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THE BIGGER PICTURE In data science education, two analysis strategies, hypothesis testing and binary
classification, are mostly covered in different courses and textbooks. In real data application, it can be puz-
zling whether a binary decision problem should be formulated as hypothesis testing or binary classification.
This article aims to disentangle the puzzle for data science students and researchers by offering practical
guidelines for choosing between the two strategies.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY

Making binary decisions is a common data analytical task in scientific research and industrial applications. In
data sciences, there are two related but distinct strategies: hypothesis testing and binary classification. In
practice, how to choose between these two strategies can be unclear and rather confusing. Here, we sum-
marize key distinctions between these two strategies in three aspects and list five practical guidelines for
data analysts to choose the appropriate strategy for specific analysis needs. We demonstrate the use of
those guidelines in a cancer driver gene prediction example.
INTRODUCTION

Making binary decisions is one of the most common human

cognitive activities. Binary decisions are everywhere: from

spam detection in IT technologies to biomarker identification in

medical research. For example, facing the current COVID-19

pandemic, medical doctors need to make a critical binary deci-

sion: whether an infected patient needs hospitalization or not.

Living in a big data era, how can we make rational binary deci-

sions from massive data?

In data sciences, two powerful strategies have been devel-

oped to assist binary decisions: the statistical hypothesis

testing1 and the machine learning binary classification.2 While

both strategies are popular and have achieved profound suc-

cesses in various applications, their distinctions are largely

obscure to practitioners and even data scientists sometimes.

An important reason is that the two strategies are usually intro-

duced in different classes and covered by different textbooks,

with few exceptions, such as ‘‘All of Statistics: A Concise

Course in Statistical Inference’’ by Wasserman.3 Another

source of confusion is the ambiguous use of the term ‘‘test’’

to represent both strategies in our daily life, such as in ‘‘statis-

tical test’’ and ‘‘COVID-19 test,’’ where the latter is, in fact, bi-
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nary classification and is referred to as ‘‘COVID-19 diagnosis’’

in this article.

There are online discussions about the relationship between

binary classification and hypothesis testing; however, they focus

on specific cases and are not unified into a coherent picture. For

example, one discussion compares the Student’s t test, a spe-

cific statistical test, with the support vector machines, a specific

binary classification algorithm.4 Another discussion compares

the asymmetric nature of hypothesis testing with the general

lack of asymmetry in binary classification.5 Besides online dis-

cussions, there are research works that borrow ideas from hy-

pothesis testing to develop binary classification algorithms,6,7

but these works do not aim to link or compare the two strategies.

Here, we attempt to make the first efforts to summarize key

distinctions between hypothesis testing in frequentist statistics

(our discussion does not pertain to Bayesian hypothesis testing8)

and binary classification in machine learning. We also provide

five practical guidelines for data analysts to choose between

the two strategies. In our discussion, we frequently use

biomarker detection and disease diagnosis as examples of hy-

pothesis testing and binary classification, respectively. In these

two examples, instances refer to patients, and features refer to

patients’ diagnostic measurements, such as blood pressure
PATTER 1, October 9, 2020 ª 2020 The Author(s). 1
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and gene expression levels. Note that instances are often

referred to as ‘‘individuals’’ in biomedical sciences, ‘‘objects’’

in engineering, ‘‘observations’’ in statistics, and ‘‘data points’’

in data sciences. Althoughmany researchers outside of statistics

refer to instances as ‘‘samples’’ (in the plural form), here we stick

with the classic statistical definition: a ‘‘sample’’ is a collection of

instances. Features are also referred to as ‘‘variables’’ and

‘‘covariates’’ in statistics and ‘‘attributes’’ in engineering.

DISTINCTIONS BETWEEN HYPOTHESIS TESTING AND
BINARY CLASSIFICATION

Hypothesis testing and binary classification are rooted in two

different cultures: inference and prediction, each of which has

been extensively studied in statistics and machine learning,

respectively, in the historical development of data sciences.9 In

brief, an inferential task aims to infer an unknown truth from

observed data, and hypothesis testing is a specific framework

whose inferential target is a binary truth, i.e., an answer to a

yes/no question. For example, deciding whether a gene is an

effective COVID-19 biomarker in the blood is an inferential ques-

tion, whose answer is unobservable. In contrast, a prediction

task aims to predict an unobserved property of an instance,

such as a patient or an object, based on the available features

of this instance. Such prediction relies on building a trustworthy

relationship, i.e., a prediction rule, from the input features to the

target property, which must be based on human knowledge

(throughout the human history) and/or established from data (af-

ter computing devices were developed). Binary classification is a

special type of prediction whose target property is binary, and

COVID-19 diagnosis is an example. In screening patients for

COVID-19 exams,medical doctorsmake binary decisions based

on patients’ symptoms (input features), and their decision rules

are learned fromprevious patients’ diagnostic data and themed-

ical literature.

Hypothesis testing is built upon the concept of statistical sig-

nificance, which intuitively means that the data we observe pre-

sent strong evidence against a presumed null hypothesis, the

default. In the example of testing whether a gene is a COVID-

19 biomarker in blood, the null hypothesis is that this gene

does not exhibit differential expression in the blood of uninfected

individuals and COVID-19 patients. This formulation reflects a

conservative attitude: we do not want to call the gene a

biomarker unless its expression difference is large enough be-

tween the healthy and diseased patients in our collected data.

Statistical hypothesis testing provides a formal framework for

deciding a threshold on the expression difference so that the

gene can be identified as a biomarker with the desired confi-

dence. A crucial fact about hypothesis testing is that the null

and alternative hypotheses pertain to a property of an unseen

population. As a result, we cannot knowwhether the null hypoth-

esis holds or not. What we have access to is instances and their

features, i.e., data, from the population, and hypothesis testing

allows us to infer how unlikely the data are generated from the

null hypothesis.

In machine learning, binary classification belongs to super-

vised learning, as it is supervised by quality training data that

contain training instances from two classes, and each training

instance is labeled as class 0 or 1 with a set of feature values.
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A binary decision rule is first constructed from the training data

and next applied to predict unobserved binary labels of new in-

stances from their observed feature values. Binary classification

embodies a large class of algorithms that automatically learn

prediction rules from training data. In an ideal scenario, a predic-

tion rule follows a scientific law, such as in Newton’s second law

of motion, where the acceleration of an object is determined by

the net force acting on the object and the mass of the object.

However, most prediction tasks do not have scientific laws to

follow, and the prediction rules learned from data could be useful

but not necessarily revealing scientific truth.10 For example, we

can effectively predict the coming of autumn from our observa-

tion of falling leaves, which, however, do not cause autumn to

come. Nevertheless, the lack of scientific interpretation is often

not a major concern in many industrial applications, such as

spam detection and image recognition, where prediction

algorithms have achieved tremendous successes, promoting

machine learning to become a spotlight discipline with broad im-

pacts on everyone’s life. Still, a necessary condition for binary

classification to succeed is that training instances are good rep-

resentatives of new instances to make predictions for. A noto-

rious cautionary tale is Google Flu Trends, which mistakenly pre-

dicted a nonexistent flu epidemic because its training data did

not well represent the long-term dynamics of flu outbreaks.11,8

We summarize the key distinctions between hypothesis

testing and binary classification in three aspects: data in relation

to binary decisions, construction of decision rules, and evalua-

tion criteria. Our discussion is centered around four concepts:

binary questions, binary answers, decision rules, and binary de-

cisions, which we define for each strategy in Table 1. We note

that these four concepts belong to three stages in a typical

data analysis: conceptual formulation (when binary questions

and binary answers are formulated in a researcher’s mind), anal-

ysis (when a decision rule is constructed), and conclusion (when

a binary decision is made).

Data in Relation to Binary Decisions
In this aspect, hypothesis testing and binary classification have

two distinctions: (1) number of instances to make one decision

given a decision rule and (2) availability of known binary answers

in data. In hypothesis testing, each binary decision—rejecting a

null hypothesis or not—is made from a collection of instances,

called a sample in statistics. For example, to investigate whether

a gene is a COVID-19 biomarker in blood, a researcher needs to

collect blood from multiple uninfected and infected patients,

whose number is called the sample size, and measure this

gene’s expression within. Then the binary decision regarding

whether to call this gene an informative biomarker is made jointly

from the collected measurements. If multiple genes are tested

simultaneously, we are in a situation called multiple testing,12

which is commonly used in large-scale exploratory studies. No

matter the number of tests being one or many, the number of in-

stances used for each test should better exceed one in the prac-

tices of hypothesis testing. In fact, the greater the number of in-

stances, the more we trust our decisions. We further discuss the

impact of the number of instances on decision rules in the third

aspect (see below: ‘‘Evaluation Criteria for Decision Rules’’).

In contrast, binary classification makes a binary decision for

every instance that needs a binary label. In COVID-19 diagnosis,



Table 1. Four Concepts under Hypothesis Testing and Binary

Classification

Concept

Hypothesis

Testing

Binary

Classification

Binary

question

Is the null

hypothesis false?

(unanswerable)

Does the instance

have a label 1?

Binary

answer

0

(no)

The null

hypothesis is true

(unobservable)

The instance has

a label 0

1 (yes) The null

hypothesis is false

(unobservable)

The instance has

a label 1

Decision

rule

A statistical test

that inputs data

and outputs a p

value, which is

compared against

a user-specified

significance level a

A trained

classifier that

inputs an

unlabeled instance’s

feature values

and outputs a

predicted label

Binary

decision

0 Do not reject the

null hypothesis

Label the

instance as 0

1 Reject the null

hypothesis

Label the

instance as 1
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a doctor needs to decide which patients should be hospitalized,

and each patient will receive one decision. In other words, the

number of instances in need of binary labels equals the number

of decisions. Here training instances are not counted, because

they already have binary labels. In practice, binary classification

can be easily confused with multiple testing, as both strategies

make multiple binary decisions (see the cancer driver gene pre-

diction example in the section ‘‘Cancer Driver Gene Prediction:

Hypothesis Testing or Binary Classification?’’ below). A way to

distinguish the two strategies is to count the number of input in-

stances used to make one decision given a decision rule, whose

construction is discussed below in the section ‘‘Construction of

Decision Rules.’’

Another distinction is the availability of known answers to

binary questions. Such answers are always lacking for hypothe-

sis-testing questions but available in training data for binary clas-

sification. In hypothesis testing, a binary question is regarding

the validity of a null hypothesis, and the answer to this question

is an unobservable truth about an unseen population. For

example, we do not know a prioriwhether a gene is a biomarker;

otherwise, we would not need to do hypothesis testing. Howev-

er, the unobservable binary answer is often mistaken as a binary

decision—whether or not to reject the null hypothesis—an action

taken based on a sample of instances and dependent upon a de-

cision rule (Table 1). This mistake is commonly seen in scientific

research papers that claim, ‘‘the null hypothesis is correct (or

incorrect) because the p value is large (or small).’’ Here, we raise

a strong caution against this misuse.

Unlike in hypothesis testing, a binary question in classification

is regarding the binary label of an instance, and we already have

known answers (labels) for training instances, which we utilize to

build a decision rule to predict labels of unlabeled instances. For

example, doctors diagnose new patients based on previous pa-

tients’ data with diagnosis decisions. It is worth emphasizing that
a decision rule cannot be constructed if all training instances

have the same label, say 0; hence, training data must contain

both binary labels. In brief, hypothesis testing has no concept

of training data, because data contain no answers to binary

questions being asked; in contrast, training data serve as a crit-

ical component in binary classification.

Construction of Decision Rules
In hypothesis testing, the construction of a decision rule, also

known as a statistical test, relies on three essential components:

a test statistic that summarizes the data, the distribution of the

test statistic under the null hypothesis, and a user-specified

significance level a, which indicates the tolerable type I error,

i.e., the conditional probability of mistakenly rejecting the null

hypothesis given that it holds. (In many textbooks and

practices, a is set to 0.05 by convention. However, we want to

emphasize that this convention is just an arbitrary choice and

should not be taken as the ritual. For example, there is a recent

proposal to change the ‘‘default’’ value of a to 0.005,13 yet both

0.05 and 0.005 are arbitrary thresholds.) The first two compo-

nents lead to a p value between 0 and 1, with a smaller value indi-

cating stronger evidence against the null hypothesis. Then the

null hypothesis is rejected if the p value does not exceed a.

Numerous statistical tests have been developed since the

advent of statistics, and a few of them, such as Student’s t test

and Wilcoxon’s rank-sum test, have become standard practices

in data analysis. Because of the wide popularity and meanwhile

common misuses of hypothesis testing, there are recent in-

depth and extensive discussions on the proper use and interpre-

tation of p values in and outside of the statistics community.13,14

In multiple testing, the choice of a value is determined by an

overall objective on all tests together, and two widely used objec-

tives are the family-wise error rate (FWER) (the probability of

wrongly rejecting at least one null hypothesis) and the false

discovery rate (FDR) (the expected proportion of falsely rejected

hypotheses among all rejections).8 (In high-throughput data ana-

lyses common in genomics and proteomics, the FDR is the

most popular objective, while the FWER is rarely used due to its

over-conservativeness. However, the FWER is still frequently

used in scientific research where a moderate [e.g., fewer than

20] number of hypothesis tests are performed together.) The Bon-

ferroni correction is a conservative but guaranteed approach to

control the FWER.15 The Benjamini-Hochberg procedure is a

widely used approach to control the FDR,16 and there is a recent

approach, knockoffs, to control the FDR when exact p values

cannot be achieved.17,18 (Note that the FDR is a frequentist crite-

rion. Under the Bayesian framework, empirical Bayes criteria,

including the positive false discovery rate (pFDR),19 the local false

discovery rate (FDR),20 and the local false sign rate,21 have been

developed to control the number of false positives in multiple

testing.) It is worth noting that the construction of a decision rule

in hypothesis testing does not necessarily require access to

data. For example, in the classic Student’s two-sample t test, un-

der the assumption that the two samples (sets of instances) are

generated from twonormal distributions, the decision rule only de-

pends on the two sample sizes and a user-specified a value (see

Box 1). When researchers have collected a gene’s expression

data in many diseased and healthy patients and have verified

that the two samples approximately follow normal distributions,
PATTER 1, October 9, 2020 3



Box 1. Example: Decision Rule of the Student’s Two-Sample t Test

Suppose that we have two samples of sizes 10 and 12 from two normal distributions, and we are interested in whether the two

normal distributions have the same mean. Then the null hypothesis is that the two normal distributions have the same mean,

and the alternative hypothesis is the opposite. The test statistic—the two-sample t statistic—follows the t distribution with 20 de-

grees of freedom (t20) under the null hypothesis. Then given a significance level a˛ð0;1Þ, we would reject the null hypothesis if the t

statistic has an absolute value greater than or equal to F�1
t20

ð1 � a =2Þ, i.e., the ð1 � a =2Þ-th quantile of the t20 distribution. For

example, if a = 0:05, F�1
t20

ð1 � a =2Þ = 2:085963. This decision rule is equivalent to that the p value is less than or equal to a.

Note that this decision rule does not depend on any observed t statistic value calculated from a dataset. However, a decision re-

quires an observed t statistic value. For example, if the t statistic has an observed value of 3, then we would reject the null hypoth-

esis at a = 0:05.
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they can simply apply the two-sample t test, a readily available de-

cision rule, to their data and decide whether this gene can be

called a biomarker at their desired a value. If the normal distribu-

tional assumptiondoesnot seem to hold, researchersmay use the

Wilcoxon rank-sum test that does not have this assumption but

only requires all the instances to be independent. Hence, in appli-

cations of hypothesis testing, themost critical step is to choose an

appropriate statistical test, i.e., decision rule, by checking the

test’s underlying assumptions on data distribution. Meanwhile,

the construction of valid new decision rules ismostly the job of ac-

ademic statisticians.

In contrast to hypothesis testing, we do not usually have

available decision rules to choose from in binary classification;

instead, we need to construct a decision rule from training

data in most applications. Image classification and speech

recognition are probably two famous exceptions, where su-

perb decision rules (classifiers) have been trained from indus-

try-standard massive image and speech datasets that well

represent almost all possible images and speeches in need

of labeling (decisions) in daily applications. Yet in biomedical

applications, such as COVID-19 diagnosis, a good decision

rule is often lacking but needed to be constructed from in-

house training data that represent future local patients in

need of diagnosis. Despite its reliance on quality training

data that contain a reasonable number of instances with

accurate binary labels, binary classification is fortunate to

have access to dozens of powerful algorithms that can be

directly applied to training data to construct a decision rule.

Famous algorithms include the logistic regression, support

vector machines, random forests, gradient boosting, and the

resurgent neural networks (and its buzzword version ‘‘deep

learning’’).2,22 As in hypothesis testing, the most critical step

in applications of binary classification is the choice of an

appropriate algorithm to build a decision rule from training

data, while the development of new algorithms is a focus of

data science researchers.

Evaluation Criteria for Decision Rules
Realizing the many possible ways of constructing decision rules

in both hypothesis testing and binary classification, users face a

challenging question in data analysis: How should I compare and

evaluate decision rules? In hypothesis testing, statistical tests

(decision rules) designed for the same null hypothesis are

compared in terms of power: the conditional probability of

correctly rejecting the null hypothesis given that it does not

hold, e.g., correctly identifying an effective biomarker. Under
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the same significance level a, the larger the power, the better

the test. The Neyman-Pearson lemma provides the theoretical

foundation for themost powerful test; however, inmany practical

scenarios, the Neyman-Pearson lemma does not apply and the

most powerful test is not achievable, so statisticians have put

continuous efforts into developing more powerful tests, such

as in the flourishing field of statistical genetics.23 For users, the

power of a statistical test is not observable from data, which

contain no information regarding the null hypothesis being true

or not. Hence, the only evaluation criterion for users to choose

among many statistical tests is whether their data seem to fit

each test’s underlying assumptions on data distribution, a check

that can be quite tricky sometimes and may require consulta-

tions with statisticians. If many tests pass this check, most users

would choose a popular test. An advanced user might opt for the

test that gives the smallest p value, i.e., the strongest evidence

against the null hypothesis. However, this option should be

used with extreme caution, as it could easily become ‘‘p-hack-

ing’’ or data dredging if without sufficient justification.24

In binary classification, the evaluation criteria are more trans-

parent and easier to understand, as they all rely on some sorts

of prediction accuracy of a decision rule on validation data, which

contain binary labels, represent future instances that need label-

ing, and most importantly are not part of the training data. Users

may wonder: What if I only have one set of data with binary la-

bels? A straightforward answer is to randomly split the data

into training and validation cohorts, use the training cohort to

construct a decision rule, and apply the rule to the validation

cohort to evaluate a chosen measure of prediction accuracy.

(However, as in the Google Flu Trends example, if the training

data are not representative of future instances, this splitting

idea would not work.) This answer is the core idea leading to

cross-validation, the dominant approach for evaluating binary

classification rules, and more generally, prediction rules.8 If

users prefer not to split the data due to its limited number of in-

stances, probabilistic approaches are available, and they allow

users to use the whole dataset to train and subsequently eval-

uate a decision rule. Famous examples include the Akaike’s

information criterion and the Bayesian information criterion.8

However, there is no free lunch; most of these non-splitting ap-

proaches require assumptions on data distribution (if these prob-

abilistic assumptions do not hold, there is no guarantee how the

decision rule would perform on a future instance) and do not

apply to binary classification algorithms that are not probability

based, while cross-validation has no such restrictions. In terms

of prediction accuracy, the most commonly used measure is



Box 2. Sample Sizes versus Evaluation Criteria

A general principle in data sciences is, if a sample is unbiasedly drawn from a population, the larger the sample size, the more

information the sample contains about the population. This large-sample principle holds for both hypothesis testing and binary

classification; for example, data from a larger number of representative patients would lead to better decision rules for both

biomarker detection and disease diagnosis. However, between the two strategies there is an interesting but often neglected

distinction: from a population with finite instances (e.g., the human population), the largest possible sample, which is equivalent

to the whole population, would make a valid statistical test achieve a perfect power given any significance level a, while the

largest possible training dataset might not lead to a classification rule with perfect prediction accuracy. While this distinction

is fundamentally rooted in mathematics, an intuitive understanding can be obtained from our biomarker detection and disease

diagnosis examples. Imagine that we have measured everyone in the world. If a gene is indeed a disease biomarker, we can for

sure see a difference in this gene’s expression between all the people carrying this disease and the rest of the population,

achieving the perfect power. On the other hand, diseased patients and undiseased individuals may not be perfectly separated

by diagnostic measurements. That is, two patients may have similar symptoms and lab test results, but one patient is diseased

and the other is not. When this happens, even if we have training data from all but one person in the world, we still cannot be

100% sure whether the left-out individual has the disease just based on his or her diagnostic measurements.
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the overall accuracy: the percentage of correctly labeled in-

stances in the validation data, e.g., the percentage of correctly

diagnosed patients in a cohort not used for training the decision

rule. In many applications where the two classes corresponding

to binary labels 0 and 1 have equal importance, this measure is

reasonable. In disease diagnosis, however, the two directions

of misdiagnosis: predicting a diseased patient as healthy versus

predicting a healthy individual as diseased, are likely to have un-

equal importance, which would depend on the severity of the

disease, the abundance of medical resources, and many other

factors. For example, in countries with well-established health-

care systems, diagnosis for high-mortality cancer patients

should focus on reducing the false negative rate, i.e., the chance

of missing a patient with a malignant tumor; hence, a more rele-

vant prediction accuracy would be the true positive rate (one

minus the false negative rate) in this context. Binary classification

with unequal class importance is called asymmetric classifica-

tion, to address which two frameworks have been developed:

cost-sensitive learning25 and Neyman-Pearson classification.26–

28 (The Neyman-Pearson classification inherits its name from

the Neyman-Pearson lemma due to a similar asymmetric nature:

minimizing one type of error while controlling the other type of er-

ror.) Specifically, the cost-sensitive learning framework achieves

a small false negative rate by placing on it a large weight relative

to the weight on the false positive rate in the objective function;

the Neyman-Pearson classification framework guarantees a

high-probability control on the population-level false negative

rate while minimizing the false positive rate. Another two

commonly used accuracy measures for binary classification

are the area under a receiver operating characteristic curve

(AUROC) and the area under a precision-recall curve (AUPRC).

(Important properties and distinctions between AUROC and

AUPRC include but are not limited to: AUROC is invariant to

the population sizes of the two classes, while AUPRC is not;

AUROC can be overly optimistic if the two classes are extremely

imbalanced in training data, while AUPRC does not have this

issue. For detailed information, please refer to the two books29,30

and the survey article.31) However, these two measures are not

evaluation criteria for one decision rule (classifier) but rather eval-

uate a trained classification algorithm (e.g., logistic regression

with parameters estimated from training data) with varying
decision thresholds, each of which corresponds to a deci-

sion rule.

In summary, the evaluation of decision rules in hypothesis

testing is less straightforward than in binary classification. To

choose a statistical test for a specific dataset, users have to

use subjective judgment to decide whether test assumptions

are reasonably justified. On the other hand, classification algo-

rithms can be compared on a more objective ground, the Com-

mon Task Framework,32 of which influential examples include the

Kaggle competitions33–37 and the DREAM challenges.38–43 The

Common Task Framework consists of three essential elements:

training data, competing prediction algorithms, and validation

data. A comparison is considered fair if all competing algorithms

use the same training data to construct decision rules, which are

subsequently evaluated on the same validation data using the

same prediction accuracy measure. Furthermore, between hy-

pothesis testing and binary classification, an interesting, tech-

nical distinction is how their evaluation criteria change with the

sample size (see Box 2).

Table 2 summarizes the above distinctions between hypothe-

sis testing and binary classification.

A CHECKLIST OF FIVE PRACTICAL GUIDELINES FOR
CHOOSING BETWEEN HYPOTHESIS TESTING AND
BINARY CLASSIFICATION

Based on the key distinctions between hypothesis testing and

binary classification, we provide a checklist of five practical

guidelines for data analysts to choose between the two strate-

gies. Figure 1 provides an illustration.

Guideline 1: Decide on Instances and Features
Given a tabular dataset, the first and necessary step is to decide

whether rows and columns should be considered as instances

and features, respectively, or vice versa. The decision may

seem trivial to experienced data scientists when columns repre-

sent variables in different units, e.g., gender, age, and bodymass

index, in which case columns should be considered as features

for sure. However, the decision may become not-so-obvious in

certain cases. For example, in Figure 1, a gene expression data-

set has rows and columns corresponding to patients and genes,
PATTER 1, October 9, 2020 5



Table 2. Side-by-Side Comparison of Hypothesis Testing and

Binary Classification

Hypothesis

Testing

Binary

Classification

Symmetry

between binary

answers

Asymmetric

(default is 0)

Symmetric or

asymmetric

No. of instances

to make one

decision given a

decision rule

R1 (the larger

the better)

= 1

Available binary

answers

No Yes (training

data)

Evaluation

criteria

Power (given

a significance

level)

Prediction

accuracy

With the largest

possible no.

of instances

Power = 1 Prediction accuracy

not necessarily perfect
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respectively, and all data values are in the same unit. The ques-

tion is: Should we consider patients as instances or features? To

answer this question, the key is to understand instances as either

(1) repeatedmeasurements in the data collection process or (2) a

random sample from a population. Gene expression data are

collected to understand gene expression patterns in healthy

and diseased human sub-populations, so healthy and diseased

patients are considered two random samples, each from one

sub-population and satisfy (2). Hence, we conclude that patients

are instances and genes are features. In general, the answer de-

pends on the experimental design and the scientific question,

both of which will determine what the underlying population is,

as we see in the cancer driver gene prediction example (see

below in the section ‘‘Cancer Driver Gene Prediction: Hypothesis

Testing or Binary Classification?’’).

Guideline 2: List the Binary Decisions to Be Made
The second step is to outline the binary decisions to be made

from the data. Formulate analytical tasks, such as biomarker

detection and disease diagnosis into binary questions, for

which binary decisions will be made. Divide binary questions

into those related to features and others concerning in-

stances. For example, whether a gene is a biomarker is a

feature-related question, and whether a patient has a disease

is an instance-related question. Hypothesis testing can only

answer feature-related questions, while binary classification

can only address instance-related questions.

Guideline 3: Assess the Availability of Known Binary
Answers in Data
After a list of binary questions is at hand, the next question is: Do

the data contain any known answers? If we already have an

answer to a binary question, we cannot formulate that question

as a hypothesis-testing task. In the case where some instances

contain known binary labels but we concern about the unknown

labels of the rest of instances, we are facing a binary classifica-

tion task, just as in disease diagnosis. Otherwise, if the data

contain no binary labels, we do not have training data to
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construct a classifier, which, if not given, would prohibit us

from predicting unknown labels of instances.

Guideline 4: Count the Number of Instances for Making
Each Binary Decision
Suppose that we are given a decision rule, i.e., a statistical test or

a classifier in the form of a formula or a computer program that

can take our data as input and output a binary answer. An

easy check is to count the number of input instances needed

to output each binary decision. If we are expecting one decision

per input instance, it is likely a binary classification task. Other-

wise, if each binary decision needs to be made from a group of

instances together, the task cannot be binary classification but

might be formulated as hypothesis testing.

Guideline 5: Evaluate the Nature of Binary Questions
The most fundamental check is to evaluate each binary question

by its nature: Is the question regarding the unseen population of

which our observed instances are a subset or regarding a partic-

ular instance? Asking whether a gene is a disease biomarker is a

question of the former type, as it concerns whether this gene can

distinguish the human sub-population carrying the disease from

the rest of human population. In contrast, asking whether an in-

dividual has the disease is a question of the latter type. Hypoth-

esis testing and binary classification are designed for answering

questions of the former and latter type, respectively, as shown in

Figure 1.

We recommend practitioners to check all the five guidelines

before deciding whether hypothesis testing or binary classifica-

tion is the correct strategy for a data analysis question.

CANCER DRIVER GENE PREDICTION: HYPOTHESIS
TESTING OR BINARY CLASSIFICATION?

Finally, we present an important application example of cancer

driver gene prediction to illustrate the distinction between hy-

pothesis testing and binary classification. We will try to avoid us-

ing technical terms as much as possible for the ease of general

readers. In the problem of cancer driver gene prediction, the

goal is to utilize an individual gene’s mutational signatures

such as the number of missense mutations to predict how likely

the gene drives cancer. Note that the mutational signatures are

aggregated from multiple patient databases, and individual pa-

tients’ data are unavailable. We have knowledge of a small set

of cancer driver genes and neutral genes that are unlikely to drive

cancer. The question is, how can we leverage this knowledge to

predict whether a less-studied gene is a cancer driver gene? A

famous algorithm, TUSON, addresses this question using a hy-

pothesis-testing approach.44,45 In brief, it regards mutational

signatures as features and uses hypothesis testing to assess

how much an individual gene resembles known neutral genes

based on each feature: the gene’s feature value is used as the

test statistic, whose distribution under the null hypothesis (i.e.,

the gene is a neutral gene) is estimated from the feature values

of known neutral genes; from the test statistic and the approxi-

mate null distribution, the gene receives a p value for that feature.

Suppose that there are 10 features in total, then each gene re-

ceives 10 p values, which are subsequently combined into a sin-

gle p value by Fisher’s method.46



Figure 1. Illustration of a Gene Expression Dataset and Two Questions to Be Addressed by Hypothesis Testing and Binary Classification,
Respectively
Hypothesis testing uses all the available instances to address a feature-related question: is a gene a biomarker with different expression levels in healthy and
diseased patients? Binary classification answers an instance-related question: is a patient diseased?
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From a statistical perspective, there are four apparent issues

with this hypothesis-testing approach. First, each hypothesis

test, one per gene per feature, only utilizes the known neutral

genes (to estimate the null distribution) but does not fully capture

the valuable information in known cancer driver genes. (To be

exact, known cancer driver genes are used to select the predictive

features before hypothesis testing is performed. However, in each

test for one gene andone feature, the information of knowncancer

driver genes is only partially reflected in the direction of the gene’s

p value: two-sided, larger-than, or smaller-than,44,45 which ex-

cludes the possibility that the known neutral genes may have

feature values on the two sides of those of the knowncancer driver

genes.) Second, each hypothesis test is performed using a sam-

ple of size one (i.e., the test statistic is the feature value of one

gene), which is known to be not powerful and thus undesirable

(i.e., if the gene is a cancer driver gene, we may miss it with a

high chance). This is the reason why we recommend using more

than one instance for hypothesis testing (Table 2, and ‘‘Guideline

3’’ above). Third, combining multiple p values into a single p value

is a difficult task, especially when p values are not independent of

each other. The fact thatmutational signatures are observed to be

correlated features, their resulting p values are correlated for

each gene, violating the independence assumption of Fisher’s

method. Although there are methods for combining dependent

p values,47–50 they cannot address the most fundamental
question—What is the population behind each hypothesis

test?—leading to the last issue. Fourth, the population behind

the null hypothesis is unspecified: for a given test, is the popula-

tion about that particular gene or all the genes? Therefore, we

conclude that the hypothesis-testing approach is inappropriate

for this cancer driver gene problem, which, instead, should be

formulated as a binary classification task by the reasoning below.

Here, we revisit this problem by following our checklist. Under

Guideline 1, we consider genes as instances and mutational sig-

natures as features, consistent with the existing studies. The

reason is that we treat known cancer driver genes and neutral

genes as a sample from the whole gene population of our inter-

est, while we consider mutational signatures as given and we are

not interested in the population they come from. Note that here

genes are no longer treated as features as in biomarker detection

where patients are instances. The contrast of the two examples

suggests that a real quantitymay be formulated as an instance or

a feature depending on the data and the question of interest, and

Guideline 1 provides a practical solution. Under Guideline 2, we

conclude that the binary decisions to be made are instance-

related because we would like to predict whether each gene is

a cancer driver gene or not. Guideline 3 leads us to identify

training data: known cancer driver genes and neutral genes.

Next, if we already have a decision rule, we just need to input

one gene to obtain its binary label: cancer driver gene or not.
PATTER 1, October 9, 2020 7
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Hence, we only need one instance for each binary decision,

concluding Guideline 4. Finally, we evaluate the nature of each

binary question, as suggested by Guideline 5, and we can see

that each question is only concerning one instance (gene), not

the gene population. After checking all the five guidelines, it be-

comes evident that this cancer driver gene prediction problem is

better suited to be addressed by binary classification.

Why does TUSON adopt the hypothesis-testing approach? Its

analysis results show that it aims to control the proportion of false

discoveries among the predicted cancer driver genes, a criterion

closely related to the FDR, which is widely used in multiple testing

as we have discussed. (The difference is that the FDR is the ex-

pected proportion of false discoveries among discoveries, where

the expectation is taken over possible input datasets, while in TU-

SON, the proportion is based on one dataset. However, this differ-

ence has been largely neglected in biomedical studies.) Our guess

is that the TUSONauthors formulate cancer driver gene prediction

as a multiple testing problem because they want to apply the

famous Benjamini-Hochberg procedure to control the FDR by

setting a cutoff on p values, one per gene. However, this approach

requires the validity of each p value, which must follow a uniform

distribution between 0 and 1 under the null hypothesis. Due to the

third issuewementioned above (the violation of the assumption of

Fisher’smethod), the combinedp value of each gene has no guar-

antee to satisfy this requirement. Here, we would like to point out

that the FDR concept is not restricted to multiple testing; in fact, it

is a general evaluation criterion for multiple binary decisions,

where each decision rule could be established by hypothesis

testing or binary classification. Therefore, the goal of FDR control

should not drive the choice between hypothesis testing and binary

classification; instead, the choice should be based on the distinc-

tions between the two strategies, as we have discussed in this

article. Admittedly, the FDR has been rarely used as an evaluation

criterion in binary classification; however, it is a closely related cri-

terion: precision, the proportion of correct predictions among all

positive predictions, is widely used, such as in AUPRC. (Note

that precision is a criterion evaluated on a given set of validation

data. Unlike the FDR, it is not an expected proportion. How to

implement a theoretically guaranteed FDR control in binary classi-

fication is an open question for data science researchers.) For

cancer driver gene prediction, if we adopt the binary classification

approach, we may compare competing classification algorithms

by evaluating their AUPRC values using cross-validation. After

we choose the algorithm that achieves the largest AUPRC value,

we can train it on known cancer driver genes and neutral genes

using their mutational signatures, and we can set a threshold on

the trained algorithm based on our desired precision level to

obtain a classifier (decision rule). Then we can simply apply the

classifier to predict whether a less-studied gene is a cancer driver

gene from its mutational signatures. In fact, we have implemented

this approach and shown that it leads to more accurate discov-

eries than previous studies do.51

DISCUSSION

In summary, hypothesis testing and binary classification are

largely regarded as two separate topics that have rarely been

compared with each other in data science education and

research. However, their distinctions in applications are not as
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apparent as in methodological research, where instances and

features are well defined from the beginning. Instead, in applica-

tions how to formulate real quantities into instances or features is

always a challenging task, a reason that obscures the distinc-

tions between the two strategies. In this work, we attempt to

summarize and compare the two strategies for the broad scien-

tific community and the data science industry, and we provide

five practical guidelines to help data analysts better distinguish

between the two strategies in data analysis.

As an extension,when instances are categorized intomore than

two classes or groups, similar distinctions exist between hypoth-

esis testing and classification. Multi-group comparison is a typical

hypothesis-testing question. For example, if the question is

whether a feature has the same expected value in all groups, it

can be addressed by the analysis of variance. In contrast, multi-

class classification seeks to assign every unlabeled instance

one or more of the multiple class labels. In fact, compared with

our previous discussion, here the distinction between hypothesis

testing and classification is clearer: hypothesis testing still gives

rise to a binary decision (reject or not the null hypothesis that a

feature has the same expected value in all groups), while classifi-

cation leads to a decision with more than two possible answers

(every instance has more than two possible labels).

To conclude, we would like to emphasize again that hypothesis

testing and binary classification are different in nature: the former

concerns an unobservable population-level property of a feature,

while the latter pertains to an observable label of an instance.

Despite this inherent difference, it is possible to adopt ideas

from one strategy to develop new decision rules for the other

strategy, or use one strategy as a preceding step to enable the

application of the other strategy. In one direction, powerful test

statistics with theoretical foundations in hypothesis testing may

inform the construction of classifiers in binary classification. For

example, the likelihood ratio test statistic bears a similar mathe-

matical form as the naive Bayes classifier. (The key distinction is

that the likelihood ratio test statistic takes all the available in-

stances as input to construct a decision rule for one test, while

the naive Bayes classifier, if trained, takes one instance as input

and outputs a predicted binary label.) There are other concrete ex-

amples that leverage test statistics to construct classifiers.6,7 In

the other direction, successful classification algorithms may

motivate new scientific questions that can be investigated by hy-

pothesis testing. For example, convolutional and recurrent neural

networks have demonstrated superb capacity to extract predic-

tive features from unstructured data, such as images and

texts.52–55 For those extracted features that are interpretable

(such as a feature related to one brain region in fMRI images), re-

searchers may want to investigate whether such a feature differs

between two groups of images from different patient cohorts, and

then they need to perform hypothesis testing on that particular

feature. Furthermore, in some special and rare examples, an algo-

rithmmay serve the purposes of both strategies. Themost famous

example is logistic regression, which is both a classification algo-

rithm and a testing approach for deciding whether associations

exist between features and binary labels. In a binary classification

taskwhose goal is to label instances, logistic regression is used to

construct a classifier. Meanwhile, logistic regression and its

accompanying Wald test can also be used to investigate how

each feature influences binary labels of instances.56 Ultimately,
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effective data analysis requires appropriate usage of hypothesis

testing and binary classification for suitable tasks, and this can

only be realized when data analysts are well informed of the dis-

tinctions and connections between the two strategies.
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