Fig. 6c and Extended Data 
Fig. 7), consistent with the known function of HHEX as a key determinant 
of cell fate decision. HHEX deletion drives DE cells towards LV/DUO line-
age rather than PP45. This was reflected by the reduced percentage of 
PP-annotated cells in the HHEX knockout condition (Fig. 6d). Similarly, 
the PS of FOXA1, another key transcription factor during PP differentia-
tion, was high in DE and PP cells, consistent with the specific expression 
pattern of FOXA1 in these cell types (Extended Data Fig. 8a–c).

CCDC6 is one of the top hits of CRISPR screens, and its perturba-
tion hinders PP differentiation45,48. However, its precise role during 
pancreatic differentiation remains largely unknown. CCDC6 appears to 
have distinct functions across different cell types, as the DEGs between 
these cell types show minimal overlap (Extended Data Fig. 8d–f). To 
account for cell type-specific effects, we calculated PSs on the basis 
of the DEGs in four main cell types: DE in transition, DE, PP/PP in tran-
sition and LV/DUO. Unbiased clustering of these CCDC6 PSs revealed 
two distinct patterns across cell types (Fig. 6e). PS from late-stage 
cell types (PP/PP in transition/LV/DUO; ‘pattern 1’) were distinct from 
those of early-stage cell types (DE in transition/DE; ‘pattern 2’, Fig. 6f 
and Extended Data Fig. 9a,b).

In early-stage cell types, PS correlates with factors such as POU5F1 
and SOX17, which are associated with continuous cell state transitions 
in DE (Extended Data Fig. 9c,d). DEGs in these stages were enriched in 
targets of stem cell transcription factors (for example, SOX2, POU5F1, 
NANOG) and cell cycle regulation genes (Extended Data Fig. 9e–g), con-
sistent with the known function of CCDC6 as a cell cycle regulator49,50. In 
contrast, DEGs in late-stage cell types were primarily targets of HNF4A, 
a key transcription factor driving LV/DUO differentiation (Fig. 6g and 
Extended Data Fig. 9h). HNF4A was upregulated in late-stage cells on 
CCDC6 (Extended Data Fig. 8e). Compared with wild-type (WT) cells, 
CCDC6 knockout cells showed a notable decrease in the percentage of 
PP cells and an increase in LV/DUO cells (Fig. 6h). These results indicate 
that CCDC6 plays distinct roles in different cell types, including regulat-
ing the differentiation between LV/DUO and PP cell types.

To further validate these predictions, we performed flow cytom-
etry to evaluate the effects of CCDC6 knockout on late-stage cell 
types (PP/LV/DUO). We measured the percentage of HNF4A+ cells (LV 
marker) and PDX1+ cells (PP marker). As predicted, CCDC6 knockout 
significantly reduced the PDX1+ population and increased the HNF4A+ 
population in three biological replicates (Fig. 6i and Extended Data 
Fig. 9i), confirming the enrichment of CCDC6 PS in LV/DUO popula-
tions (Fig. 6g–h).

Discussion
Understanding cellular responses to perturbations is a central task 
in modern biology, from studying tumour heterogeneity to develop-
ing personalized medicine. These perturbations may be genetic (for 
example, gene knockouts), chemical (for example, small molecules), 
mechanical (for example, pressure) or environmental (for example, 
temperature changes). Single-cell genomics profiles of perturba-
tions are commonly used to investigate the mechanisms of perturba-
tions. Many technologies, including Perturb-seq and sci-Plex, allow 

multiplexing of multiple perturbations in a high-throughput manner 
within a single experiment. However, a major bottleneck is the lack of 
a computational model to fully unlock the potential of high-content 
perturbation, especially for discovering new biological insights. Here 
we introduce the PS framework to model the heterogeneous transcrip-
tomic responses, enabling key biological discoveries from this com-
plexity.

Partial gene perturbation is common in experiments due to factors 
such as dose-controlled drug treatment, incomplete gene knockout 
(for example, RNA or CRISPR interference, epigenome editing) or 
random DNA editing from CRISPR–Cas9. These partial perturbations 
add complexity to biological processes, such as distinguishing between 
haploinsufficient genes that cause disease when partially disrupted, 
and haplosufficient genes that require complete knockout for func-
tional disruption. The PS framework excels in quantifying these pertur-
bations and enables detailed dosage analysis across multiple datasets. 
In addition to measuring perturbations, PS reveals cell-intrinsic and 
extrinsic factors that influence perturbation responses, making it 
a powerful functional genomics tool in various areas, such as T cell 
activation, essential gene function, latent HIV-1 expression, pancre-
atic differentiation and so on. Current methods for studying partial 
gene functions often rely on complex CRISPR designs. In contrast, PS 
provides a versatile and systematic approach for analysing partial per-
turbations across various methods (for example, CRISPRi or CRISPR–
Cas9) and assays (for example, Perturb-seq or multiplex scRNA-seq), 
enabling the exploration of dosage effects across diverse biological 
contexts.

PS provides a general framework to analyse several main deter-
minants of perturbation heterogeneity: the strength of perturbation 
per se (for example, Figs. 2 and 5d; BRD4 in Fig. 5c); compensatory 
mechanisms in response to perturbations, especially on essential genes 
(for example, proteosomes; Fig. 4g) and cell type or state specificity 
(for example, T cell states in Fig. 5; differentiation cell types in Fig. 6). 
Cell type or state is linked to perturbation responses in three distinct 
ways: it may change because of perturbation (for example, CCDC6 and 
HHEX in Fig. 6), it may serve as a critical context that defines perturba-
tion outcomes (for example, T cell states in Fig. 5f,g) or it could act as a 
confounding factor (for example, BRD4 perturbation heterogeneity in 
Fig. 5c). PS offers a flexible framework for analysing the heterogeneity 
of perturbation responses from all these aspects.

PS is also valuable for identifying drug targets in genetic pertur-
bations (for example, CRISPR–Cas9). While titrating pharmaceutical 
interventions (for example, varying drug doses) is relatively straight-
forward, precisely controlling the dose of genetic perturbations is more 
challenging. PS provides a convenient alternative for dose-dependent 
perturbation analysis, which is critical for drug design. For example, 
BRD4 is the primary target of bromodomain inhibitor (BETi), a promis-
ing class of LRAs for reactivating latent HIV-1 expression. Our analysis 
indicates stronger BRD4 perturbations are needed to induce HIV-GFP 
expression (Fig. 5c,d). This finding aligns with observations that many 
cells escape BRD4 perturbation by CRISPR–Cas9 (ref. 16), limiting BETi 
efficacy due to efficiency and associated toxicity (as BRD4 is an essen-
tial gene). Our previous study36 also demonstrated that significantly 
higher doses of BETi (for example, JQ1) are needed to induce latent 
HIV-1 expression at levels similar to other potent LRAs. These results 
emphasize the need for synergistic drug combinations to mitigate the 
narrow therapeutic window of BETi.

Confounding factors are a major source of variation in single-cell 
perturbation studies. These factors can be explicitly modelled using 
generalized linear models if the confounding source is known or cor-
rected using statistical approaches such as matrix factorization (for 
example, GSFA51), or independent component analysis (for example, 
CINEMA-OT52). PS does not directly model confounding factors but can 
combine with these methods to remove them or detect their influence 
on perturbation effects (for example, Fig. 5c). In some cases, what are 
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considered confounding factors may reveal biological insights, such 
as perturbation efficiency or cell state. The orthogonal design of PS 
allows it to be integrated with existing methods to both correct for 
confounders and measure perturbation strength.

There are two limitations of PS. First, PS uses two separate stages: 
initially estimating the effect sizes of perturbations (step 2 in Fig. 1c), 
and then estimating the PS per cell (step 3). The first stage assumes 
that all cells have the same effect size (that is, PS = 1), which may 
not hold true in all scenarios. A more robust approach, such as the 
expectation-maximization algorithm or Bayesian inference method, 
could jointly estimate both effect sizes and PS more accurately. Sec-
ond, perturbations on essential gene functions can affect cellular 
viability53,54, but single-cell profiling only captures cells that survive 
perturbations. This ‘survival bias’ means PS may only reflect the pertur-
bation responses in a subset of cells rather than capturing the full range 
of effects. To address this, PS could be combined with recent prediction 
methods that account for uneven distribution between perturbed and 
non-perturbed cells55. Notably, PS complements a recently developed 
tool, Mixscale22, which also addresses cellular variations in perturba-
tion efficiency, and provides methodology for optimized differential 
expression analysis and molecular pathway signature reconstruction. 
Both PS and Mixscale provide valuable computational methods to 
understand cellular responses to various types of perturbation.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41556-025-01626-9.
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Methods
The PS framework
PS estimation follows three steps (Fig. 1c): target gene identification 
(step 1), average perturbation effect estimation using scMAGeCK (step 2)  
and PS estimation using constrained optimization (step 3).

Step 1: target gene identification. We performed differential expres-
sion analysis between cells with certain perturbation (for example, 
knocking out gene X) and negative control cells. In Perturb-seq, control 
cells are typically those with non-targeting gRNAs, while in pooled 
scRNA-seq, they are WT cells. In high MOI conditions, control cells may 
also include those without the specific perturbation. The Wilcoxon 
rank sum test (via Seurat) identified and ranked DEGs, with top genes 
selected as potential targets. By default, an absolute log fold change 
threshold of 0.1 is used, and if a minimum number of target genes 
(default of ten, Extended Data Fig. 10a) is not met, the threshold is 
iteratively decreased (up to three times) to include more genes. Users 
can also provide their own target gene list, skipping this step if previous 
knowledge is available.

Step 2: average perturbation effect estimation. We used the lin-
ear regression module in scMAGeCK (scMAGeCK-LR) to estimate the 
average perturbation effect. scMAGeCK-LR takes the expressions of 
target genes (identified in step 1) across all cells as input and outputs 
a β score, conceptually similar to log fold change. The β score offers 
two advantages: it supports high MOI Perturb-seq datasets, where cells 
may express multiple guides, and allows simultaneous estimation of 
multiple perturbations (for example, genome-scale perturbations) in 
one step, unlike standard DEG analysis.

The mathematical model of scMAGeCK-LR is as follows. Let Y rep-
resent the log-transformed expression matrix of M cells and N target 
genes, which are the union of all target genes identified in step 1 for K 
perturbations. Let D be the binary cell identity matrix, where djX = 1 if cell 
j contains sgRNAs targeting gene X and djX = 0 otherwise. The matrix Β 
contains the β scores, where βXA > 0 indicates gene X is positively affects 
gene A’s expression and βXA < 0 indicates a negative effect.

The expression matrix Y is modelled as:

Y = Y

0

+ D × B + ϵ (1)

where Y0 is the basal expression in an unperturbed state and $ is Gauss-
ian noise. Y0 can be estimated from negative control cells or neigh-
bouring negative control cells, as in mixscape16. The value of Β can be 
estimated using ridge regression:

B = (D

T

D + λI)

−1

D

T

Y (2)

where I is the identity matrix and λ is a small positive value (default 
0.01).

Step 3: PS estimation using constrained optimization. We revise 
equation (1) to incorporate PS. Here, the log-transformed expression 
matrix Y is modelled as:

Y = Y

0

+ Ψ × B + ε (3)

where Ψ is the non-negative, raw PS matrix with the same size as D 
in step 2 (M × K). Each element ΨjX in Ψ indicates the raw PS of cell j of 
perturbing gene X. Here, B is the matrix of β scores estimated in step 
2. To find Ψ, we minimize the squared error between predicted and 
observed gene expressions across all cells:

min∑

ji

(y

ji

− y

0

ji

−∑

k

ψ

jk

β

ki

)

2

+ λ∑

jk

|ψ
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| (4)

subject to the following constraints:

{

0 ≤ ψ
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≤ U, if d

jk

= 1

ψ

jk

= 0 if d

jk

= 0

Here, U is the upper bound of raw Ψ values, dik is from the binary 
cell identity matrix in step 2, 1 ≤ j ≤ M is the index of single cells, 1 ≤ i ≤ N 
is the index of target genes and 1 ≤ k ≤ K is the index of perturbations.

Since Ψ has non-negative constraints, we simplify the objective 
function as follows:

min∑

ji

(y

ji

− y

0

ji

−∑

k

ψ

jk

β
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)

2

+ λ∑

jk

ψ
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(4)

This results in a constrained quadratic optimization problem, solv-
able using methods such as Newton’s method. The final normalized PS 
is scaled to [0,1] as follows:

PS

ik

= ψ

ik

/U.

The choice of λ. By default, λ is set to 0.01, but we also provide a method 
to choose λ to control the false-positive rate. This involves randomly 
selecting control cells (for example, cells expressing non-targeting 
gRNAs) and calculating the percentage of these cells with PS ≥ 0.5, 
which represents the false-positive rate. λ can then be chosen on the 
basis of the desired false-positive rate (for example, 0.1; Extended Data 
Fig. 10b). This is implemented in the scmageck_best_lambda function 
in our source code.

Simulated datasets
Twenty simulated datasets were generated by the simulator scDesign3 
(ref. 23) (v.1.1.1) with modifications for Perturb-seq. The simulation uses 
scDesign3’s parametric model to capture the characteristics of the ref-
erence scRNA-seq data, which includes Nelfb-perturbed (knockout, KO) 
and unperturbed (WT) mouse T cells24. The datasets were generated 
under 20 different settings, combining two parameters: the number 
of downstream genes affected by Nelfb’s knockout (10, 50, 100, 200 
and 500) and the perturbation efficiency (25, 50, 75 and 100%). The 
simulation steps (detailed in steps 1–4 below) use downstream genes 
identified from the bulk RNA-seq data (Supplementary Data 1 from the 
original publication24), resulting in a total of 20 simulated datasets.

Before running the simulation, we preprocess the scRNA-seq 
dataset and the bulk DE gene rank list. First, we apply the same quality 
control as the original publication24, retaining cells with 1,000–5,000 
detected genes and less than 12% mitochondrial unique molecular 
identifier counts. Second, we impute and amplify the WT mouse cell 
gene-by-cell count matrix to enhance perturbation effects. Using the R 
package scImpute56 (v.0.0.9), we impute the WT count matrix to reduce 
sparsity and then multiply it by an amplification factor of ten to extend 
the range of gene expression levels. Third, we combine the imputed WT 
count matrix and the knockout count matrix to create a gene-by-cell 
matrix. This matrix has dimensions (p + 1) × N, representing p + 1 genes 
(Nelfb and p other genes) and N cells, split into NWT WT cells and NKO 
knockout cells. Fourth, we extract Nelfb’s counts as a vector (C) and 
denote the remaining gene counts as a p × N matrix Y. Fifth, we refine 
the bulk DE gene list by excluding genes with zero rows in Y. Last, we 
reduce the computation by using the scran57 package (v.1.28.2) to select 
3,000 highly variable genes in Y. The final Y matrix, after including the 
refined bulk DE genes, has dimensions 3,390 × N.

We know which cells have Nelfb perturbed, represented by an 
N-dimensional binary vector K, where Kj = 0 indicates a WT cell and 
Kj = 1 indicates a knockout cell. K and C are used as two covariate vec-
tors, and Y is used as the reference count matrix for scDesign3. We 
modify scDesign3 to use Y, C, K, the refined DE genes, the number of 
Nelfb’s downstream genes and the perturbation efficiency to simulate 
data in the following four steps:
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Step 1: modelling each gene’s marginal distribution independently. 
For each gene i, if it is a downstream gene of Nelfb, Yij, conditional on 
Cj, follows a zero-inflated negative binomial (ZINB) distribution with 
mean µij, dispersion ɸi and zero-inflation probability νij. For a 
non-downstream gene, Yij, follows a ZINB distribution with mean µi, 
dispersion ɸi and zero-inflation probability νi. These distributions are 
specified using a generalized additive model for location, scale and 
shape. The first D genes in Y (where D ∈ {0, 10, 50, 100, 200, 500} )  
represent the top DE genes, defined as Nelfb’s downstream genes. 
scDesign3 is modified so that downstream gene’s marginal distribu-
tions depend on Cj, while non-downstream gene’s distributions are 
independent of Cj.

For Nelfb’s downstream gene i = 1, … ,D:

⎧
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⎨
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⎩
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i
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For Nelfb’s non-downstream gene i = D + 1, … ,p:
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After parameter estimation by the R package gamlss (v.5.4-12), the 
fitted distribution of Y
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, for i = 1, … ,D, is denoted as ZINB( ̂
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with the cumulative distribution function (CDF) ̂

F

ij

; the fitted distribu-
tion of Yij, for i = D + 1, … ,p, is denoted as ZINB( ̂
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. The other parameters including ɑi, βi, γi and ηi are estimated as ̂α
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 for each i respectively.

Step 2: modelling genes’ joint distribution using the Gaussian 
copula. To approximate pairwise gene–gene correlations in the ref-
erence dataset, scDesign3 uses the Gaussian copula. Based on the 
marginal distributions from step 1, scDesign3 approximates the joint 
distribution of the p genes in cell j as
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where Φ−1

(⋅) is th e inverse CDF of the standard Gaussian distribution, 
0 is the p-dimensional zero vector and ̂

R (K

j

) is the estimated p × p 
gene–gene correlation matrix of the Gaussian copula, conditional on 
Kj. Since Kj is binary, we estimate two gene–gene correlation matrices: 
one for the WT cells (Kj = 0) and one for the knockout cells (Kj = 1). A 
technique called distributional transform is used to make the CDFs 
continuous (see ref. 58 for details).

Step 3: modifying the fitted parameters. To generate synthetic data-
sets with different perturbation efficiencies, we adjust the mean param-
eters for Nelfb’s downstream genes in the knockout cells on the basis 
of the user-specified efficiency. We assume the first NKO

= ∑

N

j=1

I(K

j

= 1) 
cells are knockout cells and update the mean parameters ̂

μ

ij

 for down-
stream genes (i ∈ {1, … ,D}, j ∈ {1, … , N

KO

}) as follows. For the 50% per-
turbation efficiency: We randomly sample NKO values from Cj in WT cells 
( j ∈ {N

KO

+ 1, … ,N }} ,  scale them by 0.5 and store them as 
C

∗

= (C
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1
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T

. We then modify the mean parameters for the down-
stream genes in synthetic knockout cells as ̂

μ

ij

=

̂

α

i

+
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β
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× C

∗

j

. For the 
100% perturbation efficiency, we set C* to a zero vector of length NKO 
and modify ̂

μ

ij

 similarly. We do not modify mean parameters for 
WT cells, non-downstream genes, dispersion parameters or 
zero-inflation probability. The N-dimensional vector S represents 
Nelfb’s counts in the synthetic cells, with S

j

= C

∗

j

 for j ∈ {1, … , N

KO

}  
(knockout cells) and Sj = Cj for j ∈ {N

KO

+ 1, … ,N} (WT cells).

Step 4: generating synthetic data with the fitted model and modi-
fied parameters. First, we independently sample NWT Gaussian vectors 
of length p from the p-dimensional multivariate Gaussian distribution 
N (0,

̂

R (K

j

= 0)) and NKO Gaussian vectors from N (0,

̂

R (K

j

= 1)). These 
vectors are stacked by row into a p × N Gaussian matrix ˜Z . Next, using 
the parameter estimates (modified or not) from step 3, we convert the 
Gaussian matrix ˜Z  into a p × N ZINB count matrix ̃Y  as
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Last, we combine ̃Y  with S by row to form a (p + 1) × N synthetic 
count matrix (

[

̃

Y

S

]

).

Dosage analysis of essential gene perturbations
Data preprocessing. The essential gene Perturb-seq dataset on K562 
cells is downloaded from the original study. The normalized gene 
expression, whose processing method is described in the original 
study, is used directly. We further normalize the gene expression of 
each perturbed gene to [0,1], where 0 is the minimum expression of 
that gene and 1 represents the median gene expression of the per-
turbed gene in control cells expressing non-targeting guides. To 
address the noisy and sparse nature of scRNA-seq datasets, we only 
focus on genes whose corresponding gRNAs are expressed in at least 
100 cells. For each perturbed gene, we further define ten expression 
bins on the basis of the expression quantiles of each gene (0, 10 to 
100%), and calculate the average PS value and gene expression for 
these ten bins. These values will be used to fit the Hill equation as 
described below.

Hill equation. We use Hill equation to fit the expression-PS curve 
(Fig. 3d) and classify genes into either buffered or sensitive categories31. 
A similar approach has been applied to classify sensitive or buffered 
enhancers bound by SOX9. We use the four-parameter log–logistic 
function (LL.4) in the R package drc (v.3.0-1) for Hill curve fitting. The 
four-parameter log–logistic function is defined as:

Hill(x) = c +

d − c

1 + exp ( b × (log (x) − log (e))

where x is the normalized expression of the gene being perturbed, and 
c, d represents the lower and upper bound, respectively. b and e are two 
other parameters of the Hill curve. In particular, x = e indicates the value 
where half of the maximum PS score is reached (that is, (c + d)/2), and is 
defined as the ED50 value of the Hill curve. Buffered (or sensitive) genes 
are defined as those whose ED50 ≤ 0.5 (or >0.5), respectively, represent-
ing whether a greater (or smaller) than 50% expression reduction of the 
perturbed gene is needed to reach 50% perturbation effect.

Filtering. Because Hill curve fitting does not always generate desired 
curves, we only keep genes that satisfy the following condition: Hill (
x = 0) − Hill(x = 1.0) ≥ 0.2. This heuristic filtering assumes a gene with 
strong expression perturbation (x = 0.0) should have a larger PS value 
than a gene with little or no expression perturbation (x = 1.0).
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Genome-scale Perturb-seq on Jurkat cells
Perturb-seq. We performed genome-scale Perturb-seq on Jur-
kat E6 cells expressing dCas9-KRAB. Cells were transduced with a 
genome-wide CRISPRi CROP-seq library at a high MOI and split into 
untreated and activated populations (stimulated with anti-TCR and 
anti-CD28 antibodies for 24 h). Cells were labelled with cell hashing 
antibodies (Supplementary Table 6) and loaded into 16 channels of 
a 10X Chromium X instrument, with 115,000 cells per channel and 
expected recovery rate of 60,000 cells per channel (including 24% mul-
tiples). Samples were pooled unequally (10% untreated, 90% treated) 
and sequenced using NovaSeq S4 PE100 with asymmetric read mode 
(R1, 28 cycles; R2, 172 cycles at 9,000–10,000 input reads per cell.

sgRNA library design. The genome-wide CRISPRi library targeted the 
TSS coordinates, calculated from publicly available FANTOM CAGE 
peaks data. In total, 18,595 genes were targeted, with four sgRNAs 
per gene. An additional library targeting 3,220 was designed using 
Jurkat-specific TSS, which were calculated from public Jurkat CAGE-seq 
datasets. The final library contained 3,220 genes with eight sgRNAs per 
gene and 15,375 genes with four sgRNAs per gene.

Data preprocessing. We obtained high-quality scRNA-seq data from 
more than 586,000 single cells, with a median of 13 guides detected per 
cell and an average of 400 cells per gene perturbation. Transcriptomic 
reads were mapped using STAR and STAR solo (v.2.7.10a) against a cus-
tom gtf annotation (gencode.v34, hg38). Mapping was also performed 
against custom references for sgRNAs and hash labels. Filtering was 
done using EmptyDrops, and an initial Seurat object was created with 
min.cells = 5 and min.features = 10. Outliers were removed on the basis 
of mitochondrial and mRNA content. Cell labels were assigned using the 
deMULTIplex method, keeping only cells with exactly one known label. 
sgRNA calling was conducted using a binomial test using a 0.05 thresh-
old on Benjamini–Hochberg corrected P values. Data from 16 channels 
were merged, normalized and scaled using Seurat functions, followed 
by cell cycle scoring, principal components analysis (PCA) and UMAP.

Comparison with pooled CRISPR screens. We analysed published 
genome-scale T cell CRISPR screens28 using MAGeCK59 (v.0.5.9.5). Posi-
tive genes (affecting T cell stimulation) were defined by a false discov-
ery rate of <0.01 (negative selection), and negative genes (not affecting 
T cell stimulation) were defined by robust ranking aggregation (RRA) 
scores >0.5 and median log fold changes <0.1. Genes affecting Jur-
kat growth and/or viability, extracted from DepMap60 Jurkat CRISPR 
screen, were excluded. A total of 385 positive and 1,297 negative genes 
were identified for further analysis.

HIV latency Perturb-seq
We used a previously established Jurkat cell line model of HIV latency36, 
where an HIV vector links GFP to the LTR promoter to measure viral 
transcription reactivation and HIV latency reversal. Cas9-expressing 
cells were transduced with a lenti-sgRNA library (MilliporeSigma; LV14, 
U6-gRNA-10x:EF1a-Puro-2a-BFP) targeting ten genes (three gRNAs per 
gene). The library contained five positive regulators (NFKB1, CCNT1, 
PRKCA, TLR1, MAP3K14) and five negative regulators (NFKBIA, NELFE, 
HDAC2, BRD4, BIRC2) of HIV transcription, along with non-targeting 
controls. Then 850,000 cells were transduced at an MOI of 0.3 using 
8 µg ml−1 polybrene in 2 ml of Roswell Park Memorial Institute medium 
containing 10% FBS and 1% penicillin–streptomycin. Media was replaced 
after 24 h, and 2 days posttransduction, cells were selected with 
1.5 µg ml−1 puromycin for 5 days. Postselection, cells were split into three 
groups: unstimulated, and two-thirds stimulated with PMA/I (50 ng ml−1 
PMA and 1 µM Ionomycin) for 16 h. Stimulated cells were sorted into 
GFP+ and GFP− populations, and all three groups were analysed using 
10X Genomics single-cell sequencing protocol. Sequencing data (gene 
expression and CRISPR guide capture) were processed with Cell Ranger 

(v.6.1.2), and feature-barcode matrices from the three groups were 
merged for analysis using Seurat (v.4.3.1). Cells expressing more than 
7,500 or fewer than 200 genes, or those with >15% mitochondrial reads 
were excluded. Cells with multiple sgRNAs (due to multiplet droplets 
or transductions) were also removed. After quality control, data were 
normalized and scaled. PCA was performed on the top 2,000 highly vari-
able genes, followed by clustering and UMAP embeddings. Biological 
significance of clusters was explored using Enrichr61.

Pancreatic KO clones and pooled scRNA-seq
Culture of hES.  Experiments were performed using H1 
(NIHhESC-10-0043) and HUES8 (NIHhESC-09–0021) hES cell lines, 
following National Institutes of Health (NIH) guidelines and Tri-SCI 
ESCRO Committee approval. Generation of KO hES cells was described 
in published studies, including HHEX KO H1 and HUES8 cell lines45, 
FOXA1 KO HUES8 cell lines62, OTUD5 KO HUES8 cell lines and CCDC6 KO 
H1 cell lines46. Cells were regularly confirmed to be mycoplasma-free by 
the MSKCC Antibody & Bioresource Core Facility. KO and WT hES cells 
were maintained in Essential 8 (E8) medium (Thermo Fisher, A1517001) 
on vitronectin (Thermo Fisher, A14700) precoated plates at 37 °C with 
5% CO2. The ROCK inhibitor Y-27632 (5 µM; Selleck Chemicals, S1049) 
was added to E8 medium for 1 day after passaging or thawing.

hES cell-directed pancreatic differentiation. hES cells were seeded 
at 2.3 × 105 cells per cm2 on vitronectin-coated plates in E8 medium 
with 10 µM Y-27632. After 24 h, cells were washed with PBS and differ-
entiated through a four-stage protocol45. In stage 1 (definitive endo-
derm, 3 days), cells were cultured in S1/2 medium supplemented with 
100 ng ml−1 Activin A (Bon Opus Biosciences) and 5 µM CHIR99021 
(04-0004-10, Stemgent) for 1 day, followed by 100 ng ml−1 Activin A 
for the next 2 days. In stage 2 (primitive gut tube, 2 days), cells were 
cultured in S1/2 medium supplemented with 50 ng ml−1 human fibro-
blast growth factor (KGF/FGF-7, AF-100-19, PeproTech) and 0.25 mM 
Vitamin C (VitC, Sigma-Aldrich, A4544). For stage 3 (PP1, 2 days), cells 
were cultured in S3/4 medium supplemented with 50 ng ml−1 KGF, 
0.25 mM VitC and 1 µM retinoic acid (R2625, MilliporeSigma). In stage 
4 (PP2, 4 days), cells were cultured in S3/4 medium supplemented with 
50 ng ml−1 KGF, 0.1 µM retinoic acid, 200 nM LDN193189 (Stemgent, 
04-0019), 0.25 µM SANT-1 (Sigma, S4572), 0.25 mM VitC and 200 nM 
TPB (Cell-permeable PKC activator, EMD Millipore, 565740). The base 
medium formulations were as follows: S1/2 medium consisted of 500 ml 
of MCDB 131 (15-100-CV, Cellgro), supplemented with 2 ml of 45% glu-
cose (G7528, MilliporeSigma), 0.75 g of sodium bicarbonate (S5761, 
MilliporeSigma), 2.5 g of bovine serum albumin (BSA) (68700, Proliant) 
and 5 ml of GlutaMAX (35050079, Invitrogen). S3/4 medium consisted 
of 500 ml MCDB 131 supplemented with 0.52 ml of 45% glucose, 0.875 g 
of sodium bicarbonate, 10 g of BSA, 2.5 ml ITS-X and 5 ml of GlutaMAX.

Cell infection with LARRY barcode virus. LARRY barcode constructs 
(Addgene, 140024) were transfected into 293T cells to generate lenti-
virus. KO and WT hES cell clones were infected with unique barcodes 
at low MOI. GFP+ cells were sorted and cultured in E8 medium.

Pooled scRNA-seq. One day before differentiation, ten barcoded hES 
cell clones were mixed in equal numbers and seeded at 2.3 × 105 cells 
per cm2. Cells were collected at DE and PP2 stages, frozen and later 
thawed for scRNA-seq. GFP+ cells were collected and processed using 
the 10X Genomics platform. Complementary DNA and LARRY barcode 
libraries were generated separately using specific primers (forward 
CTACACGACGCTCTTCCGATCT; reverse GTGACTGGAGTTCAGACGT-
GTGCTCTTCCGATCTtaaccgttgctaggagagaccataT).

Data analysis. Transcriptome and barcode libraries were processed 
with Cell Ranger (v.6.1.2) and analysed using Seurat (v.4.3.1). Cells with 
>7,000 or <200 genes, or >20% mitochondrial reads were excluded. 
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Singlets were identified on the basis of feature-barcode counts, and 
cells with multiple barcodes were removed, resulting in 20,678 cells for 
analysis. Normalization, PCA, clustering and UMAP were performed on 
the top 2,000 highly variable genes.

Flow cytometry. Cells were dissociated using TrypLE Select and resus-
pended in fluorescence activated cell sorting buffer (5% FBS, 5 mM 
EDTA in PBS). Live/Dead Fixable Violet cell stain (Invitrogen, L34955) 
was used to discriminate dead cells from live cells. Permeabilization 
and fixation was performed at room temperature for 1 h, followed by 
antibody in permeabilization buffer. Antibodies for this study include 
HNF4A, Novus Biologicals, NBP2-67679, 1:200; PDX1, R&D Systems, 
AF2419, 1:500, Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed 
Secondary Antibody, Thermo Fisher, 1:500; Donkey anti-goat IgG 
(H+L) Highly Cross-Adsorbed Secondary Antibody, Thermo Fisher, 
1:500. Cells were then analysed using BD LSRFortessa. Data analysis 
and figures were generated using FlowJo (v.10), with the gating strategy 
shown in Extended Data Fig. 10c.

Statistics and reproducibility
Sample sizes (cell numbers) were not predetermined using statistical 
methods. Experiments were not randomized, and investigators were 
not blinded during allocation or outcome assessment. Cells with mul-
tiple barcodes were excluded, and rigorous quality control measures 
were applied to remove low-quality cells or empty droplets. Statistical 
methods for calculating P values are detailed in the figure legends or 
methods section.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data generated or analysed in this study are included in this 
article and its Supplementary Tables. Sequencing data, including 
genome-scale Perturb-seq, HIV Perturb-seq and pooled scRNA-seq, 
are available at Gene Expression Omnibus under accession num-
ber GSE247601. Reanalysed previously published data are available 
under the accession numbers: GSE120861, GSE132080, GSE153056, 
GSE182862 and SRP158611. Source data are provided with this paper.

Code availability
We implemented this framework as part of the scMAGeCK pipeline15. 
The PS source code, documentation and tutorials can be found on 
GitHub (https://github.com/davidliwei/PS).
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Extended Data Fig. 1 | Benchmark different methods using simulated and 
real datasets. a, Steps to generate simulated datasets using scDesign3 from a 
real scRNA-seq dataset that knocks out Nelfb gene. b-c, Benchmark results of 
different methods on another published CRISPRi-based Perturb-seq, where 
mismatches are introduced into guides to attenuate perturbation effects. The 
Area Under the Curve (AUC) values between the predicted scores and predicted 

sgRNA activities (b) and the Pearson Correlation Coefficient (PCC) values 
between the predicted scores of each method and the expressions of perturbed 
genes are reported for every perturbed (c), using the prediction methods 
provided in the original study26. Source numerical data are available in source 
data.
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Extended Data Fig. 2 | A genome-scale Perturb-seq. a-b, The distribution of PS and mixscape predicted scores of top hits including CD247 (a) and LCK (b) in the 
pooled screen. c-d, The correlation between PSs and perturbed gene expression. For CD247 (c), PCC = -0.56, p = 0, n = 4,772, and for LCK (d), PCC = -0.46, p = 2.41e-140, 
n = 2,728.
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Extended Data Fig. 3 | Predictions of PDL1 protein expression from a published 
ECCITE-seq dataset. The figure displays the ROC curve (first panel), correlations 
between PS results and PDL1 protein expression (middle panel), and correlations 
between mixscape results and PDL1 protein expression (third panel) for each 
gene. The correlations are separated by cell classifications: NP (non-perturbed), 
defined as mixscape score <= 0.5, and KO (knockout), defined as mixscape score 
> 0.5. For a fair comparison, mixscape classification results were used to plot 
PSs (middle panel). For CUL3, the PCC p-values for PS are p = 1.63e-10 for NP cells 

and p = 8.28e-11 for KO cells, while for mixscape, the p-values are p = 0.57 for NP 
cells and p = 0.003 for KO cells. For IFNGR1, the PCC p-values for both PS and 
mixscape are p = 0 for both NP and KO cells. For MYC, the PCC p-values for PS are 
p = 0.011 for NP cells and p = 0.014 for KO cells, and for mixscape, the p-values are 
p = 0.849 for NP cells and p = 0.872 for KO cells. For BRD4, the PCC p-values for PS 
are p = 0.011 for NP cells and p = 0 for KO cells, while for mixscape, the p-values 
are p = 0.767 for NP cells and p = 0.054 for KO cells. Source numerical data are 
available in source data.
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Extended Data Fig. 4 | Buffered genes and sensitive genes. a, the mean 
expression and PS value, calculated for each of the 10 expression quantiles, are 
used for fitting the Hill equation in RPL5, a buffered gene. b, The distribution of 
PS scores within each of the 10 expression quantiles. c-e, The Hill equation curve 
and the distribution of PS score for HSPA5, a sensitive gene. f, A gene (BRD4) 

whose expression has no correlation with PS (p = 0.41). g-j, the log fold changes 
of gene expressions upon perturbing genes within the same protein complex, 
including ribosomal subunits (g), proteosome (from genome-scale Perturb-seq 
in Fig. 4a; h), RNA polymerase (i) and mediator complex (j). Data in g-j come from 
essential gene Perturb-seq.
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Extended Data Fig. 5 | Characterization of BRD4-mediated transcriptional 
responses in HIV Perturb-seq. a, The number of genes (nFeature_RNA), UMI 
counts (nCount_RNA) and the fraction of mitochondrial RNAs in three different 
conditions. b, Clustering results. c, Enriched Gene Ontology (GO) terms of cluster 
8. d, The distribution of BRD4-targeting gRNAs. e, The expression distribution 

of BRD4 signature genes in cluster 8 vs other clusters (p = 4.63e-20). Only cells 
express BRD4-targeting gRNAs are included. f, Differential expression results 
between BRD4 PS+ cells vs BRD4 PS- cells. Source numerical data are available in 
source data.
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Extended Data Fig. 6 | CCNT1’s Effect on HIV Transcription in Perturb-seq. 
a, The distribution of CCNT1 mixscape score, calculated by mixscape. b, The 
expressions of CCNT1 (left) and CCNT1-targeting gRNAs (right). c, Differential 
expression results between CCNT1-targeting cells and non-targeting control 
cells in two different cell states. Dotted horizonal line indicates the position 
corresponding to adjusted p-val=0.001. d, The expressions of NFKB1. e, The 
quantitative perturbation-expression relationship between GFP and CCNT1 PS, 

similar with Fig. 6e. The PCC p-values (calculated from Pearson’s test) are 0.37, 
5.9e-6, and 0.04 for DMSO, GFP- and GFP+ conditions, respectively. f, CD69 
mRNA expression correlates with the continuous, stimulated state of T cells. 
g-j, distribution of PS values in CD247 (g) and PDCD1 (i), and the cumulative 
distribution PS, grouped by CD69 expression quantiles (h,j). Wilcox test p values 
for CD247 is 1.26e-51 and for PDCD1 is 1.3e-3.
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Extended Data Fig. 7 | Cell type assignment based on known expression 
markers of different cell types in pancreatic differentiation scRNA-seq. Cell 
types are assigned based on known expression markers in single-cell RNA-seq 

data from pancreatic differentiation. The figure shows the identification of 
various cell types using specific marker genes, helping to categorize different 
stages of pancreatic cell development.
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Extended Data Fig. 8 | DEG analysis. a-b, The distribution of FOXA1 PSs across two different clones. c, The expression pattern of FOXA1. d-e, The DEG analysis results of 
CCDC6 knockout clones vs. wild-type clones in different cell types. f, Overlap of statistically significant DEGs (adj p < 0.05, |log2FC | >0.25) in DE and LV/DUO cell types.
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Extended Data Fig. 9 | Different CCDC6 functions. a-b, The two patterns of 
CCDC6 PSs in LV/DUO (a) and DE in transition (b) cell types. c-d, The distribution 
of PS across different expression quantiles of POU5F1 (PCC = 0.22 p = 7.19e-
66) and SOX17 (PCC = -0.19, p = 1.75e-46), two known factors that capture 
continuous cell state during DE in transition. For each gene, 5 expression 

quantiles are used, and 1 indicates the lowest expression quantile of that gene. 
e-h, Additional enriched terms using Enrichr on DEGs of CCDC6 knockout. i, Flow 
cytometry analysis of PDX1 and HNF4A expression upon CCDC6 knockout. One 
representative plot of three biological replicates is shown.
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Extended Data Fig. 10 | Choosing the best parameters in PS and gating 
strategy. a, The effect of the number of input genes in PS on the % correct cells 
in simulation datasets using different perturbation efficiencies and different 

number of DEGs. b, The effect of different lambda values on false positive rate. 
The false positive rates of different lambda values in two datasets are shown.  
c, Gating strategy for FACS sorting.
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