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Abstract

The effectiveness of immune responses depends on the precision of stimulus-responsive

gene expression programs. Cells specify which genes to express by activating stimulus-

specific combinations of stimulus-induced transcription factors (TFs). Their activities are

decoded by a gene regulatory strategy (GRS) associated with each response gene. Here,

we examined whether the GRSs of target genes may be inferred from stimulus-response

(input-output) datasets, which remains an unresolved model-identifiability challenge. We

developed a mechanistic modeling framework and computational workflow to determine the

identifiability of all possible combinations of synergistic (AND) or non-synergistic (OR)

GRSs involving three transcription factors. Considering different sets of perturbations for

stimulus-response studies, we found that two thirds of GRSs are easily distinguishable but

that substantially more quantitative data is required to distinguish the remaining third. To

enhance the accuracy of the inference with timecourse experimental data, we developed an

advanced error model that avoids error overestimates by distinguishing between value and

temporal error. Incorporating this error model into a Bayesian framework, we show that

GRS models can be identified for individual genes by considering multiple datasets. Our

analysis rationalizes the allocation of experimental resources by identifying most informative

TF stimulation conditions. Applying this computational workflow to experimental data of

immune response genes in macrophages, we found that a much greater fraction of genes

are combinatorially controlled than previously reported by considering compensation

among transcription factors. Specifically, we revealed that a group of known NFκB target

genes may also be regulated by IRF3, which is supported by chromatin immuno-precipita-

tion analysis. Our study provides a computational workflow for designing and interpreting

stimulus-response gene expression studies to identify underlying gene regulatory strategies

and further a mechanistic understanding.
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Author summary

Cells need to sense environmental cues and respond appropriately. One important notion

is that different stimuli activate different combinations of transcription factors and that

responsive genes are regulated by distinct subsets of these. However, identifying the regu-

latory strategies by which genes interpret transcription factor activities remains a largely

unsolved challenge. In this work we address the question: to what extent are combinatorial

transcription factor regulatory strategies identifiable from stimulus-response (input-out-

put) datasets? We present a computational framework to determine the identifiability of

gene regulatory strategies, and examine how reliable and quantitative model inference is a

function of the quality and quantity of available data. We present an error model that

more precisely quantifies uncertainty for perturbation-timecourse data sets by also con-

sidering error in the time domain, and achieves an improved performance in identifying

and quantifying gene regulatory strategies. With these tools, we generate guidelines for

experimental design that optimize limited resources for generating data for model infer-

ence. Finally, we apply the workflow to immune response datasets and uncover evidence

that many more genes are subject to combinatorial control than previously thought; we

offer physical transcription factor binding data to support this finding for one particular

group of genes. This demonstrates that the computational workflow may guide studies of

the regulatory strategies that govern stimulus-responsive gene expression programs.

Introduction

A primary goal of biology is to understand biological phenomena in terms of the underlying

factors, whether these are cells, molecules or genes. These factors form dynamic regulatory net-

works whose emergent properties are responsible for biological phenomena. Hence, the sys-

tems biology approach employs mathematical models that represent or abstract these

networks to interpret experimental data.

For studies of how genes are expressed, the advent of experimental assays that are capable

of producing genome-wide measurements of mRNA abundance, chromatin-bound factors

and modifications has been revolutionary. A variety of computational approaches have been

developed to construct correlations networks based on these large datasets [1–6]; these infer

correlative connections between regulators that may reflect a direct or indirect causal relation-

ship, a common cause, or mere coincidence. Because correlative approaches often leverage the

statistical power of multiple datapoints from similarly expressed genes, they are not well suited

in addressing the regulatory precision of individual genes [7]. That is an important limitation,

as many pathological conditions can in fact be traced to a single gene culprit, or a handful [8].

In order to leverage the wealth of genome-wide gene expression datasets for developing a

mechanistic understanding of gene expression, prior studies have employed mathematical

models that represent the functional interactions between the gene and the key transcription

factor (TF) [9–13]. In pioneering work, kinetic models with logic gates were applied to time

series data to infer genome-wide transcriptional regulatory networks [6], but questions about

the goodness of fit, uniqueness of the solution, and model identifiability remained to be

addressed. Simple mathematical models do not describe the detailed gene regulatory mecha-

nisms in the nucleus, that may contain hundreds of factors along large stretches of regulatory

DNA, but constitute functional abstractions that may be termed the gene regulatory strategies

(GRSs). Thus, GRS models describe functional relationships in a mechanistic modeling

framework.
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Mathematical models of such GRSs involving a single TF have been successfully fit to data-

sets from individual mammalian genes, when the TF activity may be induced by a stimulus to

provide a perturbation with a defined starting timepoint. In this case both TF activity and tar-

get gene expression were measured in a timecourse to provide the data for GRS model fitting.

Indeed, for immune response genes this approach allowed GRS model parameters to be fit

[10,13], or the GRS model topology to be selected from two alternatives [9]. Such experimen-

tally validated GRS models may then guide the development of finer-grained GRN models

that more faithfully describe the physical interactions that give rise to the regulatory strategies.

However, many mammalian genes are not regulated by a single TF, but multiple TFs. TFs

collaborate either by compensating for or enhancing each other’s activities. Characterizing

what is termed the “logic” of collaborative TFs regulating genes is critical to understanding

how the genome is expressed. To quantitatively capture combinatorial gene regulation by mul-

tiple TFs, thermodynamic formulations of Boolean AND- and OR-gate-like relationships may

be employed to describe molecular interactions between DNA, TFs, and the polymerase-con-

taining transcription machinery that regulates transcription initiation [14–17]. However, iden-

tifying the right model for a specific experimental dataset means that not only the most

appropriate model topology (e.g. logic gates) needs to be selected to fit the data, but this should

be done by considering a range of parameter values (e.g. TF regulation strengths) that should

be optimally fit to the data.

A recent study aimed to identify GRSs with combinatorial TF logics using mammalian

immune response datasets [18]. To render the model identifiability challenge more tractable,

the complexity of matching combinatorial TF models had to be dramatically reduced by two

simplifying measures: first, the model parameters were fixed, reducing the task to identify the

best model to match the data; and second, models were matched to the mean expression of co-

clustered genes, rather than individual genes, thereby avoiding the confounding effects of tech-

nical inaccuracy. This second simplification, however, diminishes the rich diversity of regula-

tory strategies that occur even within co-clustered genes [19,20]. In sum, we conclude that 1)

model selection from a library of GRS topologies and quantitative fitting from a range of

parameter values must be done at single gene resolution, and 2) this task poses an as yet unre-

solved model identifiability challenge.

In this study, we have addressed the GRS model identifiability challenge in three steps.

First, we systematically delineated GRS model identifiability, thereby identifying GRS models

that are easily distinguished from each other, and others that require substantially more data.

Second, we developed a Bayesian computational workflow–including a new error model–to

use experimental input-output datasets for GRS model selection and parameter fitting. Third,

we applied the computational workflow to newly assembled experimental innate immune

datasets. Our results demonstrate the utility of the newly developed computational workflow

by applying it to an innate immune gene dataset to reveal potentially combinatorially con-

trolled genes in line with reports in other biological systems [21,22].

Results

Assessing the distinguishability of gene expression patterns produced by

distinct GRSs involving three TFs

Upon cellular stimulation, the activities of stimulus-induced TFs are activated and–in a combi-

natorial manner–enhance transcription initiation of specific genes. To explore the identifiabil-

ity of distinct GRS models involving TF combinations, we first examined via a systematic

model-based analysis how distinguishable the associated gene expression patterns really are

when different TF combinations are activated.
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We employed an established model formalism in which messenger RNA abundance of an

expressed gene is controlled by synthesis and decay [23], in our case we model nascent mRNA

such that the decay term corresponds biologically to its processing and release from the chro-

matin. An ordinary differential equation models RNA abundance dynamics (Fig 1A), where

the processing/chromatin release rate (kproc) is first order and RNA synthesis is zeroth order

but is modeled by multiplying the RNA synthesis rate constant (ksyn) with the fractional pro-

moter activity (f (t)). Fractional promoter activity was modeled by an established thermody-

namic formulation with a Hill function that captures the TF regulation strength [17,18], as a

function of a disassociation constant (Kd). Strong (Kd = 0.1) and Weak (Kd = 10) regulation

strengths were defined as the readily saturated and always linear dose-response relationships,

respectively, with Medium regulation strength being in-between (Fig 1B). Here we assume no

cooperativity in the activation by a single TF (nH = 1), in line with a previous report [24]

(though future work may consider non-linear dose response curves that may have been

reported in other systems. Similar thermodynamic formulations [15,17,18] are used to model

AND and OR logic gates which consider synergistic or non-synergistic functions between two

TFs (Figs 1C and S1, see Methods). We enumerated all possible logics composed by single,

dual and triple TFs with AND and OR logic gates (Fig 1D). Single and dual logics can be repre-

sented by the same 8 triple logic gates when allowing for null regulation strengths for one or

two TFs (see Methods). Thus, only 8 triple logic gates are needed to study all logics formed by

the combination of a one, two or three TFs.

To conduct a systematic analysis of GRS identifiability, we enumerated the GRS models (S2

Fig) that cover not only all combinations of AND and OR logics but also 3 TF regulation

strengths (Kd = 0.1, 1, 10, referred to as Strong, Medium, Weak) and a fixed pre-mRNA chro-

matin release and processing rate. Of the possible 216 GRSs, 69 GRSs were removed because

they cannot be efficiently activated (due to weak TF regulation strengths), and 54 GRSs were

removed because they were logically equivalent with other, resulting in a list of 93 unique,

potentially identifiable GRSs. To probe these GRSs, we first considered a set of 7 perturbations

involving all combinations of high and low activities induced for each of the 3 TF (23–1 = 7,

omitting the case of all three TFs being low) (Fig 1E). We simulated gene expression patterns

across timepoints for all 93 GRSs (Fig 1F, Methods), and reordered GRSs based on hierarchical

clustering (single linkage method) of their gene expression timecourses, using the squared

Euclidean distance across all time points and perturbation conditions as the distance metric

between them (Fig 1G). This revealed that some distinct logics produce similar gene expres-

sion patterns as they were co-clustered. For example, within the TF1-response cluster we find

both the TF1 or (TF2 and TF3) GRS and the triple OR gate GRSs, but what all have in common

is that TF1 has strong (S) or medium (M) regulation strength. We next examined the tree

height for each cluster. It is apparent that the GRSs within the triple OR gate cluster are easiest

to distinguish, and the GRSs within the triple AND gate cluster are hardest to distinguish

(indistinguishable with the present 7 perturbations). All the results have been further con-

firmed with different hierarchical clustering methods (average and complete linkages,

S3A Fig).

As 7 perturbations do not enable distinction of all GRSs, we next explored more diverse

perturbation conditions such as transient, delayed, gradient, or intermediate amplitude TF

activations (Fig 2A). Examining the triple AND gate GRSs that could not be distinguished

with the set of 7 perturbations, we found dramatic differences: amplitude and gradient pertur-

bations readily distinguished these 7 GRSs, but transient and delayed TF temporal dynamics

did not (Fig 2B). To summarize, we found that the regulation strength of a TF may be identifi-

able when perturbation data with TF activities of differential amplitudes is available.
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Fig 1. Studying GRSs with stimulus-induced TFs. (A) Schematic of the gene regulation model: stimulus-induced TFs

bind to target DNA to induce Pol II-mediated mRNA synthesis, which is followed by its processing and release from

the chromatin. Nascent mRNA abundance can be described by a single ordinary differential equation (ODE).

Promoter activity is described by thermodynamic models involving Hill functions. (B) Line graphs of promoter

activity as a function of a single TF activity depends on the regulation strength (here indicated by 1/Kd, in black-to-

blue scale). We define the regulation strengths as Strong (Kd = 0.1), Medium (Kd = 1.0), or Weak (Kd = 10), as marked

in the plot. (C) Heatmaps of promoter activity as a function of logic gates (AND, OR) with varying TF1, TF2 activities

as input both with Strong regulation (Kd1 = Kd2 = 0.1). (D) Enumeration of all 17 possible AND and OR logic

combinations by three TFs. These may be represented by 8 triple logics when single and dual TF logics contain null

regulation strengths (Kd� 1) for one or two TFs (marked with grey shading). AND and OR gates are denoted with “�”

and “+” in Boolean algebra. (E) Schematic of the analysis workflow using a set of 7 perturbations with high and low TF

activities, to probe 93 non-redundant, activatable GRSs (see S2 Fig), by simulating their gene expression patterns and

examining those patterns by hierarchical clustering. (F) Heatmap of gene expression at 0, 15, 30, 60 min from all 93
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When fitting the GRS models to experimental data, we may expect that lower-quality data

may affect the identifiability of less well-separated GRSs more than of widely separated GRSs.

To explore how the resolution of each GRS and data quality affects GRS identifiability, we cut

GRSs in response to a set of 7 perturbation conditions involving 3 TFs. Here the heatmap is ordered by GRSs, their

regulatory logic and TF regulation strengths (left columns). (G) The data of panel (F) with GRSs are ordered by

hierarchical clustering (single linkage approach) of gene expression using the squared Euclidean distance depicted by

the tree. This analysis shows that distinct combinatorial logics may give similar gene expression patterns, and that tripe

AND gates with distinct regulation strengths cannot be distinguished with 7 perturbations.

https://doi.org/10.1371/journal.pcbi.1009095.g001

Fig 2. The distinguishability of GRSs depends on the available set of TF perturbations. (A) Schematic of the

analysis workflow using 4 sets of 26 perturbations each with amplitude, gradient, transient, and delayed TF dynamics

to produce combinatorial TF activities to probe 93 non-redundant, activatable GRSs, by simulating their gene

expression patterns and examining those patterns by hierarchical clustering. (B) Heatmap of the triple AND gate GRSs

(top 7 rows in (C), probed with one of the 4 sets of 26 perturbations (shown in (B)), containing amplitude modulated

TF activities (amplitude, gradient) and temporally modulated TF activities (delayed, transient). The results show that

amplitude modulated TF activities best suited to distinguish GRSs are (C) Number of distinguishable GRS clusters as a

function of the separation threshold with indicated sets of perturbation combinations. (D) The same plot as panel C

but from 1981 inducible GRSs generated by random sampling of 1000 parameter sets for each logic. All 1981 GRS are

identified at the lowest separation threshold (-1) for amplitude and gradient perturbations, whereas 1971, 1975, 1976

GRS clusters are identified for high/low, transient, and delayed perturbations, respectively.

https://doi.org/10.1371/journal.pcbi.1009095.g002
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the tree at various height thresholds, referred to as separation thresholds, and we determined

the number of distinguishable GRS clusters as a function of this threshold with multiple per-

turbation conditions (Fig 2C). This analysis further confirmed our previous observations: the

transient and delayed perturbation conditions only marginally increased GRS identifiability,

whereas the amplitude and gradient modulation conditions increased GRS identifiability sub-

stantially to distinguishing all 93 GRSs. Moreover, these results were confirmed with alterna-

tive hierarchical clustering methods (S3B Fig). The hierarchical tree analysis therefore

provides guidance on which GRSs are more likely confused, and indicate which GRSs that are

functionally similar to the identified GRS of interest.

The initial study of 93 representative GRSs allowed us to efficiently and systematically

reveal the key properties of GRSs with multiple perturbation conditions. We next generalized

our results by random sampling of 1000 parameter sets for each logic gate (see Methods). We

stringently represented single, dual logics with null regulation strengths of triple logic gates,

and sampled all parameters (3 Kd, ksyn, kproc, k0) from the full parameter space. We found that

clusters formed (S3C Fig) that were similar to those observed in the analysis of representative

GRSs. We next compared multiple perturbation conditions, and confirmed the result: only

amplitude and gradient modulation conditions enabled distinguishing all GRSs (Fig 2D).

An error model to quantify data uncertainty in value and time

In practical applications, not only the quantity of data, but also its quality (in terms of associ-

ated uncertainty/variability) is expected to affect GRS identifiability. Applying the model to

real experimental data requires an error model that reliably quantifies its data uncertainty.

Here, we have considered the sources of data uncertainty, resulting from both biological vari-

ability and technical uncertainty (Fig 3A). Based on first principles, we simulated biological

variability by varying TF abundances and all the parameters in mechanistic models that

describe gene responses (3 Kd, ksyn, kproc, k0), as well as technical uncertainty by varying sample

preparation timepoints and adding noise to the assay measurements (see Methods). Using the

set of 26 amplitude perturbations, we simulated two replicate expression patterns for each

GRS and captured four time points from each simulation (Fig 3B).

In timecourse data, higher variance is often observed when the timecourse involves sharp

increases or decreases. This higher degree of variance may be caused by uncertainty intro-

duced from the time axis (Fig 3C), for example by samples not being collected at the precise

timepoints, or a sample of cells responding more slowly due to culture inconsistencies. In prin-

ciple, the variance of measurements is composed of both a value error and a temporal error,

the latter contributing more to the observed variance when there are rapid changes in the time-

course curve than when changes are slow. To account for the contribution of temporal uncer-

tainty, we developed a time-value error model, in which the temporal error is a function of the

derivative of the timecourse. As a result, the time-value error model can avoid the under- or

over-estimation of error associated with a conventional error model (Fig 3C). A small number

of samples do not allow for stable estimation of variance. Here, we combined global trends

from all pooled points with an individual point component to achieve a stable point-specific

variance estimation. This approach has been widely used when analyzing RNA-seq data (see

Methods). For the value uncertainty, we used polynomial regression to capture the value vari-

ance-mean relationship. The temporal uncertainty is modeled by a linear Gaussian model (see

Methods).

To test the utility of the time-value error model, we applied it to our simulated data and

compared results to when the conventional model (which does not consider temporal uncer-

tainty) is applied. By comparing estimated data uncertainty with empirical uncertainty
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Fig 3. An error model for stimulus-response data that leverages timecourse information to avoid under and over-

estimates of measurement uncertainty. (A) Uncertainty sources in data simulation. We considered both biological

variability and technical uncertainty. (B) Simulated gene expression data with uncertainty (see Methods). Replicate

datasets for 18 of the 93 GRSs are shown here. (C) Diagram of the time-value error model. Left panel shows how

observed uncertainty can be decomposed into value and temporal uncertainties. Middle panel shows how the

conventional model will under- and over-estimate data uncertainty. Right panel shows that error is decomposed into

value uncertainty, temporal uncertainty, and point-specific uncertainty. (D) Uncertainty estimation with the temporal-

value and conventional error model. For the left column, we estimated data uncertainty from each point using

Maximum Likelihood Estimation (MLE) (98% points are shown). For the middle column, we estimated the global

trend as prior. By applying Bayes’ rule, we obtained posterior estimates, right column. Pearson correlations are

calculated between estimated variance and ground truth variance. Top row corresponds to the conventional model,

and bottom row to our error model.

https://doi.org/10.1371/journal.pcbi.1009095.g003
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(calculated from 1000 samples), pooling points together can largely improve the estimation

accuracy over the directly calculated raw variance, with a Pearson correlation from 0.46 to 0.96

for the time-value model, and from 0.46 to 0.55 for the conventional model (Figs 3D and S4).

Interestingly, we clearly see two modes of estimation in the conventional model: one is an

over-estimate and the other is an under-estimate, which is consistent with our expectation (Fig

3C and 3D). It also shows that two replicates alone are not able to improve estimation accuracy

by combining point-specific information, and more replicates are required to improve the

point-specific estimation.

A workflow to fit GRS models to data

Identifying GRSs from experimental data requires not only an error model to characterize

data uncertainty, but also an optimization pipeline that enables fitting the model to multiple

pairs of input-output datasets of different qualities (Fig 4A). Here, we used a Bayesian frame-

work to derive a likelihood function that serves as the target function and allows fitting the

model to datasets of different qualities, while searching the full space for all the parameters (3

Kd, ksyn, kproc, k0). We applied this optimization workflow to the simulated data, and obtained a

fitted model which recapitulates the ground truth data (Fig 4B). Compared to using raw vari-

ance, the time-value error model correctly identified all the combinatorial logic gates irrespec-

tively of the associated regulation strength (Fig 4C). Compared to the conventional error

model and raw variance, the time-value error model better constrained the estimated regula-

tion strengths within two-fold of the true values (Fig 4C). Further, we found that this improved

performance of the time-value error model in GRS parameter estimation over the conven-

tional model and raw variance is irrespective of the degree of uncertainty or noise level (S5A

Fig). Interestingly, we found that when we consider both combinatorial logic gate and regula-

tion strength, a total of 15 GRSs are mis-classified when using either the conventional model

or the raw variance. These 15 GRSs are associated with clusters whose GRSs we previously

found are hard to distinguish in our theoretical analysis (S5B Fig), like triple AND gate, and

single TF regulated clusters. In addition, the confused GRSs are mis-classified mostly with

their neighbors characterized by the tree structure (S5B Fig).

Guidelines for designing stimulation/perturbation studies

To identify GRSs from experimental data, not only the quality but also the quantity of available

data and the type of perturbation conditions matter. Specifically, we showed that GRSs can

produce very different gene expression patterns under different perturbation conditions (Figs

1F and 2B), and thereby leads to different identifiability under those conditions. Therefore, we

wondered whether we could determine which sets of perturbation conditions are most infor-

mative to distinguish GRSs (Fig 5A). In practice, researchers, given a fixed budget to generate

for example 52 datasets, need to decide whether to generate a large number of replicates to

reduce experimental error prioritizing more perturbations that would provide additional per-

turbation-response information (Fig 5A).

Examining the identifiability (defined as the log2 likelihood ratio between the ground truth

and the most similar alternative GRS) using simulated, imperfect data (due to biological vari-

ability and measurement uncertainty) from all possible perturbation combinations, we first

compared GRS identifiability for different sets of single or double knockout or knockdown

conditions (HLL, HHL, HMM, HHM), which correspond to setting TF perturbation or activ-

ity levels to fully activated (H) as in wild-type, low (L) for knockouts, or medium (M) for

knockdowns. We found that the single knockout (HHL) is the most informative of these per-

turbations (Fig 5B), but combining the three single and three double knockout conditions
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(HLL, HHL) provides a substantial boost to distinguishing the 93 GRSs, more so than when

knockdowns (HHM, HMM) alone were used. However, combining knockdowns (HHM,

HMM) can help distinguish the weakly identifiable GRSs by distinguishing the regulation

strength features, with the comprehensive set of 26 perturbations (including mixed knockout

and knockdown) providing a further boost in identifiability.

Next, we considered how to optimally allocate resources that would allow for 52 datasets. If

only 4 perturbation conditions (of WT and three single knockout conditions) are employed,

providing them in 13 replicates substantially increases identifiability (median GRS identifiabil-

ity metric of 427 vs. 54). However, spreading resources to more perturbations (either 13 × qua-

druplets, or better 26 duplicates), will further improve identifiability (median GRS

identifiability metric 498, 536 vs. 427) (Fig 5C). Further, we found generating more perturba-

tions is still more informative even with the small number of datasets (S6 Fig). These studies

suggest that simulations may be helpful in prioritizing limited resources for designing experi-

mental studies to elucidate GRSs based on input-output data.

GRSs of immune response genes

We applied the newly developed computational workflow to identify GRSs for immune

response genes in bone marrow derived macrophages (BMDMs). NFκB, IRF, and MAPK are

three signaling pathways governing immune response gene expression. We obtained nascent

RNA expression from chromatin associated RNA-seq (caRNA-seq) by processing recently

deposited data [19]. We measured NFκB and IRF3 activities, and inferred MAPK-regulated

transcription factor activity (given the absence of a direct TF assay) from the expression pat-

terns of well-established immediate early response genes (Egr1, Fos, and Dusp4) that are nei-

ther NFκB, nor IRF targets [18,19] (S7A Fig). Here, we focused on the primary immune

response genes (see Methods for selecting induced genes) within the first hour after stimula-

tion, to avoid potential secondary effects from signaling cascades or feedbacks.

We first quantified data uncertainty of the time-course caRNA-seq data with the newly

developed error model (Fig 3), and then estimated parameters from models with 8 logics with

the described Bayesian framework (Fig 4). We mapped the 8 triple logics back to the original

17 logics (Fig 1D) by identifying dual or single TF logics via regulation strengths (Fig 6A).

Given the available data, most genes were matched to multiple GRSs (Figs 6B and S7B). How-

ever, interestingly, our analysis suggested that only 26% of genes were matched to GRSs gov-

erned by a single TF, whereas 74% of genes could only be accounted for by logics involving 2

or 3 TFs (Fig 6C). This suggests that combinatorial gene regulation is much more common

than previously reported [18,19].

Next, we focused on genes that are potentially synergistically regulated by NFκB and IRFs,

i.e. genes to which any of the 5 logics may apply: NFκB AND IRFs, NFκB AND IRFs AND

MAPK, NFκB AND (IRFs OR MAPK), IRFs AND (NFκB OR MAPK), MAPK OR NFκB

AND IRFs. We identified not only all 5 previously reported NFκB-regulated genes that are

IRF-dependent (Fig 6D) [19], but also a bigger set of additional genes. Many of these showed

Fig 4. Bayesian framework to parameterize model with data uncertainty. (A) Diagram of the computational

pipeline composed of data quality assessment and model parameterization. (B) Gene expression from simulated testing

data and fitted model generated data. Rows correspond to the 93 GRSs in the same order as in Fig 2C. Columns

corresponds to the 26 amplitude perturbation conditions at 0, 15, 30, 60 min. (C) Bar plot presenting the number of

correctly identified logic gate and boxplot of estimated parameters for 93 GRSs fitted models. Percentage of estimated

parameters within 2-fold of the true value are for Time-Value model, Conventional model, raw variance respectively:

Kd1 95%, 91%, 70%; Kd2 91%, 84%, 70%; Kd3 91%, 90%, 71%. The mean absolute percent deviations are for Time-Value

model, Conventional model, raw variance respectively: Kd1 24%, 28%, 58%; Kd2 26%, 36%, 48%; Kd3 23%, 28%, 138%.

https://doi.org/10.1371/journal.pcbi.1009095.g004
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potential involvement of MAPK that may compensate for loss of IRFs, and thus show little

gene reduction in IRF3-/- cells compared to wild type (Fig 6D). This illustrates the limitation of

using knockout data (IRF3-/-) as a defining feature of whether a gene is regulated the TF, or, in

this case, IRF-NFκB AND gate genes. Ppp1r15a and Srgn are examples of such genes that we

identified as being potentially synergistically regulated by NFκB and IRFs with little reduction

in expression in IRF3-/- cells (Figs 6D and 6E and S7C). Further analysis of ChIP-Seq data

revealed induced binding of both RelA and IRF3 in the promoter and gene body of both genes

(Fig 6F), confirming the potential regulation by both RelA and IRF3. To elucidate the regula-

tion of these genes more precisely and identify unique GRS models requires additional pertur-

bations, such as combinatorial knockout or inhibition of MAPK and IRF3.

Discussion

Over the past two decades a wealth of cellular transcriptomic and epigenomic data have been

generated but there has only been limited progress in understanding the multi-TF gene regula-

tion networks (GRNs) of mammalian cells [1,25]. Here we have presented a theoretical

Fig 5. Principles of designing the experimental perturbation studies. (A) Schematic of the relationship between the

number of replicates and perturbation conditions given a fixed budget to generate for example 52 datasets. (B) Effect of

combining different perturbation sets on the identifiability (defined as the log2 likelihood ratio between the ground

truth and the most similar alternative GRS) of the 93 GRSs. Testing 2 replicates for each condition, the number of

perturbation sets determines GRS identifiability. Mathematically, we defined identifiability of each GRS as the lowest

squared Euclidian distance between the gene expression responses of the ground truth GRS and any other GRS. (C)

Comparison of the trade-off between the number of replicates and number of perturbation conditions for the

identifiability of the 93 GRSs. When 52 datasets can be generated, employing more perturbation datasets is preferable

to having more replicates for fewer perturbation sets.

https://doi.org/10.1371/journal.pcbi.1009095.g005
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Fig 6. Mapping GRSs involving NFκB, IRFs, MAPK to endotoxin-induced immune genes. (A) Scheme of fitting

models to experimental data. Gene expression data and TF activities for different stimuli were used to fit 8 possible

model topologies and best likelihoods are determined; this was followed by mapping to 17 possible logics (Fig 1D),

which were then determined to whether they fit the data, or not. (B) The plot of fitness (negative log likelihood) of 8

triple TF logic gates for all lipid A-induced genes identified by [19]. An arbitrary threshold to select fitted logic gates is

marked as an orange dashed line. (C) The plot of fitted GRS logic gates for lipid A-induced genes identified by [19].

Only 26% of these genes fit a GRS governed by a single TF; most require GRS models that are controlled by at least

two. (D) Peak expression of IRF3-/- is assessed against WT peak expression for all the lipid A-induced genes. Genes

that are identified as potentially synergistically regulated by NFκB and IRFs are marked in red. The 5 previously

reported IRF3-NFκB-regulated genes [19] are marked with a black circle. (E) For two example genes, heatmaps of

experimentally measured caRNA-seq time-course data and simulation data by the best-fit GRS models, ordered by fit

quality from top (best) to bottom. (F) IGV genome browser tracks of IRF3 and RelA ChIP-seq data in resting and 60

min lipid A-stimulated macrophages of the two genes.

https://doi.org/10.1371/journal.pcbi.1009095.g006
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analysis and a computational framework to examine the feasibility to infer abstracted mecha-

nistic models of GRSs as stepping stones to develop the more detailed mechanistic understand-

ing of GRNs. We show that GRS model identifiability is a function of the quantity and quality

of data, and present a GRS model fitting computational workflow that includes an improved

error model. We then apply this workflow to experimental data of innate immune gene expres-

sion in macrophages, and demonstrate its utility by revealing that the data supports alternative

hypotheses that were previously missed by conventional analysis approaches. This work has

been inspired by multiple previous studies to obtain mechanistic insights from genome wide

genomic data using mathematical models involving logic gates [6]. Our work in particular

examined the identifiability of different mechanistic models by measuring TF activity directly,

and by considering different data uncertainty levels. Therefore, our work serves as a stepping

stone to gain finer mechanistic insights of gene regulation.

Our computational analysis revealed a non-intuitive mapping relationship between model/

mechanism and gene expression responses. We showed that not all GRSs are equally identifiable,

and nor are all GRS regulatory features equally identifiable. For example, GRSs formed by differ-

ential regulatory strengths are much harder to distinguish within the triple AND gate than within

OR gates. But the triple AND gate logic feature is readily identifiable from all other GRSs with less

available data. By displaying the model/mechanism-gene expression mapping relationship as a

hierarchical tree, we found core regulation motifs that are hallmarks of specific GRS clusters and

therefore play dominant roles in determining the input-output relationship. This finding sug-

gested that some important insights can be gained reliably even when available datasets do not

allow for the identification of a single GRS. For example, the triple AND gate and the double

AND gate as core regulation motifs can be easily identified even when distinct GRSs that differ in

the regulation strengths within each motif cannot be determined easily. Similarly, the emergent

dynamical systems properties (e.g. perfect adaptation) may be mediated by diverse networks that

nevertheless share common network motifs, as revealed by a function-topology map [26]. It is

interesting that in our mechanism-gene expression map, we similarly found conserved core regu-

lation motifs enriched in GRSs with similar input-output relationships. As such core regulation

motifs determine their function, they are readily identifiable even from limited datasets.

In considering input-output datasets that involve perturbations at a given timepoint, we

found it useful to precisely decompose value and temporal uncertainty for timecourse data.

Our analysis of the “time-value” error model with synthetic data indicates that accurately

accounting for data uncertainty can improve model identifiability by correctly penalizing less

reliable data, but avoiding under- and over-estimates of the error associated with value. The

time-value error model may be useful for timecourse data involving sharp changes, observed

in data sets from highly dynamic biological processes like signal transduction or gene activa-

tion in response to stresses, immune threats or growth factors, where temporal error can

greatly contribute to the data uncertainty.

After developing a practical computational workflow, we used simulated datasets to provide

some guiding principles for experimental design for generating the most informative stimu-

lus-response datasets. Model-guided experimental design is addressed in a rich literature [27–

29], and some of our insights are intuitive. First, it is clear that given a limited budget, a greater

number of distinct perturbation conditions should be prioritized over more replicates that

would diminish error uncertainty. As an error model can be parameterized from replicates of

a single perturbation condition, duplicates of other conditions primarily serve the purpose of

ensuring the experiment did not in some way fail. Second, although perturbations that involve

complete knockout may better distinguish GRSs in general, perturbations with partial activi-

ties are particularly helpful for determining regulation strengths. These involve dose response

studies or siRNA-mediated knockdown rather than complete knockout. Not surprisingly, we
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found that the optimal experimental perturbation condition set depends to some extent on the

GRSs to be identified. This suggests that the optimal strategy is an iterative approach. To begin

with, a set of perturbations that activate TFs singly or doubly can first segregate GRSs into mul-

tiple clusters. In the following round, based on these segregated clusters of GRSs and their

shared features, additional perturbations may be selected to further dissect these GRSs and

find other associated regulatory features.

Our work also provides guiding principles for mapping other types of observed data to the

molecular network. The general approach outlined here—generating a model-gene expression

map by comparing all possible hypotheses and fitting the model to integrated data sets—can

be extended beyond the question of TF combinatorial regulation of transcription initiation.

For example, epigenomic datasets that describe chromatin remodeling (ATAC-Seq), TF-DNA

interactions (ChIP-Seq), chromatin conformation (Hi-ChIP, PLAC-seq), and protein-RNA

interactions (CLIP-Seq), may be used to distinguish alternate models of multiple or sequential

steps of gene regulation. Furthermore, the abstracted combinatorial models described here

may be iteratively refined for example by addressing the TFs regulating different and sequen-

tial kinetic steps leading to transcriptional initiation [30,31], and may be used to identify addi-

tional regulatory mechanisms.

Applying the computational workflow to publicly available and newly generated input-out-

put data of macrophages responding to immune stimuli illustrates the power of this quantita-

tively rigorous analysis workflow. Previous purely experimental studies relied heavily on

knockout data to infer the involvement of a transcription factor. However, biological systems

are characterized by overlapping functions of its components, a feature that confers functional

robustness [32]. Hence, the regulatory role of a transcription factor on a particular gene is not

reliably reflected in its functional requirement. In the case of pathogen-response gene expres-

sion, the potential for functional overlap manifests itself in many more genes being potentially

combinatorially regulated than previously reported [18,19]. Indeed, physical binding data of

the transcription factor IRF3 supports the notion that this transcription factor is more widely

contributing to gene regulation than previously reported [19,33]. Further, the described

computational workflow is extensible for keeping rigorous account of which GRSs may be

excluded for each immune response gene as additional datasets become available.

In sum, as we lack a quantitative understanding of the molecular mechanisms governing

many important biological regulatory systems, which would enable detailed regulatory network

models, we describe here an approach for distinguishing quantitatively between alternate regu-

latory strategies using input-output datasets. Such an approach connects biological knowledge

to data-driven approaches, and may prompt and guide subsequent mechanistic experimental

and mathematical modeling studies. Considering TF combinatorial regulation alone, there are

numerous examples that may benefit from the described workflow. In macrophages, the

response to pathogens and cytokines is mediated by a handful of inducible TFs that are thought

to engage in AND and OR gates [19,20]. Similarly, in hemogenic reprogramming or in induced

pluripotent stem cell reprogramming initiated by three Yamanaka factors, combinatorial TF

regulation triggers a cascade of successive molecular events that mediate the biological process

[34,35]. Thus, the described computational framework may serve as a manual to gain quantita-

tive understanding of gene regulation, and provide guidance for optimal experimental designs.

Methods

Model formulation

In this work, we quantitatively studied combinatorial GRSs formed by three TFs. Hence, we

modeled nascent RNA expression from activated gene by considering RNA synthesis and first
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order RNA processing. RNA abundance dynamics can be modeled using a single ODE:

dRNA
dt
¼ ksyn � f tð Þ � kproc � RNA ð1Þ

Here kproc represents the nascent RNA processing rate, ksyn a constant synthesis rate that is

modulated by the fractional promoter activity f(t), which includes both combinatorial regula-

tion from the GRS and some basal activity:

f ðtÞ ¼ ð1 � k0Þ � GRSðTFsðtÞÞ þ k0 ð2Þ

f(t) describes how TFs regulate promoter activity, which is composed by a logic gate func-

tion GRS that depends on the TFs activities and some basal promoter activity denoted k0.

Formulation of logic gates

We considered all possible synergistic (AND) and non-synergistic (OR) gene regulation strate-

gies involving three TFs. As it has been shown in Fig 1D, there are 3 single logics (one for each

TF), and 6 dual logics by considering two options “�” and “+” two options for the 3 pairs of the

TFs (2 � 3 = 6). The triple logics come from the 6 dual logics with an additional “�” and “+” for

the third and by removing 4 redundant logics (2 of TF1+TF2+TF3, and 2 of TF1�TF2�TF3),

leading to the final 8 triple logics (2 � 6–4 = 8). The single and dual logics can be represented by

a triple logic with null regulation strength of one or two TFs, see Fig 1D. This can also be

derived by Boolean algebra, for example, TF1+TF2+TF3 = TF1+TF2 with TF3 = 0. Therefore,

considering the 8 triple TFs logics is enough to represent all single, dual and triple logics. As

synergistic (AND) and non-synergistic (OR) gene regulations can be modeled with thermody-

namic models [15,17,18], the eight the derived logic gates represents four main structures that

can be modeled by these formulas:

TF1 AND TF2 AND TF3 : G ¼
½TF1ðtÞ�

Kd1 þ ½TF1ðtÞ�
�
½TF2ðtÞ�

Kd2 þ ½TF2ðtÞ�
�
½TF3ðtÞ�

Kd3 þ ½TF3ðtÞ�
ð3Þ

TF1 AND TF2 OR TF3ð Þ : G ¼
½TF1ðtÞ�

Kd1 þ ½TF1ðtÞ�
� 1 �

Kd2

Kd2 þ ½TF2ðtÞ�
�

Kd3

Kd3 þ ½TF3ðtÞ�

� �

ð4Þ

and similarly by rotation for TF2 AND (TF1 OR TF3) and for TF3 AND (TF1 OR TF2):

TF2 AND TF1 OR TF3ð Þ : G ¼
½TF2ðtÞ�

Kd2 þ ½TF2ðtÞ�
� 1 �

Kd1

Kd1 þ ½TF1ðtÞ�
�

Kd3

Kd3 þ ½TF3ðtÞ�

� �

ð5Þ

TF3 AND TF1 OR TF2ð Þ : G ¼
½TF3ðtÞ�

Kd3 þ ½TF3ðtÞ�
� 1 �

Kd1

Kd1 þ ½TF1ðtÞ�
�

Kd2

Kd2 þ ½TF2ðtÞ�

� �

ð6Þ

TF1 OR TF2 AND TF3ð Þ : G ¼ 1 �
Kd1

Kd1 þ ½TF1ðtÞ�
� 1 �

½TF2ðtÞ�
Kd2 þ ½TF2ðtÞ�

�
½TF3ðtÞ�

Kd3 þ ½TF3ðtÞ�

� �

ð7Þ

and similarly by rotation for TF2 OR (TF1 AND TF3) and for TF3 OR (TF1 AND TF2):

TF2 OR TF1 AND TF3ð Þ : G ¼ 1 �
Kd2

Kd2 þ ½TF2ðtÞ�
� 1 �

½TF1ðtÞ�
Kd1 þ ½TF1ðtÞ�

�
½TF3ðtÞ�

Kd3 þ ½TF3ðtÞ�

� �

ð8Þ

TF3 OR TF1 AND TF2ð Þ : G ¼ 1 �
Kd3

Kd3 þ ½TF3ðtÞ�
� 1 �

½TF1ðtÞ�
Kd1 þ ½TF1ðtÞ�

�
½TF2ðtÞ�

Kd2 þ ½TF2ðtÞ�

� �

ð9Þ
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TF1 OR TF2 OR TF3 : G ¼ 1 �
Kd1

Kd1 þ ½TF1ðtÞ�
�

Kd2

Kd2 þ ½TF2ðtÞ�
�

Kd3

Kd3 þ ½TF3ðtÞ�
ð10Þ

Enumeration of representative GRSs. Our focus here is the synergistic and/or non-syn-

ergistic combinatorial regulation by 3 TFs to produce a specific GRS. Hence for each regula-

tory logic, we considered that each TF may have one of three regulation strengths (strong (S),

medium (M), and weak (W)). Thus, we considered a total of 27 regulation strength combina-

tions for 3 TFs and 8 logic gates, yielding a total 216 possible GRSs. Of these 216 GRSs, several

may in fact not be efficiently activated. For example, AND gate configurations in which one

component has a “Weak” regulatory strength cannot be activated well within the present

scheme. In this way, we identified 69 poorly activated GRSs and removed them from further

consideration. In addition, several GRSs were found to be logically equivalent. For example,

the TF1 is logically equivalent to either a triple OR gate in which TF2 and TF3 have “Weak”

regulatory strength, or a TF1 or (TF2 and TF3) gate in which TF2 or TF3 have “Weak” regula-

tory strength. In this way we removed 54 redundant GRSs. These first principle considerations

led us to a list of 93 potentially identifiable GRSs (see S2 Fig).

Perturbations

We defined perturbations as following functions.

Simple perturbation : f ðtÞ ¼
1; high

0; low
ð11Þ

(

In addition to the simple perturbation, we have:

Amplitude : f ðtÞ ¼ 0:5; 0 � t � 60 ð12Þ

Gradient : f tð Þ ¼
t

60
; 0 � t � 60 ð13Þ

Delayed : f ðtÞ ¼
0; 0 < t � 30

1; 30 < t � 60
ð14Þ

(

Transient : f ðtÞ ¼
1; 0 < t � 30

0; 30 < t � 60
ð15Þ

(

GRS simulation

In our work, we defined GRS as the combination of logic gate and regulation strength parame-

ters, which together determine gene expression levels. For testing purpose, we assume TFs

activities range from 0 to 1 (i.e. TFs are normalized to avoid assay specific dynamic span) and

define the high level as 1, the medium level as 0.5, and the low level as 0. Based on Hill func-

tion, we define regulation strength ranging from weak to strong with strong corresponding to

Kd = 0.1, medium to Kd = 1, and weak to Kd = 10, given that Kd has minimal effect on promoter

activity outside this range. We consider gene with a short RNA processing rate (7min, i.e. kproc
= 0.1 min−1). Here, we simulate a timecourse gene expression at 0, 15, 30, 60 min, but our

approach can be generalized into any time points served for the interests of experiments. To
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compare all the GRSs, we simulated resulting gene expression with ksyn = 1 RPKM/min (where

RPKM means reads per kilobase per million of mapped reads), and normalized the gene

expression such that its maximal value corresponds to 100 across all the perturbation condi-

tions. This is equivalent to adjusting ksyn. In Table 1, you can find a summary of the different

parameters used for the simulations:

Computational analysis

We define the distance between two gene expression profiles as the squared Euclidean distance

for each timepoints across all perturbation conditions:

dðgenei; genejÞ ¼
P

p2perturbations

P
t2timepointsðgei;pðtÞ � gej;pðtÞÞ

2
ð16Þ

where gei,p(t) means gene expression of gene i for perturbation p at time t. We used a hierarchi-

cal clustering with single linkage approach to cluster GRSs based on their gene expression pro-

file. With single linkage approach, the distance between two clusters of GRSs is defined as the

minimum distance of inter-pairs, as we considered two groups of GRSs is not identifiable if

one inter-pair distance is below a certain tree height threshold, called in the rest of the manu-

script separation threshold.

GRS analysis with randomly sampled parameters

We followed the same procedures described in GRS simulation to examine GRS with ran-

domly sampled parameters. Specifically, we generated 1000 sets of parameters of each logic

gate by sampling uniformly from parameter space (described in Table 2) in logarithm scale.

We only selected the activatable GRS for the downstream analysis. The activatable GRS are

defined as GRS that can produce an output higher than the maximum value of previously

identified 69 poorly activated GRS (here the threshold is 1.66 for GRS output) when the 3

input TFs are fully active (i.e. activity of 1). As sampling effects of ksyn will be counteracted by

the normalization of gene expression, the random sampling of ksyn was replaced by constant

number (1 RPKM/min).

Table 1. Model Parameters.

Parameters Description Range Value

[TFs] (Inputs) TF amplitude High

Medium

Low

1

0.5

0

Kd TF regulation strength Strong

Medium

Weak

0.1

1

10

k0 Basal gate value 0

ksyn Nascent mRNA synthesis rate 1 RPKM/min

kproc Nascent mRNA processing rate 0.1 min-1

https://doi.org/10.1371/journal.pcbi.1009095.t001

Table 2. Parameter ranges.

Parameters Description Sampling Range

Kd TF regulation strength 0.01–100

k0 Basal gate value 0–1

kproc Nascent mRNA processing rate 0.01 min−1–10 min−1

https://doi.org/10.1371/journal.pcbi.1009095.t002
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Error model

Reliable point specific estimation. To achieve reliable point specific estimation from small

sample size, we leveraged global trend from all the points to stabilize the estimation. For this pur-

pose, we used Bayes’ rule to combine global trend (prior distribution) with point specific informa-

tion using maximum likelihood estimation (MLE) to generate a stabilized estimate (posterior

distribution). This empirical Bayes approach have been broadly used in handling small sample prob-

lem in bulk and single cell RNA-seq data, including by DESeq2 [36], voom [37], and BASiCS [38].

Specifically, we first estimate the error parameters ξprior, which are defined based on the

error model described later, from global trend by pooling all the points (i.e. all genes and time

points) together. Next, we combine the global trend with data of each time point i to estimate

the posterior distribution ξi,posterior of each time point, which is given by:

ξi;posterior ¼ argmax
ξi

LðξiÞPðξiÞ ð17Þ

Where L(ξi) is the likelihood function that represents information from each time point i,
and P(ξi) corresponds to the prior knowledge on the distribution of ξi which we assume to be nor-

mal with mean ξ̂prior estimated from global trend, and σ2
ξprior

as variance. Here, σ2
ξprior

allows scaling

the importance of the global trend over the point specific information. We empirically chose the

prior variance based on our confidence of how point-specific information contributes to the esti-

mation. Specifically, we first start with a very small prior variance 0.00001 so that the posterior

would almost be the same. Then we gradually increase the prior variance, thereby putting more

weight on point-specific information, and examine whether the performance (correlation

between ground truth and estimation) is improving. By doing so, we may choose the optimal

prior variance given the number of available replicates. If there are few replicates (less than 10),

then we tend to put high weight i.e. confidence (small σ2
ξprior

) on the global trend so that the final

posterior estimation is similar to the global trend. If a large number of replicates are available

(more than 10), we may increase the weight of the point specific information (larger σ2
ξprior

).

Uncertainty estimation. Uncertainty originates from various sources. Here, we have con-

sidered uncertainties coming from biological variabilities including TF abundance variations,

gene response time variations, chemical parameters variations, and technical uncertainty

including sample preparation timepoints variation and assay measurement variation. We sepa-

rately modeled them into value uncertainty (TF abundance variations, chemical parameters

variations, and assay measurement variation), and temporal uncertainty (gene response time

variations and sample preparation timepoints variation), as those two sources of uncertainties

are orthogonal (value and temporal), and have two different mathematical forms (temporal

uncertainty is curve shape dependent, and value uncertainty is not).

Temporal uncertainty estimation. To model the temporal uncertainty of a point (t, yt)
due to potential uncertainty in the exact time the measurement was done, we assume that it

follows a Gaussian distribution with mean t and standard deviation σt. The resulting uncer-

tainty in y due to the uncertainty in t is denoted by σtemporal.

For a small neighborhood around t, the curve, which passes the point in such a small region,

can be approximated by a line (linearization) with the slope as tangent of the curve. Therefore

with the assumption that the uncertainty of t follows a Gaussian distribution, then y will also

follow a Gaussian distribution, where variance is given by [39]:

stemporal
2 ¼ Slope2�st

2 ð18Þ
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This can be considered as an error propagation function, which is:

ðDyÞ2 ¼ ðJacobian � DtÞ2 ð19Þ

Value uncertainty estimation. As we know multiple uncertainty sources can cause

observed value uncertainty, we assume the overall observed value uncertainty follows a Gauss-

ian distribution.

To obtain robust value uncertainty estimation, we modeled mean-variance relationship by

a polynomial regression, where s2
value is representing value variance that can be predicted by

the mean of point μ. This helps stabilize the estimation of variance by leveraging its depen-

dency relationship with robust estimator, mean. Similar approach to capture mean-variance

relationship was introduced by DESeq2 [36], where it uses fixed relationship, and BASiCS

[38], where it uses more flexible semi-parametric approach with Gaussian radial basis function

(GRBF) kernels. We use polynomial regression as it can capture the constant, linear, and qua-

dratic variance components. It is given by:

s2

value ¼ f ðmÞ ¼ a0 þ a1 � mþ a2 � m
2 ð20Þ

Here, we only include the first two orders, as this already captures well the mean-value vari-

ance dependency. Higher order terms can be added when dealing with more complex datasets.

Distribution of gene expression. We separately modeled background and induced gene

expression distribution. These two parts are usually caused by different sources, and exhibit

different level of uncertainty. In addition, the distribution for background uncertainty is

desired to have R�0 as its support, as all measurements are positive. Therefore, the distribution

of gene expression is modeled by gamma and normal distributions, depending on the expres-

sion level, which is given below:

genei �
Gðkbg;i; ybg;iÞ; if mi � Z

N ðmi; s
2
induc;iÞ; if mi > Z

ð21Þ

(

Here, we connect data mean and variance to the gamma distribution’s mean and variance

to parameterize k, θ:

ðkbg;i � 1Þ � ybg;i ¼ mi

kbg;i � ybg;i
2
¼ s2

bg ð22Þ

where,

s2

induc;i ¼ ainduc;0;i þ ainduc;1;i � mi þ ainduc;2;i � mi
2 þ Slope2

i � s
2

induc;t;i ð23Þ

In addition, we set the threshold η to be 3 RPKM.

Implementation of error model

Simulation of data uncertainty. We followed the first principle to generate data uncer-

tainty from both biological variability and technical uncertainty. We generated biological

variability by varying TF amplitude, gene response time and parameters of the model by sam-

pling from the distribution specified in Table 3. We generated technical uncertainty by varying

sample preparation timepoints, and adding noise to the assay measurement, as specified in

Table 3.
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Slope estimation. To reliably estimate the slope of the curve, we first interpolated the

curve with a piecewise cubic hermite function (pchip function in the R signal package), and

then estimated the slope from the interpolated curve. This allowed us to leverage information

from all points and the shape of the curve. Specifically, the slope is calculated by the central dif-

ference:

Slope ¼
Dyfit
Dt
¼

yfit;tþDt
2
� yfit;t� Dt

2

t þ Dt
2

� �
� t � Dt

2

� � ð24Þ

The choice of Δt depends on temporal uncertainty level, as one can imagine we should take

bigger Δt when temporal uncertainty is high. Here, we set Dt ¼ 2 � ŝt (ŝt is the unbiased esti-

mated temporal uncertainty). We set the slope to be 0 for sample at time 0, as it comes from

unstimulated cells and should correspond to steady state. We interpolate the time series to

range from 0 to 80 min to allow for a better estimate of the slope for the last time point.

Error inference

Likelihood function. We first derived the likelihood function for the inference with

parameters ξ ¼ ðs2
bg; a0; a1; a2; s

2
t Þ. The probability distribution for measured yi at time point i

is given by:

yijξi; Slope
2

i ; mi �
G yi

�
�
�
�
mi

2

s2
i;bg
;
s2
i;bg

mi

 !

; if mi � 3

N ðyijmi; s
2
total;iÞ; if mi > 3

ð25Þ

8
>><

>>:

Where mi ¼ �yi. Therefore, the point likelihood Lpoint is given by:

Lpoint ξið Þ ¼ I mi � 3ð ÞG yi

�
�
�
�
mi

2

s2
i;bg
;
s2
i;bg

mi

 !

þ I mi > 3ð ÞN yijmi; s
2

total;i

� �
ð26Þ

Here, Γ and N are used to denote the probability density function (PDF) of gamma and

gaussian distributions respectively. We will use this notation to describe both the distribution

or its PDF based on the context in the rest of the manuscript.

Next, we estimated ξprior from global trend of points using global likelihood Lglobal, which is

given by the multiplication of the point likelihood from all the perturbations p, genes g and

time points t. Lglobal is given by:

LglobalðξpriorÞ ¼
Q

p

Q
g

Q
tLpointðξpriorÞ ð27Þ

Table 3. Simulated uncertainty.

Uncertainty Source Form Distribution

TF amplitude TF�(1+ε) ε � N ð0; 0:0004Þ

Gene response time t+ε ε � N ð0; 25Þ

Parameters (Kd, ksyn, kproc) Parameters�eε ε � N ð0; 0:0004Þ

Parameters (k0) k0+ε ε~U(0,0.02)

Sample preparing timepoints t+ε ε � N ð0; 25Þ

Assay measurement y+ε ε � N ð0; 0:01 � y2Þ

https://doi.org/10.1371/journal.pcbi.1009095.t003

PLOS COMPUTATIONAL BIOLOGY Dissecting combinatorial gene regulatory strategies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009095 June 24, 2021 21 / 29

https://doi.org/10.1371/journal.pcbi.1009095.t003
https://doi.org/10.1371/journal.pcbi.1009095


Finally, we use Bayes’ rule to estimate ξi,posterior by combining global trend with point spe-

cific information. We assume ξprior follows a normal distribution, with mean as ξ̂prior and vari-

ance as σ2
ξprior

. Based on the confidence of prior information, we can adjust σ2
ξprior

to change the

weights of point information and global trend. It is given by:

ξi;posterior ¼ argmax
ξi

LðξiÞPðξiÞ ¼ argmax
ξi

Pðyijξi; Slope
2

i ; miÞN ðξijξ̂prior;σ
2

ξprior
Þ ð28Þ

For the computational efficiency during optimization, we convert all the target function as

negative log, and use Limited-memory BFGS (L-BFGS) method which is implemented in the

optim function in R for optimization. More details can be found in the parameter estimation

and model selection part.

As MLE of variance is a biased estimator, we have corrected it to the unbiased estimator by:

ŝ2

total ¼
N

N � 1
ŝ2

total;MLE ð29Þ

where N is the number of replicates (here N = 2). All the estimated parameters for variance

have been corrected by:

ξ̂ ¼
N

N � 1
ξ̂MLE with ξ̂ ¼ ŝ2

bg;MLE; â0;MLE; â1;MLE; â2;MLE; ŝ
2

t;MLE

� �
ð30Þ

Conventional model. In the conventional model, we simply set s2
t to be zero, and keep

the rest to be the same for comparison.

Model parameterization with Bayesian framework

We considered gene expression data from multiple perturbation conditions p = 1,. . .,N, with

multiple time points t = 0, 15, 30, 60 min of each perturbation. This yields the probability to

observe experimental data y(obs) as:

PðyðobsÞÞ ¼
Q

p

Q
iPðy

ðobsÞ
p;ti
Þ ð31Þ

The statistical model of observing the experimental data y(obs) given its true value yp;ti can

be expanded as:

PðyðobsÞÞ ¼
Q

p

Q
iIðyp;ti � 3ÞGðyðobsÞp;ti

jyp;ti ; s
2

bgÞ þ Iðyp;ti > 3ÞN ðyðobsÞp;ti
jyp;ti ; s

2

p;ti
Þ ð32Þ

Likelihood function. In our work, the experimental data y(obs) is explained by the combi-

nation of two parts, 1) model simulated yp;ti , which is determined by the GRS and kinetic

parameters described by:

θ ¼ ðlogic gate;Kd1;Kd2;Kd3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GRS

; ksyn; kproc; k0
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
kinetic parameters

Þ ð33Þ

2) data uncertainty, which is estimated from global trend ξ̂prior ¼ ðŝ
2
bg; â0; â1; â2; ŝ

2
t Þ in

time-value error model. Therefore, the likelihood can be written as:

LðθÞ ¼
Q

p

Q
iPðy

ðobsÞ
p;ti
jyp;tiðθÞ; ξ̂priorÞ ¼

Q
p

Q
iðIðyp;ti � 3Þ � GðyðobsÞp;ti

jyp;tiðθÞ; ŝ
2

bgÞ þ Iðyp;ti
> 3Þ �N ðyðobsÞp;ti

jyp;tiðθÞ; â0 þ â1 � yp;tiðθÞ þ â2 � yp;tiðθÞ
2
þ Slope2

p;ti
� ŝ2

t ÞÞ ð34Þ

We took the negative log likelihood for the optimization.
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Computational analysis with data uncertainty. We define the distance between gene

expression i and gene expression j as the average of NLL(i,j) and NLL(j,i), where NLL(i,j) is the

negative log likelihood to observe gene expression i, given gene expression j as ground truth.

We then performed hierarchical clustering with single linkage approach and the defined dis-

tance matrix.

Computational workflow implementation. We first applied time-value error model to

estimate data uncertainty level. We took average of two replicates of TF activities as input. We

then incorporate averaged TF activities as input, simulated gene expression data as output and

their estimated data uncertainty into the model parameterization part.

Parameters estimation and model selection. To estimate parameters and select logic

gates, we first optimized parameters for each logic gate, and picked the best fitted logic gate

and its estimated parameters among all eight logic gates. In addition, we constrained the range

of Kd from 10 fold weaker and stronger than the weak and strong regulation strength in the

process of optimization (i.e. from 0.01 to 100), as Kd has minimal effect on the GRS output

beyond this range. All the parameters are optimized in logarithmic scale, as it enables the algo-

rithm to quickly search large space. We used multi-start local optimization approach, as it has

been shown outperformed or at least perform as well as some global optimization methods

[40]. Specifically, we employed the optim function with method Limited-memory BFGS

(L-BFGS) in R for optimization, because it provides constrains for parameters, and it is com-

putationally efficient. We used 300 randomly sampled initial sets of parameters for optimiza-

tion for each logic gate. To ensure confidence that we sample the parameter space sufficiently,

we examined the identifiability of each GRS as a function of the number of random initializa-

tions, and ensured it converges with 300 initial sets. The best fitted parameter set of 300 initial

sets is chosen for the parameters of each logic gate. As all the logic gates have the same model

complexity i.e. the same number of parameters, we simply select the logic gate based on their

likelihood instead of using Akaike information criterion (AIC) or Bayesian information crite-

rion (BIC). While our workflow allows people to select multiple good fitted models based their

own criteria, we simply selected the logic gate with highest likelihood as the best fitted model.

Varying data uncertainty level. We tested our error model and pipeline with different

level of data uncertainty. As each uncertainty sources don’t equally contribute to the final data

uncertainty, we adjusted the altered level of each uncertainty source, so that the final error con-

tribution from each of uncertainty sources would be approximately the same. After we simu-

lated the data, we examined the overall uncertainty (mean of empirical estimated variance of

all the points) caused by all the uncertainty sources (Table 4).

Macrophage cell culture

Primary Bone Marrow Derived Macrophages (BMDMs) were prepared by culturing bone

marrow cells from femurs of female 8–12 weeks old WT mice or different knock-out mice in

Table 4. Simulated uncertainty in multiple uncertainty levels.

Uncertainty Source Form Distribution θ
TF amplitude TF�(1+ε) ε � N ð0; yÞ 0.25x 0.5x 4.0 x 10−4 1.1x 1.45x

Gene response time t+ε ε � N ð0; yÞ 0.25x 0.56x 25 2x 4x

Parameters (Kd, ksyn kproc) Parameters�eε ε � N ð0; yÞ 0.25x 0.5x 4.0 x 10−4 1.1x 1.45x

Parameters (k0) k0+ε ε~U(0,θ) 0.5x 0.75x 2.0 x 10−2 1.05x 1.2x

Sample handing time t+ε ε � N ð0; yÞ 0.25x 0.56x 25 2x 4x

Sequencing error y+ε ε � N ð0; y � y2Þ 0.25x 0.56x 1.0 x 10−2 1.1x 1.4x

Overall Uncertainty 0.21x 0.53x 1x 1.64x 2.66x

https://doi.org/10.1371/journal.pcbi.1009095.t004
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L929-conditioned medium by standard methods [18]. BMDMs were grown for 7 days and

stimulated with different agonists on day 8. BMDMs were stimulated with 100 ng/ml LipidA,

100 ng/mL LPS, as well as with a TLR2/1 agonist, the synthetic triacylated lipoprotein

Pam3CSK4 (PAM) (3 μg/mL).

TF activity quantification and normalization

Western blotting analysis and EMSAs were conducted with standard methods as described

previously [18]. Briefly, nuclear extracts were prepared by hypotonic cell lysis and high salt

extraction of nuclear proteins. The band intensities for Western blots or EMSA gels were mea-

sured in Image-Quant software. The samples within a timecourse that had peak intensities for

different perturbations were run on the same gel, quantified and used for normalization of

respective band intensities of different agonists.

To quantify the TF activity upon stimulation, we first linearly scaled the value of band

intensities so that for each perturbation to the range that the basal and peak band intensity to

be 1% and 100% by the formula:

TFscaled ¼ 0:99
TFraw� TFbasal

TFpeak � TFbasal
þ 0:01 ð35Þ

where TFscaled and TFraw are the values of TF band intensity before and after scaling. TFpeak
and TFbasal are the peak and basal band intensity before scaling.

To compare TF activities in different perturbation conditions, we have normalized them by

setting peak of wild type LipidA stimulation to be 1. We then normalized all the other pertur-

bation conditions by multiplying each of the other perturbation conditions p with factor pnorm:

pnorm ¼
TFðpeakÞp

TFðpeakÞWTLipidA

ð36Þ

where TFðpeakÞp and TFðpeakÞWTLipidA are the peak intensities of perturbation p and perturbation for

wild type stimulated with LipidA that has been measured from the same gel.

Inference of MAPK-regulated transcription factor activity. We first defined the MAPK

targeted genes: Egr1, Fos, and Dusp4, that are neither NFκB nor IRF targets. For those target

genes, we estimate TF activities from their gene expression in RNA-seq. Specifically, for indi-

vidual target genes, we linearly convert their gene expression (RPKM) so that in the WT stimu-

lated with LipidA condition, the basal and peak value are 1% and 100%, by using the same

formula described in the last section. Finally, we take the averaged gene expression from all the

converted target genes as the inferred MAPK-regulated transcription factor activity.

RNA-seq data processing

We have collected all the chromatin associated RNA-seq data from previously published work

[19]. BAM files of chromatin associated RNA-seq data have been downloaded from GEO with

the series accession number GSE67357. In the original BAM files, reads has been aligned to the

mouse genome (NCBI37/mm9) with TopHat v1.3.3 by allowing up to two mismatches per

read in one alignment. We followed the same standard in the paper to calculate RPKM for the

chromatin associated RNA-seq by dividing all mapped reads within the transcription unit

(both intron and exon) by the length of the entire locus.

Induced genes have been selected by the same criteria described in the paper [19]: the peak

RPKM of induced genes is larger than 3 at any given time point, and the gene was induced

more than 10 fold at any time point comparing to the time point 0min, with statistical
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significance p< 0.01 defined by the edgeR package in R Bioconductor [41]. In addition, a

gene was also considered induced if it had more than a 5 fold gene induction at 15min.

For MAPK inhibited perturbation, we have collected both MAPK inhibited LipidA stimula-

tion, and control condition (wild type in solvent with LipidA stimulation). To make the

MAPK inhibited condition comparable to the other conditions, we normalized each time

points by multiplying by the factor
RNAWTðtiÞ
RNAcontrolðtiÞ

, where RNAWT(ti) and RNAcontrol(ti) are the gene

expression (RPKM) at time point i in wild type stimulated with LipidA and wild type with sol-

vent stimulated with LipidA.

ChIP-Seq data processing

We have collected all the RelA and IRF3 ChIP-Seq data from previously published work [19],

and downloaded the bigWig files from GEO with the series accession number GSE67357. In

the bigWig files, the reads had been aligned to the mouse genome (NCBI37/mm9) with Bow-

tie2. We examined and visualized the tracks of ChIP-seq data with Integrative Genomics

Viewer (iGV) [42].

Identify GRSs for immune response genes

Error quantification for chromatin associated RNA-seq data. We applied the developed

error model to the collected chromatin associated RNA-seq data to estimate data uncertainty.

For RNA-seq data with only single replicate (TRIF-/- with LipidA stimulation, wild type with

Pam3csk4 stimulation), we used the values estimated from wild type with LipidA stimulation.

Final model for studying immune response genes. We applied the same developed

mechanistic model to identify GRSs for immune response genes. Specifically, to better capture

basal gene expression, we set k0 = 0 for the model, and used experimental basal gene expression

(gene expression in unstimulated condition, 0min) as gene basal expression for fitting, with

formula:

ysim;p;i¼ ysim raw;p;i þ ybasal;p ð37Þ

where ysim,p,i and ysim raw,p,i are the final and raw model (with k0 = 0) simulated gene expression

at time point i and perturbation condition p. ybasal,p is the experimental basal gene expression

at perturbation p.

Fitting for experimental data. We applied the same Bayesian framework and likelihood

function to identify GRS for immune response genes. After parameter optimization for all the

8 logic gates, we mapped them back to the 17 logics gates by assigning the 8 triple TF logics

gates to single or dual logic gates if one or two TFs has null regulation strength (estimated

Kd>100). Then, we only selected the potential GRSs for downstream analysis by setting a

threshold on the fitting score (NLL <100).

Supporting information

S1 Fig. Exploring how logic gates behave as a function of variable TF regulation strengths.

Related to Fig 1. Heatmaps of promoter activity as a function of logic gates (AND, OR) and

varying TF1, TF2 regulation strengths.

(TIFF)

S2 Fig. Extended details of GRS analysis. Related to Fig 2. Diagram explaining how the 216

possible GRSs were reduced to 93 potentially identifiable GRSs. First 69 poorly activated GRSs

were removed (left side), as well as 54 redundant GRSs given that they are logically equivalent

to a single TF (top right) or to two TFs with an AND gate (bottom right). This results in 93
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potentially identifiable GRSs.

(TIFF)

S3 Fig. Confirmation of conclusions with multiple alternative approaches. Related to Fig

2. (A). The heatmap as Fig 1G but reordered with different hierarchical clustering methods

(complete and average linkage) in comparison to the used single linkage method used in Fig

1G. (B). The same plot as Fig 2C but only using average or complete linkage methods for hier-

archical clustering. (C). Heatmap of gene expression in response to the 7 perturbation condi-

tions from 1981 activatable GRSs that are generated by random sampling of all the parameters.

(TIFF)

S4 Fig. Variance of each time points. Related to Fig 3. Comparison between directly esti-

mated raw variance of two replicates and ground truth.

(TIFF)

S5 Fig. Comparison between time-value error model and conventional model. Related to

Fig 4. (A). Comparison of the estimated regulation strength between time-value error model,

conventional error model, and raw variance with different levels of noise. (B). Confusion

matrix of all the 93 estimated GRSs from time-value, conventional error models and raw vari-

ance.

(TIFF)

S6 Fig. Extended study of perturbations and replicates trade-off. Related to Fig 5 Compari-

son of the number of replicates and number of perturbation conditions for the identifiability

of the 93 GRSs with a total of 8 datasets.

(TIFF)

S7 Fig. Experimental data and identified GRS for lipid A induced genes. Related to Fig 6.

(A). Graphs of measured and inferred TF activities in the perturbation conditions used by the

caRNA-seq study. (B). Heatmap of measured nascent mRNA expression data together with fit-

ness for all the candidate logic gates. The left side shows fitness (negative log likelihood) of all

the possible logics. The white boxes are the logics that do not account for the data when map-

ping 8 logics back to the 17 logics. Genes are ordered by their expression with hieratical clus-

tering approach. (C) Heatmaps of experimentally measured caRNA-seq time-course data and

simulation data by the best-fit GRS models using the Time-Value error model or raw variance,

as indicated. (D) Comparison of the negative log likelihood (NLL) of the best GRS model that

contains any synergistic component to the negative log likelihood (NLL) of the best GRS

model that does not contain any synergistic component.

(TIFF)
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29. Gross T, Blüthgen N. Identifiability and experimental design in perturbation studies. Bioinformatics.

2020 Jul 1; 36(Supplement_1):i482–9. https://doi.org/10.1093/bioinformatics/btaa404 PMID:

32657359; PMCID: PMC7355299.

30. Letsou W, Cai L. Noncommutative biology: sequential regulation of complex networks. PLoS Comput

Biol. 2016 Aug 25; 12(8):e1005089. https://doi.org/10.1371/journal.pcbi.1005089 PMID: 27560383;

PMCID: PMC4999240.
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