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Single-cell RNA sequencing (scRNA-
seq) is a burgeoning field where experi-
mental techniques and computational
methods have been under rapid evolu-
tion in the past 6 years. These techno-
logical advances have allowed
biomedical researchers to identify new
cell types, delineate cell sub-
populations, and infer cell differentiation
trajectories in various tissue samples.
Among the important features extract-
able from scRNA-seq data, the predomi-
nant ones are individual genes’
expression levels in single cells. Most
analyses require a preprocessing step
that converts a scRNA-seq dataset into a
count matrix, where rows correspond to
cells (or genes), columns correspond to
genes (or cells), and entries are counts,
i.e. a count is the number of sequenced
reads or uniquely mapped identifiers
(UMIs) mapped to a gene in a cell.
Single-cell count matrices are highly
sparse; for example, a typical matrix con-
structed from a droplet-based dataset
may have >90% of counts as zeros.

It is well acknowledged that many
zero counts are non-biological due to
technological factors such as RNA degra-
dation during library preparation, poly-
merase chain reaction (PCR)
amplification biases for non-UMI-based
technologies, and limited per-cell

sequencing depths. As a result, the term
‘dropouts’ is frequently used in the
single-cell field to refer to false zero
counts of genes that are supposedly
expressed. The prevalence of zeros hin-
ders scRNA-seq data analyses, in partic-
ular the analyses that focus on specific
genes’ expression patterns across cells.
To overcome the negative effects of such
data sparsity on scientific discoveries,
many statistical and computational
methods have been developed, falling
into two types: imputation methods that
aim to correct or adjust dropouts (Huang
et al., 2018; Li and Li, 2018) and zero-
inflated modeling methods that directly
account for dropouts in specific analysis
tasks (Kharchenko et al., 2014; Finak
et al., 2015; Pierson and Yau, 2015;
Risso et al., 2018). While the zero-
inflated modeling methods provide
users with one-step solutions, the impu-
tation methods endow users with greater
flexibility to design analysis pipelines.
[Note that there are recent debates
about whether zero-inflated modeling is
needed for UMI-based data (Svensson,
2020), yet it is generally acknowledged
that zero inflation exists for non-UMI-
based scRNA-seq data.]

Zhang and Zhang (2020) proposes a
novel imputation method PBLR for
scRNA-seq data by leveraging methodo-
logical advances in low-rank matrix re-
covery, a prosperous topic in statistics
and machine learning. Compared with
existing imputation methods, PBLR is
unique in its consideration of cell het-
erogeneity and how gene expression

affects dropouts. PBLR has two key
stages: cell sub-population identifica-
tion and gene expression imputation.
First, PBLR divides a single-cell log-trans-
formed count matrix into submatrices,
each of which corresponds to either a
cell sub-population and its selected
genes or all the cells and the remaining
genes. Second, PBLR imputes each sub-
matrix by solving a bounded low-rank re-
covery problem, where each gene has an
upper bound on its imputed expression
levels and the upper bound is informed
by its observed expression levels (i.e.
log-transformed counts).

PBLR is demonstrated to outperform
six existing imputation methods on mul-
tiple synthetic and real scRNA-seq data-
sets. The success of PBLR is attributable
to its two-stage design. Its first stage
identifies cell sub-populations using an
ensemble approach, and this would fa-
cilitate the next stage—imputation—for
the following reason. The core of scRNA-
seq imputation methods is to impute a
gene’s expression level in a cell by bor-
rowing information from similar genes’
expression levels in similar cells.
However, the definition of ‘similarity’ is
complicated by the existence of cell sub-
populations, whose proportions and
similarities differ from dataset to data-
set. It has been shown that defining sim-
ilar cells based on a single similarity
measure or clustering algorithm may
work well for one dataset but not an-
other (Lähnemann et al., 2020). Hence,
the use of an ensemble approach by
PBLR, to a large extent, can lead to
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stable cell sub-populations supported
by multiple similarity measures. As a re-
sult, the search for similar genes and
cells in the imputation stage would be
constrained to a cell sub-population and
its selected genes, which, if accurately
identified, would enhance the accuracy
of imputation.

Another reason for PBLR’s success is
the implementation of upper bounds in
the imputation stage. It has been ob-
served that imputed expression levels
may way exceed the values we expect if
imputation algorithms have no constraints
on imputed values (Kannan et al., 2012).
PBLR circumvents this issue by placing a
reasonable upper bound learned from ev-
ery gene’s observed expression levels, so
that the gene’s imputed expression levels
would be controlled under this upper
bound as much as possible. This proce-
dure ensures that PBLR would not output
imputed expression levels that are too
large to be true.

In summary, Zhang and Zhang (2020)
advances scRNA-seq imputation by pro-
viding a novel computational method

PBLR that addresses two major drawbacks
in existing methods: (i) inaccurate identifi-
cation or ignorance of cell sub-
populations and (ii) possibility of output-
ting imputed expression levels that are
unreasonably large. PBLR is an effective
tool for alleviating the dropout issue in
scRNA-seq data, and its methodological
insights are valuable to computational
researchers in the single-cell field.
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Lähnemann, D., Köster, J., Szczurek, E., et al.
(2020). Eleven grand challenges in single-cell
data science. Genome Biol. 21, 31.

Li, W.V., and Li, J.J. (2018). An accurate and robust
imputation method scImpute for single-cell
RNA-seq data. Nat. Commun. 9, 997.

Pierson, E., and Yau, C. (2015). ZIFA: dimension-
ality reduction for zero-inflated single-cell
gene expression analysis. Genome Biol. 16,
241.

Risso, D., Perraudeau, F., Gribkova, S., et al.
(2018). A general and flexible method for sig-
nal extraction from single-cell RNA-seq data.
Nat. Commun. 9, 284.

Svensson, V. (2020). Droplet scRNA-seq is not
zero-inflated. Nat. Biotechnol. 38, 147–150.

Zhang, L., and Zhang, S. (2020). Imputing
single-cell RNA-seq data by considering cell het-
erogeneity and prior expression of dropouts. J.
Mol. Cell Biol. doi:10.1093/jmcb/mjaa052.

2 | Li

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

cb/advance-article/doi/10.1093/jm
cb/m

jaa053/5913392 by guest on 01 April 2021




