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ABSTRACT

Translation rate per mRNA molecule correlates pos-
itively with mRNA abundance. As a result, protein
levels do not scale linearly with mRNA levels, but
instead scale with the abundance of mRNA raised
to the power of an ‘amplification exponent’. Here
we show that to quantitate translational control, the
translation rate must be decomposed into two com-
ponents. One, TRmD, depends on the mRNA level
and defines the amplification exponent. The other,
TRmIND, is independent of mRNA amount and im-
pacts the correlation coefficient between protein and
mRNA levels. We show that in Saccharomyces cere-
visiae TRmD represents ∼20% of the variance in trans-
lation and directs an amplification exponent of 1.20
with a 95% confidence interval [1.14, 1.26]. TRmIND

constitutes the remaining ∼80% of the variance in
translation and explains ∼5% of the variance in pro-
tein expression. We also find that TRmD and TRmIND

are preferentially determined by different mRNA se-
quence features: TRmIND by the length of the open
reading frame and TRmD both by a ∼60 nucleotide
element that spans the initiating AUG and by codon
and amino acid frequency. Our work provides more
appropriate estimates of translational control and im-
plies that TRmIND is under different evolutionary se-
lective pressures than TRmD.

INTRODUCTION

The relative contributions of transcriptional and post-
transcriptional control to protein expression levels in eu-
karyotes are the topic of ongoing debate (1–3). One view
suggests that translation and protein degradation together

play the dominant role because protein and mRNA abun-
dance data correlate poorly (coefficient of determination
for log10 transformed values R2

prot–RNA = 0.2–0.45) (4–9).
Other work, though, has shown that the correlation is much
higher when measurement error is considered (R2

prot–RNA =
0.66–0.83), implying that transcription dominates (10–12).
In addition, the variance in translation rates affects not only
the correlation coefficient between protein and mRNA, but
also the slope of the relationship because translation rates
increase with mRNA abundance (12). Whereas most studies
assumed that protein abundances scale linearly with mRNA
levels, Csardi et al. demonstrate that protein abundances
scale with mRNA levels raised to the power of an ‘ampli-
fication exponent’ (bprot–RNA). Presumably the mRNAs of
genes that are expressed at high levels, such as those for ribo-
somal proteins and glycolytic enzymes, contain nucleotide
sequence signals that promote faster rates of translation per
message than observed for less abundant mRNAs (12).

In this article, we argue that because translation affects
both R2

prot–RNA and bprot–RNA, the approaches used previ-
ously to quantify the contribution of translation to protein
expression are improper. Prior approaches have sought to
provide a single metric to estimate translational control: the
impact of translation on R2

prot–RNA. We propose that, in-
stead, proper quantification requires that translation rates
(TR) be decomposed mathematically into two components:
one that is dependent on mRNA abundance (TRmD) and
one that is not (TRmIND). For a given gene i

TRi = TRmDi · TRmINDi ,

where TR is the number of protein molecules translated per
mRNA molecule; TRmD determines bprot–RNA; and TRmIND

only contributes to R2
prot–RNA (not bprot–RNA).
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Figure 1. Three scenarios explain the relationships between the steps in protein expression. (A) Translation rates for all expressed genes are equal, as are
protein degradation rates. (B) Translation rates vary between genes but correlate perfectly with the amount of mRNA. Degradation rates for all proteins
are constant. (C) Translation and protein degradation rates vary but are uncorrelated with mRNA abundance. Upper panels show the relationship between
protein and mRNA levels; lower panels show the relationship between translation rates and mRNA levels. The coefficients of determination (R2) and slopes
(b) are indicated.

The traditional view of the steady-state relationship be-
tween protein and mRNA for gene i can be expressed as

proti = RNAi · TRi · PnDi
(Materials and Methods, equation 1),

where prot and RNA are the number of protein molecules
and mRNA molecules per cell, respectively, and PnD is the
fraction of protein that is not degraded per cell cycle (0 ≤
PnD ≤ 1). Once TR is decomposed, this equation can be
reformulated as

proti = a · RNA
bprot−RNA

i · TRmINDi · PnDi
(Materials and Methods, equation 8),

where a and bprot–RNA are positive constants for all genes.
This reformulated equation has the advantage that it ex-
plicitly describes the non-linear relationship between pro-
tein and mRNA levels as well as permitting correct quanti-
tation of translation’s contribution to protein levels.

Three idealized scenarios explain the complex depen-
dency of protein abundances on mRNA levels and the two
components of translation. Plots of log10-transformed data
are employed because the amplification exponent bprot–RNA
is simply the linear slope of the relationship in logarithmic
space (Figure 1), i.e.,

log10(proti ) = log10(a) + bprot−RNA · log10(RNAi )

+ log10(TRmINDi ) + log10(PnDi ).

In the first scenario, translation rates are equal for all
genes (i.e. TRi = constant) as are protein degradation rates.
Therefore, R2

prot–RNA = 1 and bprot–RNA = 1 (Figure 1A).
In the second scenario, translation rates correlate perfectly
with mRNA levels (i.e., TRi = TRmDi), while the protein
degradation rate is constant for all genes. Thus, R2

prot–RNA
= 1 and bprot–RNA > 1. (Figure 1B). In the third sce-
nario, translation and protein degradation rates are both
uncorrelated with mRNA (i.e. TRi = TRmINDi). Therefore,
R2

prot–RNA < 1 and bprot–RNA = 1 (Figure 1C).
The third scenario is the one most widely considered in

the literature. Csardi et al. argue, though, that the truth
is a hybrid of this scenario and the second scenario be-
cause translation is partially, but not fully, correlated with
mRNA abundance. A Bayesian model was employed to es-
timate protein and mRNA abundances for 5,854 annotated
protein-coding genes in S. cerevisiae, including 842 genes for
which either protein or mRNA abundance data was lack-
ing. From the modeled abundances, it was estimated that
bprot–RNA = 1.69 and R2

prot–RNA = 0.85 (12).
Csardi et al.’s basic premise is important. Their Bayesian

model, however, did not take into account which meth-
ods provide accurately scaled abundance data, and they
did not decompose TR. Bayesian models are, in addition,
inherently subjective because priors are chosen by the re-
searcher. Therefore, we adopted a non-modeling approach
that considers empirically determined abundance measure-
ments that have been scaled using internal concentration
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standards, and we decomposed TR. We find that in S. cere-
visiae TRmD represents ∼20% of the variance in transla-
tion and results in an amplification exponent of 1.20 with a
95% confidence interval [1.14, 1.26] and that TRmIND con-
stitutes the remaining ∼80% of the variance in translation
and explains ∼5% of the variance in protein expression. By
taking into account protein degradation data and measure-
ment error, we also show that the expected correlation be-
tween the abundances of protein and mRNA is R2

prot–RNA

∼0.94. This value is markedly higher than the R2
prot–RNA

= 0.80 obtained between the Bayesian model’s abundance
estimates for the 5,012 genes for which empirical data are
available. Finally, we examined which mRNA sequence el-
ements explain the variance in TRmD and TRmIND using a
model that predicts 80% of the variance in TR from mRNA
sequence data alone. We find that TRmD is most strongly de-
termined both by RNA secondary structure within a ∼60
nucleotide element that spans the initiating AUG and by
the fact that the amino acid and codon frequencies encoded
in highly expressed mRNAs more closely correlate with the
abundances of their cognate tRNAs than is the case for mR-
NAs expressed at lower levels. TRmIND, by contrast, is
chiefly determined by the length of the protein coding re-
gion. TRmIND is thus likely under different evolutionary se-
lective pressures than TRmD and predominantly controlled
by different mechanisms. Our work establishes more accu-
rate estimates of translational control than earlier research.
In addition, our analysis illustrates that decomposing trans-
lation rates allows insights into the mRNA sequence depen-
dence of translation that would not otherwise be apparent.

MATERIALS AND METHODS

Data and code

All of the data used are provided in Datasets S1–S9. The
mRNA and protein abundance datasets used by Csardi
et al. as input to their Bayesian model (Dataset S1) are
from their file ‘scer-mrna-protein-raw.txt’ (12). The esti-
mates for the true abundances of mRNA and protein gener-
ated by Csardi et al.’s Bayesian model (Dataset S2) are from
their file ‘scer-mrna-protein-absolute-estimate-sample.txt’
and are for a single sample from their ‘SCM’ values (12).
The scaling-standard mRNA data are from NanoString
(13,14), qPCR (15) and competitive PCR (16) studies
(Dataset S3). Three scaling-standard protein datasets were
measured by western blot (17), flow cytometry (18) and se-
lected reaction monitoring mass spectrometry (19) (Dataset
S3). A fourth scaling-standard protein dataset was compiled
as an extension of one by von der Haar (20) to which ad-
ditional data were added (21–26) (Dataset S3). The ribo-
some profiling data comprise median values from several
studies provided by Csardi et al. (12) and, separately, the
translation-initiation efficiency values from Weinberg et al.
(27) (Dataset S4). Protein degradation data is from Chris-
tiano et al. (28) (Dataset S5). The mRNA sequence feature
information was from Weinberg et al. and Subtelny et al.
or was calculated as described in Supplementary Methods
S4 (27,29) (Datasets S6–S9). The fraction of RNA not de-
graded was calculated from Presnyak et al. as described in
Supplementary Methods S4 (30) (Dataset S6). Dataset S2

also includes our corrected versions of the Csardi et al. pro-
tein and mRNA abundance data. Dataset S4 includes cor-
rected versions of Weinberg et al. mRNA abundance and
ribosome density data as well as calculated values of TRmD
and TRmIND. For the details on our correction of the Csardi
et al. protein and mRNA abundance data and the Weinberg
et al. mRNA abundance and ribosome density data, please
refer to Supplementary Method S1.

The R code used in the analyses are provided in Dataset
S10. Both an R Markdown file and its output Word file are
provided.

The relationship between the steps in protein production

For simplicity we consider the ideal case where there is no
measurement error, i.e. where the true values are measured.
It is assumed that the system is at steady state. We denote

RNA = the abundance of a particular mRNA (molecules
per cell)

prot = the abundance of a particular protein (molecules per
cell)

TR = the translation rate of a particular mRNA (the num-
ber of protein molecules translated per mRNA molecule)

TRmIND = the mRNA abundance-independent component
of TR

TRmD = the mRNA abundance-dependent component of
TR

PnD = a scaling factor that gives the fraction of a particular
protein that remains undegraded per cell cycle, i.e. (1 – the
fraction of the protein degraded per cell cycle); 0 ≤ PnD
≤ 1.

a = a constant for all genes
bTR–RNA = a constant for all genes that is the slope of the

relationship between log10-transformed translation rates
and log-transformed mRNA levels. It thus measures the
amplification of translation rates due to mRNA abun-
dance

bprot–RNA = a constant for all genes that is the slope of the re-
lationship between log10-transformed protein abundance
and log-transformed mRNA levels. It is thus also the am-
plification exponent for the relationship between the un-
logged abundances.

We assume that PnD is not correlated with mRNA abun-
dance and, thus, has no impact on bprot–RNA. This appears
to be a reasonable assumption because the correlation be-
tween measured values for PnD and mRNA abundance is
very low (R2

PnD–RNA < 0.005; Supplementary Table S2).
The abundance of a chosen protein is given by

prot = RNA · TR · PnD (1)

log10(prot) = log10(RNA) + log10(TR) + log10(PnD) (2)

In an idealized situation where log10-transformed trans-
lation rates correlate perfectly with log10-transformed
mRNA levels (i.e. R2

TR–RNA = 1; and TRmIND = 1)

TR = TRmD · TRmIND = TRmD = a · RNAbTR−RNA

log10(TRmD) = log10(a) + bTR−RNA · log10(RNA) (3)
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When log10-transformed translation rates only partially
correlate with log10-transformed mRNA levels then

TR = TRmD · TRmIND = a · RNAbTR−RNA · TRmIND

log10(TR) = log10(TRmD) + log10(TRmIND) (4)

log10(TR) = log10(a) + bTR−RNA · log10(RNA)

+ log10(TRmIND) (5)

Combining (2) and (5)

log10(prot) = log10(RNA) + log10(a)

+ bTR−RNA · log10(RNA)

+ log10(TRmIND) + log10(PnD)

log10(prot) = log10(a) + (1 + bTR−RNA) · log10(RNA)

+ log10(TRmIND) + log10(PnD) (6)

From (6), the slope of the relationship between
log10(prot) and log10(RNA) is (1 + bTR–RNA), i.e.

bprot−RNA = 1 + bTR−RNA (7)

Combining (6) and (7)

log10(prot) = log10(a) + bprot−RNA · log10(RNA)

+ log10(TRmIND) + log10(PnD)

prot = a · RNAbprot−RNA · TRmIND · PnD (8)

Estimating the slope bTR–RNA and the contributions of
TRmIND and TRmD to TR

Having defined the basic relationships between steps in pro-
tein expression, we now estimate the value for bTR–RNA and
the contributions of TRmIND and TRmD to TR.

From (4) and the fact that log(TRmD) and log(TRmIND)
are uncorrelated by definition

var(log10(TR)) = var(log10(TRmD))

+ var(log10(TRmIND)), (9)

where var is the variance.
From (3) and given that var(log10 (a)) = 0

var((log10(TRmD)) = var(bTR−RNA · log10(RNA)) (10)

= bTR−RNA
2 · var(log10(RNA))

Combining (9) and (10)

var(log10(TR)) = bTR−RNA
2 · var(log10(RNA))

+ var(log10(TRmIND))

From (10)

bTR−RNA
2 = var((log10(TRmD))/var(log10(RNA))

Therefore true slope

bTR−RNA = sd(log10(TRmD))/sd( log10(RNA)), (11)

where sd is the standard deviation.

We considered three different regressions with log10(TR)
as the response variable and log10(RNA) as the explanatory
variable for estimating the value of the true slope bTR–RNA,
finding that the Ordinary Least Squares (OLS) regression
described is the most appropriate (Supplementary Methods
S3).

Estimating the contributions of mRNA, TRmIND and PnD to
prot

Motivated by the model for true abundances (on log10 scale)
in Equation (6), the following statistical model was used to
quantitate the contribution of mRNA, TRmIND and PnD to
protein expression:

log10(prot) = α + βlog10(RNA) + γ log10(TRmIND)

+ ηlog10(PnD) + ε, (12)

where ε denotes the error term. The OLS regression is used
to estimate the intercept α and slopes β, γ and η. Given
these estimates, the variance of log10-transformed protein
abundance was decomposed into the variances explained
by log10-transformed RNA abundance, log10-transformed
TRmIND, log10-transformed PnD, and unexplained variance
(i.e. error).

RESULTS

Estimates for bprot–RNA from protein and mRNA abundances

Csardi et al.’s estimate for bprot–RNA was derived using a
Bayesian model to determine the true levels of mRNAs and
proteins based on multiple abundance datasets from the lit-
erature and imputed values when data were lacking (12).
However, the methods used to produce most of the empiri-
cal data input to this model (e.g. mRNA microarray, RNA-
seq, and label-free mass spectrometry) do not employ inter-
nal concentration standards. As a result, the standard devia-
tions of the data can be––depending on the method––either
systematically compressed or systematically expanded rela-
tive to the true values (10,12,31–33). There is no guarantee
that such reproducible biases can be corrected by a Bayesian
model. The slope of any relationship depends on the stan-
dard deviations of the x and y values, so improperly scaled
data is likely to exhibit an inaccurate slope.

We therefore re-estimated bprot–RNA by correcting abun-
dances of protein and mRNA using datasets that had been
derived by methods employing internal concentration stan-
dards. The internal standards are used to account for any
linear or non-linear scaling bias in the raw data, and thus
the final data produced by these methods should be rea-
sonably scaled. Data for individual genes will still include
some gene specific error, but the standard deviation of the
whole dataset will not be much impacted by such error.
We refer to these datasets as ‘scaling-standards’. NanoS-
tring (13,14), qPCR (15) and competitive PCR (16) stud-
ies provided four independent mRNA scaling-standards
(Dataset S3). Western blot (17); flow cytometry (18); se-
lected reaction monitoring mass spectrometry (19) and a
compilation of assorted methods (20–26) each provided
one of four protein scaling-standards (Dataset S3). Plots
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of these scaling-standards against the corresponding abun-
dance values from the Bayesian model reveal the relative
scaling of each dataset: scaling-mRNA versus Bayesian
mRNA and scaling-protein versus Bayesian protein (Fig-
ure 2 and Supplementary Figure S1). The slope and inter-
cept of a linear regression fit to the log10-transformed data
for each of the eight pairwise comparisons was then used to
correct the scaling of the Bayesian abundance estimates (i.e.,
re-centering and re-scaling them; Supplementary Methods
S1 and Dataset S2). The Reduced Major Axis (RuMA) re-
gression was used as it is the only one that allows the scaling
of a dataset to be adjusted such that its standard deviation
becomes equal to that of a scaling-standard (34) (Supple-
mentary Methods S1).

The standard deviation of the uncorrected Bayesian
protein dataset approximates those of the scaling-protein
datasets (RuMA slope b̂sprot–prot = 0.87–1.11), while the

standard deviation of the uncorrected Bayesian mRNA
data is less than those of the scaling-mRNA sets (RuMA
slope b̂sRNA–RNA = 1.34–1.54) (Figure 2 and Supplementary
Figure S1). After correcting the scaling bias of the Bayesian
data by our linear transformation, we bootstrapped the cor-
rected versions of the data to obtain a mean RuMA estimate
of b̂prot–RNA = 1.17 with a 95% quantile confidence interval
[1.10, 1.26] (Figure 3B).

Csardi et al. used the Ranged Major Axis (RgMA) to esti-
mate the slope bprot–RNA. This other type of regression yields
a slope that is nearly identical to that of the RuMA regres-
sion for our corrected versions of the protein and mRNA
abundance data, b̂prot–RNA = 1.16 with a 95% quantile con-
fidence interval [1.09, 1.25]. We also considered two ad-
ditional, though more approximate, approaches to deter-
mine b̂prot–RNA. These two methods estimate that b̂prot–RNA
= 1.08 or 1.10 (see Supplementary Methods S2 and Table
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S1). Thus, the evidence strongly suggests that the amplifica-
tion exponent bprot–RNA is much smaller than the previously
reported value of 1.69 (Figure 3).

To investigate the basis for Csardi et al.’s higher estimate
of bprot–RNA, we compared the standard deviations of the
datasets input to their Bayesian model with those of our
scaling-standards and with the abundances output by the
Bayesian model. While the standard deviations of the 20 in-
put protein datasets range above and below that of the pro-
tein scaling-standards, their mean scalings are similar (i.e.
mean RuMA b̂sprot–prot 0.96) and agree closely with that of
the Bayesian model (Figure 4A). By contrast, while most
of the 38 input mRNA datasets are scaled similarly to the
mRNA scaling-standards, 33 out of the 38 input mRNA
datasets have a larger standard deviation than the Bayesian
model’s abundance estimates (Figure 4B). The model has,
in effect, given greater weight to the small minority of the
input mRNA data that have the most compressed scal-
ing. This minority is dominated by mRNA microarray data
(Figure 4B), which is known to give compressed abundance
estimates relative to the true values (32,33). The Bayesian
model’s strong weighting on biased microarray data thus
appears to explain its high estimate for bprot–RNA.

Estimates for bprot–RNA from ribosome profiling data

The previous study by Csardi et al. used a ‘toy’ model to
independently determine bprot–RNA from the slope and cor-
relation between translation rates and mRNA abundances
(12). Using averaged measurements of translation rates and
mRNA abundances from several ribosome profiling studies
(29,35–37), it was suggested that the toy model was con-
sistent with bprot–RNA = 1.69 (12). Since our results are in-
consistent with this estimate for bprot–RNA, we have indepen-
dently explored the relationship between bprot–RNA and ri-
bosome profiling data. Again we adopted a non-modeling
approach that defines the appropriate mathematical equa-
tions and employs the most accurate datasets available.

The correlation between measured protein degradation
data and mRNA abundance data is negligible (R2

PnD–RNA
< 0.005; Materials and Methods and Supplementary Ta-
ble S2) (28). Thus, we can assume that protein degradation
has no impact on bprot–RNA. Hence, the relationship between
bprot–RNA and bTR–RNA is

bprot−RNA = 1 + bTR−RNA,
(Materials and Methods, equation 7)

where bTR–RNA is the true slope between log10-transformed
translation rates versus log10-transformed mRNA levels.

To estimate bTR–RNA we employed two available ribosome
profiling datasets: one used by Csardi et al. (12), which we
refer to as ‘Csardi–median’, and another from Weinberg
et al. (27) (Dataset S4). The Weinberg data eliminates a
poly-A mRNA selection bias and has been corrected to re-
duce two additional sources of bias (27). As a result, these
data show a higher correlation between translation rates
and mRNA levels than previously observed (27) and appear
to be more accurate than the Csardi-median data because
they correlate more highly with both the mRNA and the
protein scaling-standards (Supplementary Table S3). The
standard deviations of the Weinberg ribosome-density and
mRNA data differ modestly from that of their respective
scaling-standards (mean RuMA b̂sprot–RD = 0.98; RuMA
b̂sRNA–RNA = 1.07). We corrected this miss-scaling in the
Weinberg data using the scaling-standards (Dataset S4) and
then used the Ordinary Least Squares (OLS) regression to
estimate bTR–RNA on the corrected data. The result suggests
that the amplification exponent bprot–RNA = 1 + 0.22 = 1.22
with a 95% bootstrap quantile confidence interval [1.13,
1.29] (Figure 3C; Supplementary Table S4).

Rather than correcting the Csardi-median data, we ana-
lyzed it in its original form so that we could compare anal-
ysis strategies on the same data. The result suggests that
bprot–RNA = 1+ 0.28 = 1.28 with a 95% bootstrap quantile
confidence interval [1.26, 1.31] (Supplementary Table S4).
Csardi et al.’s claim that ribosome profiling data were con-
sistent with an amplification exponent of 1.69 must there-
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fore be largely due to differences between our analysis meth-
ods and those that they employed, not the data used.

Csardi et al. estimated bTR–RNA using the RgMA regres-
sion rather than OLS. For the corrected Weinberg data,
RgMA b̂TR–RNA predicts bprot–RNA = 1 + 0.31 = 1.31; for the
Csardi–median dataset, RgMA b̂TR–RNA predicts bprot–RNA
= 1 + 0.55 = 1.55 (Supplementary Table S4). The RgMA
slope, however, is insensitive to the correlation coefficient
(Supplementary Table S5 and Methods S3). In effect, this
regression assumes that the true translation rates and true
mRNA levels correlate perfectly and that the poor corre-
lations observed between the data (R2

TR–RNA ≤ 0.28; Sup-
plementary Table S4) are due only to measurement errors
that are somewhat evenly split between the TR and mRNA
data. The OLS regression, by contrast, down-weights the
slope as the correlation decreases (34) (Supplementary Ta-
ble S5 and Methods S3). It effectively assumes that the poor
correlation between translation and mRNA abundance is
largely due to a genuine biological phenomenon rather than
measurement error. OLS-based estimates better match cur-
rent thinking that translational control includes a substan-
tial component that is unrelated to the abundance of each
mRNA. In addition, OLS b̂TR–RNA predicts a value for the
amplification exponent that is more similar to that we ob-
tained from scaling-standard-rescaled protein and mRNA
abundances (1.22 versus 1.17 respectively) than to RgMA
b̂TR–RNA (1.31 or 1.55 versus 1.17). Thus, OLS b̂TR–RNA
should give a more accurate estimate of bprot–RNA (see Sup-
plementary Methods S3 for further justification). Averaging
our estimate from ribosome profiling data with that from
corrected protein and mRNA abundances (i.e. the estimates
in Figure 3B and C) provides our most accurate estimate for
bprot–RNA as 1.20 with a 95% confidence interval [1.14, 1.26].

Estimating mRNA abundance-dependent and independent
translational control

The variance in protein levels is caused by gene-specific dif-
ferences in mRNA abundances, translation rates, and pro-
tein degradation rates. Because translation rates correlate
with mRNA levels, it has been suggested that the percent
of the variance in true protein amounts that is explained
by the true individual contributions of mRNA, translation,
and protein degradation sum to more than 100% (12). This
argument is, however, misleading. The correlation coeffi-
cient between translation and protein abundance is not a
legitimate measure of the contribution of translation to pro-
tein expression because it breaches one of the essential re-
quirements for analysis of variance (ANOVA). ANOVA is
only valid when the true explanatory variables (in this case
mRNA abundance, translation and protein degradation)
are fully uncorrelated with each other (i.e. when they are
not collinear) and, as a result, when their marginal contri-
butions sum to exactly 100%. Therefore, as briefly explained
in the Introduction, to determine the contribution of trans-
lation rates (TR) to protein expression it is essential to de-
compose TR into two components: one that is dependent
on mRNA abundance (TRmD) and a second that is indepen-
dent of mRNA abundance (TRmIND), where TR = TRmD ·
TRmIND. TRmIND determines the variance in protein levels
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Figure 5. The estimation of TRmD and TRmIND for a single gene. The lin-
ear regression between log10 translation rate data (y-axis) and log10 mRNA
abundance data (x-axis) is shown by the red line (data from (27)). The data
point for an example gene is highlighted in orange, whereas those for all
remaining genes are shown in light blue circles. The gene specific values
for log10(TRmD) and log10(TRmIND) are shown for the highlighted gene.
The value for log10(TRmD) is the intercept on the y-axis of a horizontal
line that intercepts the regression at the mRNA abundance of the gene.
The value for log10(TRmIND) = log10(TR) – log10(TRmD). Values are de-
termined likewise for the remaining genes. Values for log10(TRmIND) thus
have both positive and negative values depending on if the data point lies
above or below the regression. Values for log10(TRmD) fall within the range
of values for log10(TR), all of which are negative.

that is not explained by mRNA or protein degradation; it
has no impact on bprot–RNA. TRmD, by contrast, determines
the amplification exponent bprot–RNA. The abundance of any
protein i is then given by the following

log10(proti ) = log10(a) + (1 + bTR−RNA) · log10(RNAi )
+ log10(TRmINDi ) + log10(PnDi ),

(Materials and Methods, equation 6)

bTR−RNA = sd(log10(TRmD))/sd(log10(RNA)),
(Materials and Methods, equation 11)

where sd is the standard deviation; a is positive constant for
all genes; PnD is the fraction of protein not degraded; and
(1+bTR–RNA) = bprot–RNA. As one consequence of this 100%
of the variance in true protein expression is explained by
the sum of the contributions of the variances of true RNA,
TRmIND and PnD values.

To quantitate the contribution of translation to pro-
tein expression, we first calculated gene-specific values of
TRmIND and TRmD from OLS regressions of translation ef-
ficiency on mRNA abundance for both the Csardi-median
and the Weinberg datasets (Figure 5 and Dataset S4). In ad-
dition, from these same regressions we determined the per-
cent of the variance in TR that is explained by the variances
in TRmD and TRmIND. Assuming no measurement error,
these values are 19%–21% and 79%–81% respectively (Sup-
plementary Table S4).

The amplification effect of TRmD on the contribution of
mRNA to protein abundance is given by the amplification
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Figure 6. Contributions to the control protein expression. (A) The maximum percentage contributions of estimates of mRNA abundance, protein degra-
dation (PnD), and TRmIND to the variance in measured levels of protein expression as well as the percent of the variance unexplained (Supplementary
Tables S4 and S6). The contributions were calculated by using the OLS regression to fit a statistical model (Materials and Methods, Equation 12). (B) Left,
the presumed percentage contributions of true mRNA abundance, protein degradation (PnD) and TRmIND if the unexplained component in A is due to
similar proportions of measurement error in each data class. Right, the mean of our estimates for the contribution of TRmD to the amplification exponent
bprot–RNA. The dashed black line shows a slope of 1, the shaded area shows the increase in slope due to TRmD.

exponent bprot–RNA, which we have estimated earlier as 1.20
with a 95% confidence interval [1.14, 1.26]. The contribu-
tion of TRmIND to protein abundance was derived from
OLS linear regressions of the gene specific values of pro-
tein data on TRmIND using a statistical model (Equation 12)
based on Equation (6) (Materials and Methods). TRmIND
only accounted for 1%–3% of the variance in the protein
abundance estimates from the Bayesian model (Supplemen-
tary Table S4). Because these percentages were surprisingly
low, we recalculated the contribution of TRmIND by regress-
ing the protein scaling-standards against it to test for an un-
known bias in the output of the Bayesian model. The mean
contributions of TRmIND to the variance in the scaling-
standard protein datasets were also low: 4% (Supplemen-
tary Table S6). We also re-estimated TRmIND by regressing
translation efficiencies against the Bayesian mRNA abun-
dances to avoid any potential bias in the mRNA data from
the ribosome profiling studies. These re-calculated values
for TRmIND, though, still only explain <1% of the variance
in the Bayesian protein data.

To compare our new metrics to one derived from un-
decomposed TR, we determined the R2 coefficient of de-
termination between undecomposed TR and protein abun-
dance data. R2

prot–TR = 0.24–0.28 (Supplementary Table
S4). This relatively high value helps expose why R2

prot–TR
cannot be used as measure of the contribution of translation
to protein abundance. TRmIND represents ∼80% of the vari-
ance in TR, yet R2

prot –TRmIND is dramatically lower than
R2

prot–TR (0.01–0.04 versus 0.24–0.28). TRmD accounts for
only ∼20% of the variance in TR and yet is chiefly respon-
sible for the fact that R2

prot–TR >> R2
prot –TRmIND (Supple-

mentary Table S4). It is counter-intuitive that a ∼20% mi-
nority of the variance in TR should have much the domi-
nant contribution to protein expression. In effect, R2

prot–TR
is a hybrid measure of the correlation of TRmIND with pro-
tein abundances combined with some part of the correla-
tion between mRNA abundance and protein levels. Only by
decomposing TR can the impact of translation be properly

quantitated and provide metrics consistent with the require-
ment of ANOVA that explanatory variables be completely
uncorrelated.

Estimating post-transcriptional control

The contribution of protein degradation to the variance of
protein abundance in actively dividing yeast cells is very low
because the median half-life of proteins is 3.5 times longer
than the cell division rate (28). By our estimate, this con-
tribution is ∼1% (Supplementary Table S2; Materials and
Methods). As explained above, the percentage contribu-
tions of the variances in the true values of mRNA, TRmIND,
and PnD should sum to explain exactly 100% of the vari-
ance in true protein levels (Materials and Methods, Equa-
tion 5). For measured data, though, the sum of the contri-
butions is no more than 77% (mRNA) + 4% (TRmIND) +
1% (PnD) = 82% (Figure 6A and Supplementary Tables
S2, S4 and S6; Materials and Methods). This discrepancy
reveals another advantage of our framework. The ∼18% of
the variance in protein data that is unexplained (Figure 6A)
should be due to measurement error. Our approach thus
provides an assessment of the magnitude of error, whereas
error cannot be estimated if TR is left undecomposed.

Further, if we assume that the proportion of measure-
ment error is similar in each data class, we can estimate the
contribution of the true values of each step to true protein
expression. When we do this, the variance in the true val-
ues of TRmIND + PnD explain ∼6% of the variance in true
protein levels, while TRmD makes an additional contribu-
tion by increasing slope bprot–RNA from its ground state of
1 to more like 1.20 (Figure 6B). The expected correlation
between true protein and true mRNA abundances is thus
R2

prot–RNA ∼0.94 (Figure 6B).

The mRNA sequence determinants of TRmD and TRmIND

The fact that translation rates correlate with mRNA abun-
dances suggests that highly expressed mRNAs contain fea-
tures in their nucleic acid sequences that specify faster rates
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Figure 7. mRNA sequences that explain translation rates. The R2 coeffi-
cients of determination between nine mRNA sequence features and TR
are shown (Supplementary Table S7 and Methods S4). A cartoon below
shows to which mRNA region each feature maps. The TICE, CDS amino
acid frequency and CDS codon frequency features are multi feature sets
comprised of 14, 20 and 61 individual features respectively (Datasets S6
and S8). The other six are single features (Dataset S6).

of translation than mRNAs present at low levels (12). Such
mRNA sequence features would thus correlate with TRmD.
TRmIND, on the other hand, is by definition fully uncorre-
lated with mRNA abundance and with TRmD. It is plau-
sible then that the two components of translation may be
specified by different sequence elements and controlled by
separate mechanisms. We therefore sought to determine if
there are mRNA sequence features that specify TRmD and
to assess if these differ from those that define TRmIND.

Detailed prior work has identified several mRNA se-
quence features that correlate with, and in some cases
have been directly shown to affect, rates of translation
(27,29,30,38–59). Extending this earlier work, we defined
nine sequence features that predict between 5% – 60% of
the variance in the rates of translation when tested in pair-
wise regressions in which only one feature is present. When
all nine features are combined in a multivariate model, 80%
of translation is explained (Figure 7; Supplementary Table
S7 and Methods S4; Datasets S6–S9). Of note, a Transla-
tion Initiation Control Region (TICE) that flanks the AUG
codon alone explains 33% of the variance in translation
rates (Figures 7 and 8). The extent of the TICE was de-
termined by testing Position Weight Matrices (PWMs) of
differing lengths, which showed that the TICE is largely en-
coded by nucleotides –35 to +28 (Figure 8C). The –35 to –1
region is strikingly more A rich and G poor in highly trans-
lated mRNAs than in less well translated genes, while the
+4 to +28 region shows more complex position specific dif-
ferences with translation rate (Figure 8A and Supplemen-
tary Figure S2). Further analysis revealed that the frequen-
cies of a subset of dinucleotides and trinucleotides within
the –35/–1 and the +4/+28 regions allow more complete
prediction of translation rates when combined with PWMs
(Figure 8D and Dataset S8). Consistent with earlier obser-
vations (39–41,44,51), the TICE is much less likely to adopt
a folded RNA structure in highly translated mRNAs than it
is in poorly translated mRNAs (Figure 8B), suggesting that
it functions at least in part by specifying structure.

Using the nine features, the percent of the variances in
TRmD and TRmIND that are explained by each in pair-
wise regressions were determined (Figure 9 and Supple-
mentary Table S7). While TRmD and TRmIND both corre-
late with multiple features, there are significant differences
in the degree to which some features explain TRmD versus
TRmIND. CDS length has a much larger impact on TRmIND
than on TRmD (Bonferroni corrected P < 0.001). On the
other hand, the TICE, the frequencies of amino acids or
codons encoded by the CDS, RNA folding of the CDS,
and poly A tail length each explains more of TRmD than
TRmIND (Bonferroni corrected P < 0.001). The remaining
three features––length of the 5′ untranslated region (UTR),
number of open reading frames (ORFs) in the 5′ UTR, and
RNA folding in the 5′ UTR––show no compelling discrim-
ination in the degree to which they explain TRmIND and
TRmD (Bonferroni corrected P > 0.074).

The mRNA sequence features that correlate with
TRmIND are likely to be mechanistic determinants of trans-
lation rates, see Discussion. The features that correlate with
TRmD, however, could in principle directly affect translation
or they could instead only impact mRNA stability. Their
correlation with TRmD might not reflect a direct mechanis-
tic role in translation but instead a fortuitous consequence
of their impact on mRNA abundance. We therefore deter-
mined if measured mRNA degradation rate data could ex-
plain the correlation of each feature with TRmD by calculat-
ing revised TRmD values (TRmD*) where the expected im-
pact of RNA degradation has been removed (Supplemen-
tary Methods S4 and Table S8) (30). Only poly-A length and
CDS RNA folding showed a significant reduction in their
correlation with TRmD* (Bonferroni corrected P < 0.001).
The remaining features showed similar correlations with
TRmD and TRmD* (Bonferroni corrected P > 0.072) (Sup-
plementary Table S8). Thus, poly-A tail length and CDS
RNA folding likely act at least in part by impacting mRNA
stability. The correlation of the other seven features with
translation rates appears to reflect direct control of protein
synthesis.

The frequencies of codons in different mRNAs corre-
late with the abundance of the encoded proteins (27,30,45–
49,52). Codon frequencies within highly translated mRNAs
more closely match the abundances of their cognate tR-
NAs than is the case for poorly translated messages, re-
sulting in higher rates of translation elongation (27,30,45–
49,52). The substantial correlation between amino acid or
codon frequencies with TRmD and with TRmIND (Figure 9)
therefore likely reflects control of elongation. To directly test
this, we first determined the frequencies of amino acids and
codons in the 10% of genes with the highest values of TRmD
or TRmIND (top cohorts) and separately the frequencies of
amino acids and codons in the 10% of genes with the lowest
values (bottom cohorts) (Dataset S9). We then correlated
these frequencies with tRNA abundance. All cohorts show
a positive correlation (Figure 10 A and B; Supplementary
Table S9). Top cohorts, however, consistently show a higher
correlation than bottom cohorts, though this differences is
only statistically significant for codon frequencies not for
amino acid frequencies (Figure 10A and B; Supplementary
Table S9). Notably, there is a larger difference between the
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Figure 8. The –35 to + 28 Translation Initiation Control Element (TICE). (A) Position weight matrices (PWMs) for the 10% of mRNAs with the highest
TR scores (top) and the 10% of mRNAs with the lowest TR scores (bottom). Sequence logos show the frequency of each nucleotide at each position
relative to the first nucleotide of the protein coding sequence (CDS) (Dataset S7). (B) The mean predicted RNA folding energy (�G, kcal/mol) of 35
nucleotide windows (y-axis). The x-axis shows the position of the 5′ most nucleotide of each window. Windows representing every one nucleotide offset
were calculated. (C) The R2 coefficient of determination between translation rates (TR) and PWM scores. PWMs of varying lengths were built from the
sequences of the 10% of mRNAs with the highest TRs, and then log odds scores were calculated for all mRNAs that completely contained a given PWM.
PWMs extending 5′ from –1 in 5 nucleotide increments were tested (x-axis, right to left) and these were also extended 3′ from +4 in 5 or 10 nucleotide
increments (grey to black scale). (D) The R2 coefficients of determination between TICE mRNA sequence features and TR. PWMs corresponding to the
three specified TICE mRNA regions (–35/–1, +4/+28 and –35/+28) were used to score each gene (PWM only). Alternatively, PWMs and the frequencies
of a small subset of dinucleotides and/or trinucleotides were scored for each gene (PWM + di/tri nuc. freq.) (Datasets S6 and S8).

top and bottom TRmD cohorts than seen between the top
and bottom TRmIND cohorts.

We also calculated the ratio of amino acid or codon fre-
quencies between top cohorts divided by that of bottom co-
horts (Dataset S9). For a given amino acid or codon, a ratio
of greater than one thus indicates that it is more abundant
in highly translated mRNAs than in poorly translated mes-

sages. Scatter plots comparing these ratios to tRNA abun-
dance show positive correlations, with only the TRmIND
amino acid ratios not showing a significant correlation (Fig-
ure 10C–F). The correlations are stronger for TRmD ra-
tios than for TRmIND ratios. The range of ratios is also
markedly larger for TRmD than for TRmIND. In particular,
TRmD codon ratios lie between 0.02 to 3.60 while TRmIND
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Figure 9. TRmD and TRmIND are differentially determined by mRNA se-
quences. The R2 coefficients of determination between mRNA sequence
features and TRmD and TRmIND are shown (Supplementary Table S7 and
Methods S4). The Bonferroni corrected P-value testing if the correlations
with TRmD and TRmIND are equal are given, with significant p-values
shown in red. A cartoon below shows to which mRNA region each fea-
ture maps.

codon ratios lie between 0.61 to 1.53, an over 50-fold dif-
ference (Figure 10E and F; Dataset S9). We conclude that
both amino acid and codon frequencies control TRmD more
strongly than they impact TRmIND and do so by their effect
on the rate of elongation by the ribosome. The differences in
amino acid composition between highly abundant and less
abundant proteins have a significant impact on translation
rates, but the additional larger variation in the frequencies
of individual codons plays a bigger role.

DISCUSSION

We have presented a revised framework for determining
the contribution of translation rates to the differences in
protein expression between genes. Because translation rates
partially correlate with mRNA abundance, it is not pos-
sible to provide a single metric to capture system-wide
translational control. The R2 coefficient of determina-
tion between translation rates and protein expression can-
not measure translation’s contribution because it mixes
the contribution of translation with that of mRNA. In-
stead, to be consistent with the requirements of ANOVA
the contributions of translation to the amplification expo-
nent bprot–RNA and to R2

prot–RNA must be estimated sep-
arately. To achieve this, translation rates are decomposed
into mRNA-abundance dependent and independent com-
ponents, TRmD and TRmIND respectively. TRmD determines
bprot–RNA, whereas TRmIND and protein degradation to-
gether determine R2

prot–RNA.
We find that in S. cerevisiae TRmD represents ∼20% of

the variance in translation and results in an the amplifica-
tion exponent bprot–RNA of 1.20 with a 95% confidence in-
terval [1.14, 1.26], while TRmIND constitutes the remaining
∼80% of the variance in translation and explains ∼5% of
the variance in protein expression (Figure 6B). To overcome
the difficulty of comparing the magnitude of contributions

that are expressed by different, incommensurable metrics,
we suggest that the percent of the variance in translation
that each explains be used. In other words, TRmIND could
be said to contribute 80/20 = 4-fold more to the control of
protein levels than does TRmD.

Our estimates for bprot–RNA are lower than that of the
only previous study to assume mRNA-abundance depen-
dent translational amplification (1.20 [1.14, 1.26] versus
1.69) (12). Because bprot–RNA is an amplification exponent
for non-logged abundance data, this disagreement between
estimates is large. bprot–RNA = 1.20 implies a range of mRNA
abundances in the cell that is fifty fold larger than that im-
plied by bprot–RNA = 1.69 (Dataset S2 and Figure 3). One
of the two approaches that we used to estimate bprot–RNA is
based on multiple protein and mRNA abundance scaling-
standard datasets that were each produced using methods
that employed internal concentration standards and should
thus be properly scaled. Broad agreement is observed be-
tween scaling-standards from separate studies that used dif-
ferent methods (Figure 2). Our other estimate of bprot–RNA
is based on the correlation between measured translation
rate and mRNA abundance data. Our two independent es-
timates are similar (means 1.17 versus 1.22; Figure 3B and
C), implying that they are reasonable. The prior estimate of
bprot–RNA = 1.69, by contrast, used a Bayesian model to in-
fer the scaling of true protein and true mRNA abundances
from datasets that in some cases were produced by meth-
ods that yield biased scalings (Figure 4). The model had no
guide for which data input was correctly scaled, and thus
it had no way to determine a correct scaling. It was also
previously claimed that the correlation between ribosome
profiling data and mRNA abundances was consistent with
bprot–RNA = 1.69 (12). Our analysis, however, indicates that
this claim in effect assumes that true translation rates and
true mRNA abundances correlate perfectly (see Results), an
idea that is inconsistent with the available evidence.

Given estimates for TRmIND, protein degradation and
measurement error, we showed that it is possible to esti-
mate R2

prot–RNA for the true abundances of proteins and
mRNA. This approach suggests that R2

prot–RNA ∼0.94 (Fig-
ure 6B). The highest previous estimate for the correlation
between protein and mRNA levels was R2

prot–RNA = 0.86
(12). This estimate was based on modeled abundances for
5,854 protein-coding genes in S. cerevisiae. For 842 of these
genes, however, either protein or mRNA abundance data
was lacking; instead, values were imputed using a Bayesian
model. When we limit the protein and mRNA abundances
produced by the Bayesian model to the 5,012 genes for
which empirically measured data is available, R2

prot–RNA =
0.80.

Our decomposition of translation rates, thus, provides an
estimate for the combined contributions of translation and
protein degradation that is ∼3-fold lower than the smallest
previous estimates based on measured protein and mRNA
abundance data. Results from other approaches, though,
support our estimate that R2

prot–RNA ∼0.94. For example,
ribosome profiling studies have found almost as strong a
correlation between mRNA levels and the total number of
protein molecules synthesized per gene (R2 = 0.90) (27).
In addition, translational regulation of specific transcripts
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Figure 10. Amino acid and codon frequencies correlate with tRNA abundances. The frequencies of amino acid (AA) or codons in the CDS were determined
separately for the 10% of genes with the highest scores for TRmD or TRmIND (top TRmD or top TRmIND) and for the 10% of genes with the lowest scores
(bottom TRmD or bottom TRmIND) (Dataset S9). (A and B) The coefficient of determination (R2) for top and bottom amino acid or codon frequencies
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corrected P-values testing if the correlations are significant are also given, with significant P-values shown in red. Dashed vertical lines indicate a ratio of
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in response to stress in S. cerevisiae is generally less than
threefold and limited to a minority of genes (37,60). Finally,
unlike animals, plants and other fungi, S. cerevisiae lacks
micro RNAs (61). The degree of transcript-specific transla-
tional regulation may be limited in this species, and so a par-
ticularly high correspondence between protein and mRNA
abundances should be unsurprising.

These results should not be taken to suggest that trans-
lational control is unimportant, however. Translation and
other steps, such as protein degradation, that do not
strongly determine protein abundances, contribute to re-
sponsivity (3,11). For example, the response to environmen-
tal stimuli that change levels of specific mRNAs will be
more rapid for those mRNAs that are inherently translated
more quickly. Several metrics for control must be consid-
ered to properly appreciate the contribution of each step in
regulating gene expression.

Quantifying the mechanisms that control translation

By considering which mRNA sequence features determine
TRmD and TRmIND, we have also been able to provide in-
sights into the mechanisms governing translation and the
degree to which each exerts control. Extending detailed
prior studies (27,29,30,38–59), we showed that nine se-
quence features can explain 80% of the variance in trans-
lation rates (Figure 7 and Supplementary Table S7). Im-
portantly, the nine features do not all affect TRmD and
TRmIND equally (Figure 9). TRmD––and therefore the am-
plification exponent––is most strongly determined both by
a Translation Initiation Control element (TICE) that spans
nucleotides –35 to +28 and by the frequencies of amino acid
and codons encoded in the protein coding sequence (CDS).
TRmIND, by contrast, is chiefly determined by the length of
the CDS. These differences indicate that these two compo-
nents of translation are under different selective pressures.

Translation initiation in eukaryotes has been proposed to
be enhanced by a circularization event that brings the 5′ and
3′ ends of mRNAs into close proximity (55,62). The nega-
tive impact that longer CDSs have on translation rates re-
sults because this circularization appears less efficient for
longer mRNAs than for shorter mRNAs ((27,55,63) Fer-
nandes et al. (2017) Biorxiv doi 10.1101/105296). Given
this, it can be readily understood why there might be dra-
matic differences in the degree to which CDS length speci-
fies TRmD versus TRmIND. CDS length and mRNA abun-
dance are under strong selective pressures that are un-
related to the control of translation rates. The relatively
weak negative correlation of CDS length with TRmD should
thus be mostly determined by these other strong selective
forces. In contrast, TRmIND has no correlation with mRNA
abundance, and thus the degree to which circularization
efficiency affects translation will be fully reflected in the
strong anti-correlation we observe between CDS length and
TRmIND.

Previous work indicates that A-rich sequences in the re-
gion –10 to –1 result in higher rates of translation initia-
tion and that nucleotides between either +4 to +6 or +10 to
+20 also play a role (38,40–42,64). Our analysis defining the
TICE is consistent with this evidence, though suggests that
the A-rich element is more extensive, stretching from nu-

cleotides –35 to –1, and that all of the region from +4 to +28
is involved (Figure 8 and Supplementary Figure S2). The –
35 to –1 region in highly translated mRNAs has a less folded
RNA structure than in mRNAs translated at lower rates
(Figure 8B) (39–41,44,51). Thus it is possible that the A-rich
sequences act only by specifying unfoldedness and perhaps
other aspects of structure, such as the degree of base stack-
ing or chain flexibility. It has also been speculated, how-
ever, that A-rich sequences might stabilize the interaction
of poly-A binding protein with the 5′ UTR and thus en-
hance translation by mRNA circularization (65). The –35
to –1 portion of the TICE could thus act by two means. The
TICE from +4 to +28 is not especially A-rich and instead
shows a variety of location specific preferences for different
bases between highly translated and poorly translated mR-
NAs (Figure 8A). Some of these sequence preferences may
reflect evolutionary selection for protein function that are
unrelated to the control of translation. Unfolded mRNA
structure in the +4 to +28 region also correlates positively
with translation rates, however, raising the intriguing possi-
bility that the N-terminal nine or so amino acids could in
part be selected because of the mRNA structures produced
by their codons, rather than for their function within the
protein (Figure 8B).

It has long been recognized that rates of translation elon-
gation are higher for mRNAs whose frequency of codons
more closely matches the relative abundance of tRNAs
(27,30,45–49,52). Our analysis shows that both amino acid
and codon frequencies are principally used to determine dif-
ferences in translation elongation rates between differently
abundant mRNAs (i.e. TRmD) (Figures 9 and 10). These
two features play a lesser role in modulating the mRNA in-
dependent variation in translation rates (i.e. TRmIND) (Fig-
ures 9 and 10).

The length of poly-A tails and the degree of RNA folding
in the CDS also show strong discrimination in their corre-
lation with TRmD versus with TRmIND (Figure 9). The cor-
relation of these features with TRmD, however, unlike those
of our other seven features, may not reflect a direct effect
on translation but an impact on mRNA stability and hence
mRNA abundance (Supplementary Table S8). The correla-
tion of poly-A length and CDS RNA folding with TR may
be entirely fortuitous. On the other hand, codon usage does
have dramatic effects on both translation rate and mRNA
stability in S. cerevisiae, with mRNAs that have codon fre-
quencies optimized for rapid translation being the most
stable (30,52,57–59). Our results confirm that our codon
frequency feature correlates with RNA degradation (R2 =
0.21, Supplementary Table S8). These results explain why
codon usage is a strong determinant of TRmD and why it has
a less strong effect on TRmIND. The control of both transla-
tion and mRNA turnover by this one sequence feature will
inevitably lead to a correlation of TR and mRNA abun-
dance and––as a consequence––an amplification exponent
bprot–RNA > 1. Any feature that impacts mRNA abundance
will tend to explain TRmD more so than TRmIND, which is
what we observe (Figure 9).

The three remaining features––5′ UTR length, number
of 5′ UTR ORFs and 5′ UTR folding––do not show sig-
nificant differences in their correlation with TRmD and
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Figure 11. Sequence information that specifies initiation and elongation rates are highly correlated. We assume that mRNA sequences in the 5′ UTR,
the TICE, and the length of the protein coding sequence together control the rate of translation initiation and that codon frequency determines the rate
of elongation by the ribosome (top, center). Scatter plots compare measured TR data to the results of three multi-variate models that predict TR based
on features controlling initiation only (middle, left), elongation only (middle, right) or initiation or elongation (bottom, center). The R2 coefficients of
determination are shown in each case. The results show that initiation and elongation signals each explain >57% of the variance in TR and that a model
including both signals explains 80% of TR. Thus, 66% the control of initiation is collinear with the control of elongation (bottom, left) and 63% of the
control of elongation is collinear with initiation (bottom, right).

TRmIND. They contribute to both, establishing that TRmD
and TRmIND are each specified by multiple features.

Finally, because our model explains the bulk of the vari-
ance in translation, we can estimate the relative contribu-
tions of control at initiation versus control during elonga-
tion. 5′ UTR length, number of 5′ UTR ORFs, 5′ UTR fold-
ing, and the TICE all likely affect initiation, not elongation,
and collectively explain 42% of the variance in translation.
Assuming that the length of the protein coding region also
effects initiation rates, 58% of the variance in translation
is controlled prior to elongation by the ribosome (Figure
11). Codon frequency controls elongation rate and deter-
mines 60% of the variance in translation (Figures 7 and 11).
When these six features are combined in a model, 80% of the
variance in translation is explained (Figure 11). Initiation
and elongation thus appear to share an equal role in con-
trolling translation and to act in a substantially correlated
manner. Slightly more than 60% of the control of initiation
is collinear with elongation and vice versa (Figure 11): %
initiation correlated with elongation = 66% = (58% + 60%
- 80%) / 58% × 100% elongation correlated with initiation
= 63% = (58% + 60% – 80%)/60% × 100%. Initiation and
elongation control features appear to act in tandem, tending
to amplify the effect of each other either to both up regulate
or to both down regulate rates.
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