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An accurate and robust imputation method
scImpute for single-cell RNA-seq data
Wei Vivian Li 1 & Jingyi Jessica Li 1,2

The emerging single-cell RNA sequencing (scRNA-seq) technologies enable the investigation

of transcriptomic landscapes at the single-cell resolution. ScRNA-seq data analysis is com-

plicated by excess zero counts, the so-called dropouts due to low amounts of mRNA

sequenced within individual cells. We introduce scImpute, a statistical method to accurately

and robustly impute the dropouts in scRNA-seq data. scImpute automatically identifies likely

dropouts, and only perform imputation on these values without introducing new biases to the

rest data. scImpute also detects outlier cells and excludes them from imputation. Evaluation

based on both simulated and real human and mouse scRNA-seq data suggests that scImpute

is an effective tool to recover transcriptome dynamics masked by dropouts. scImpute is

shown to identify likely dropouts, enhance the clustering of cell subpopulations, improve the

accuracy of differential expression analysis, and aid the study of gene expression dynamics.
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Bulk cell RNA-sequencing (RNA-seq) technology has been
widely used for transcriptome profiling to study tran-
scriptional structures, splicing patterns, and gene and

transcript expression levels1. However, it is important to account
for cell-specific transcriptome landscapes in order to address
biological questions, such as the cell heterogeneity and the gene
expression stochasticity2. Despite its popularity, bulk RNA-seq
does not allow people to study cell-to-cell variation in terms of
transcriptomic dynamics. In bulk RNA-seq, cellular heterogeneity
cannot be addressed since signals of variably expressed genes
would be averaged across cells. Fortunately, single-cell RNA
sequencing (scRNA-seq) technologies are now emerging as a
powerful tool to capture transcriptome-wide cell-to-cell varia-
bility3–5. ScRNA-seq enables the quantification of intra-
population heterogeneity at a much higher resolution, poten-
tially revealing dynamics in heterogeneous cell populations and
complex tissues6.

One important characteristic of scRNA-seq data is the “drop-
out” phenomenon where a gene is observed at a moderate
expression level in one cell but undetected in another cell7.
Usually, these events occur due to the low amounts of mRNA in
individual cells, and thus a truly expressed transcript may not be
detected during sequencing in some cells. This characteristic of
scRNA-seq is shown to be protocol-dependent. The number of
cells that can be analyzed with one chip is usually no more than a
few hundreds on the Fluidigm C1 platform, with around 1–2
million reads per cell. On the other hand, protocols based on
droplet microfluidics can parallelly profile >10,000 cells, but with
only 100–200 k reads per cell8. Hence, there is usually a much
higher dropout rate in scRNA-seq data generated by the droplet
microfluidics than the Fluidigm C1 platform. New droplet-based
protocols, such as inDrop9 or 10x Genomics10, have improved
molecular detection rates but still have relatively low sensitivity
compared to microfluidics technologies, without accounting for
sequencing depths11. Statistical or computational methods
developed for scRNA-seq need to take the dropout issue into
consideration; otherwise, they may present varying efficacy when
applied to data generated from different protocols.

Methods for analyzing scRNA-seq data have been developed
from different perspectives, such as clustering, cell type identifi-
cation, and dimension reduction. Some of these methods address
the dropout events in scRNA-seq by implicit imputation while
others do not. SNN-Cliq is a clustering method that uses scRNA-
seq to identify cell types12. Instead of using conventional simi-
larity measures, SNN-Cliq uses the ranking of cells/nodes to
construct a graph from which clusters are identified. CIDR is the
first clustering method that incorporates imputation of dropout

values, but the imputed expression value of a particular gene in a
cell changes each time when the cell is paired up with a different
cell13. The pairwise distances between every two cells are later
used for clustering. Seurat is a computational strategy for spatial
reconstruction of cells from single-cell gene expression data14. It
infers the spatial origins of individual cells from the cell expres-
sion profiles and a spatial reference map of landmark genes.
It also includes an imputation step to impute the expression
of landmark genes based on highly variable or so-called
structured genes. ZIFA is a dimensionality reduction model
specifically designed for zero-inflated single-cell gene expression
analysis15. The model is built upon an empirical observation:
dropout rate for a gene depends on its mean expression level in
the population, and ZIFA accounts for dropout events in factor
analysis.

Since most downstream analyses on scRNA-seq, such as dif-
ferential gene expression analysis, identification of cell-type-
specific genes, reconstruction of differentiation trajectory, and all
the analyses mentioned earlier, rely on the accuracy of gene
expression measurements, it is important to correct the false zero
expression due to dropout events in scRNA-seq data by model-
based imputation methods. To our knowledge, MAGIC is the first
available method for explicit and genome-wide imputation of
single-cell gene expression profiles16. MAGIC imputes missing
expression values by sharing information across similar cells,
based on the idea of heat diffusion. A key step in this method is to
create a Markov transition matrix, constructed by normalizing
the similarity matrix of single cells. In the imputation of a single
cell, the weights of the other cells are determined by the transition
matrix. During the preparation of this manuscript, we also
noticed another imputation method SAVER17, which borrows
information across genes using a Bayesian approach to estimate
(unobserved) true expression levels of genes. Both MAGIC and
SAVER would alter all gene expression levels including those
unaffected by dropouts, and this would potentially introduce new
biases into the data and possibly eliminate meaningful biological
variation. We think it is also inappropriate to treat all zero counts
as missing values, since some of them may reflect true biological
non-expression. Therefore, we propose a new imputation method
for scRNA-seq data, scImpute, to simultaneously determine
which values are affected by dropout events in data and perform
imputation only on dropout entries. To achieve this goal, scIm-
pute first learns each gene’s dropout probability in each cell based
on a mixture model. Next, scImpute imputes the (highly prob-
able) dropout values in a cell by borrowing information of the
same gene in other similar cells, which are selected based on the
genes unlikely affected by dropout events (Fig. 1).

Cell j Selected cells Other cells

…

…

Gene set Aj

Gene set Bj

… …

… …

Imputation

with selected cells

Cell j

Zero

High

Expression

Nj

Fig. 1 A toy example illustrating the workflow in the imputation step of scImpute method. scImpute first learns each gene’s dropout probability in each cell
by fitting a mixture model. Next, scImpute imputes the (highly probable) dropout values in cell j (gene set Aj) by borrowing information of the same gene in
other similar cells, which are selected based on gene set Bj (not severely affected by dropout events). The details are described in Eqs. (2) and (3)
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Results
scImpute recovers gene expression affected by dropouts. A key
reason for performing imputation on scRNA-seq data is to
recover biologically meaningful transcriptome dynamics in single
cells so that we can determine cell identity and identify differ-
entially expressed (DE) genes among different cell types. We first
use three examples to illustrate scImpute’s efficacy in imputing
gene expressions. (All the imputation results are obtained without
using true cell type information unless otherwise noted.)

First, we show that scImpute recovers the true expression of the
ERCC spike-in transcripts18, especially low-abundance tran-
scripts that are impacted by dropout events. The ERCC spike-
ins are synthetic RNA molecules with known concentrations,
which serve as gold standards of true expression levels, so that the
read counts can be compared with the true expression for
accuracy evaluation. The dataset contains 3005 cells from the
mouse somatosensory cortex region19. After imputation, the
median correlation (of the 3005 cells) between the 57 transcripts’
read counts and their true concentrations increases from 0.92 to
0.95, and the minimum correlation increases from 0.81 to 0.89
(Supplementary Fig. 1). The read counts and true concentrations
also present a stronger linear relationship in every single cell
(Fig. 2).

Second, we show that scImpute correctly imputes the dropout
values of 892 annotated cell cycle genes in 182 embryonic stem
cells (ESCs) that had been staged for cell cycle phases (G1, G2M,
and S)20. These genes are known to modulate the cell cycle and
are expected to have non-zero expression during different stages
of the cell cycle. Before imputation, 22.5% raw counts of the cell
cycle genes are zeros, which are highly likely due to dropouts. The
data are normalized by sequencing depths instead of ERCC spike-
ins as described in McDavid et al.21. After imputation, most of the
dropout values are corrected, and true dynamics of these genes in
the cell cycle are revealed (Supplementary Figs. 2 and 3). The
imputed counts also better represent the true biological variation
in these cell cycle genes (Fig. 3).

Third, we use a simulation study to illustrate the efficacy of
scImpute in enhancing the identification of cell types. We
simulate expression data of three cell types c1, c2, and c3, each
with 50 cells, and 810 among 20,000 genes are truly differentially
expressed (DE) (details in the Methods section). Even though the
three cell types are clearly distinguishable when we apply
principal component analysis (PCA) to the complete data, they
become less well separated in the raw data with dropout events.
The within-cluster sum-of-squares calculated based on the first
two principal components (PCs) increases from 94 in the com-
plete data to 2646 in the raw data. However, the relationships
among the 150 cells are clarified after we apply scImpute. The

other two methods MAGIC and SAVER are also able to
distinguish the three cell types, but MAGIC introduces artificial
signals that largely alter the data and thus the PCA result, while
SAVER only slightly improves the clustering result over that of
the raw data (Fig. 4). In addition, the dropout events obscure the
differential pattern and thus increase the difficulty of detecting
DE genes. The imputed data by scImpute lead to a clearer
contrast between the upregulated genes in different cell types,
while the imputed data by MAGIC and SAVER fail to recover this
pattern (Fig. 4). We also assess how the prevalence of dropout
values influences the performance of scImpute. As expected, the
DE analysis based on the imputed data has increased accuracy as
the dropout proportion decreases. Yet scImpute still achieves
> 80.0% area under the precision-recall curve even when the
proportion of zero counts in the raw data is as high as 75.0%
(Supplementary Fig. 4).

scImpute improves the identification of cell subpopulations.
To illustrate scImpute’s capacity in aiding the identification of cell
types or cell subpopulations, we apply our method to two real
scRNA-seq datasets. The first one is a smaller dataset of mouse
preimplantation embryos22. It contains RNA-seq profiles of
268 single cells from 10 developmental stages. Partly due to
dropout events, 70.0% of read counts in the raw count matrix are
zeros. To illustrate the dropout phenomenon, we plot the log10-
transformed read counts of two 16-cell stage cells as an example
in Supplementary Fig. 5. Even though the two cells come from the
same stage, many expressed genes have zero counts in only one
cell. This problem is alleviated in the imputed data by scImpute,
and the Pearson correlation between the two cells increases from
0.72 to 0.82 (Supplementary Fig. 5), primarily due to the
decreased number of genes only expressed in one cell. MAGIC
achieves an even higher correlation (0.95) but also introduces
excess large counts that do not exist in the raw data. Biological
variation between the two cells is likely lost in the imputation
process of MAGIC. On the other hand, SAVER’s imputation does
not have a clear impact on the data.

We compare the imputation results by investigating the
clustering accuracy in the first two PCs. Although it is possible
to differentiate the major developmental stages from the raw data,
the imputed data by scImpute output more compact clusters
(Fig. 5). MAGIC gives a clean pattern of developmental stages,
but it has a high risk of removing biologically meaningful
variation, given that many cells of the same stage have almost
identical scores in the first two PCs. scImpute is the only method
that is able to detect outlier cells. We then compare the clustering
results of the spectral clustering algorithm23 on the first two PCs.
Since the true cluster labels include several sub-stages in
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Fig. 2 scImpute improves the dropouts in the ERCC RNA transcripts. The y-axis and x-axis give the ERCC spike-ins’ log10(count+1) and log10
(concentration) in four randomly selected mouse cortex cells. The imputed data present stronger linear relationships between the true concentrations and
the observed counts
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embryonic development, we use different numbers of clusters, k
= 6, 8, 10, 12, and 14. The results are evaluated by four different
measures: adjusted Rand index24, Jaccard index25, normalized
mutual information (nmi)26, and purity (Methods section). The
four measures are all between 0 and 1, with 1 indicating a perfect
match between the clustering result and the truth. All the four
measures indicate that scImpute leads to the best clustering result
as compared with no imputation and the imputation by MAGIC
or SAVER (Supplementary Fig. 6). This result suggests that
scImpute improves the clustering of cell subpopulations by
imputing dropout values in scRNA-seq data.

We also apply scImpute to a large dataset generated by the
high-throughput droplet-based system10. The dataset contains
4500 peripheral blood mononuclear cells (PBMCs) of nine
immune cell types, with 500 cells of each type. In the raw data,
92.6% read counts are exactly zeros. Given dimension reduction
by t-SNE27, the cytotoxic and naive cytotoxic T cells are clustered
together, and the other four types of T cells are not separated.
After scImpute’s imputation, the cytotoxic (label 11) and naive

cytotoxic T cells (label 8) are separated into two groups, and the
naive T cells (label 5) and memory T cells (label 3) are now
distinguishable from the remaining T cells (Fig. 6). This evidence
shows the strong ability of scImpute to identify cell subpopula-
tions despite missing cell type information. On the other hand,
MAGIC does not improve the clustering of cells in the same type
(Supplementary Fig. 7), and we could not obtain SAVER’s results
after running the program overnight. After the imputation by
scImpute, the monocyte cells are grouped into one large and two
small clusters, and we find that the three clusters reveal dynamics
of two signature genes, FCER1A, which accumulates during the
dendritic cell differentiation from monocytes28, and S100A8,
whose expression differs among subsets of human monocytes29

(Fig. 6 and Supplementary Fig. 8). The large cluster (label 10) is
characterized by high expression of S100A8 and moderate
expression of FCER1A; one of the small clusters (label 1) presents
high expression levels of both S100A8 and FCER1A, while in the
other small cluster (label 2) FCER1A is mostly non-expressed. We
also investigate the three clusters (labels 6, 9, and 12) of
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regulatory/memory/helper T cells. The three clusters are
supported by the expression of eight potential marker
genes (ACTG1, ATP5C1, CCT8, CIRBP, DUSP1, FLNA, FOS,
and GAPDH): cells in the same cluster have a similar expression
pattern (Supplementary Fig. 9). This example shows that
scImpute provides an opportunity to discover new cell sub-
populations and their marker genes.

scImpute assists differential gene expression analysis. ScRNA-
seq data provide insights into the stochastic nature of gene
expression in single cells but suffer from a relatively low signal-to-
noise ratio compared with bulk RNA-seq data. Thus an effective
imputation method should lead to a better agreement between
scRNA-seq and bulk RNA-seq data of the same biological con-
dition on genes known to have little cell-to-cell heterogeneity. To
evaluate whether the DE genes identified from single-cell data are
more accurate after imputation, we utilize a real dataset with both
bulk and single-cell RNA-seq experiments on human embryonic
stem cells (ESC) and definitive endoderm cells (DEC)30. This
dataset includes six samples of bulk RNA-seq (four in H1 ESC
and two in DEC) and 350 samples of scRNA-seq (212 in H1 ESC
and 138 in DEC). The percentages of zero gene expression are
14.8% in bulk data and 49.1% in single-cell data.

We apply scImpute, MAGIC, and SAVER to impute the gene
expression for each cell type respectively, and then perform DE
analysis on the raw data and the imputed data by each method,
respectively. We use the R package DESeq231 to identify DE genes
from the bulk data, and the R packages DESeq2 and MAST32 to
identify DE genes from the scRNA-seq data. Inspecting the top
200 DE genes from the bulk data, we find that their expression
profiles in the scRNA-seq data have stronger concordance with
those in the bulk data after imputation by scImpute

(Supplementary Fig. 10). We apply different thresholds to false
discovery rates (FDRs) of genes in the bulk data to obtain a DE
gene list for every threshold. The same thresholds are applied to
the FDRs of genes calculated from the raw and imputed scRNA-
seq datasets to obtain DE gene lists respectively. Then we
compare the DE gene lists obtained from the scRNA-seq data
with those from the bulk data (i.e., the standard) to calculate
precision and recall rates and F-scores (Supplementary Fig. 11).
scImpute leads to more similar DE gene lists to those from the
bulk data and achieves around 10% higher F-scores compared
with results on the raw data. We find that scImpute makes a right
balance between the precision and recall rate, while MAGIC has
low precision, and SAVER has low-recall rate and is barely
distinguishable from no imputation. We conclude that scImpute
is preferred when users have a priority on the precision of the DE
genes.

A comparison between the expression profiles of DEC and ESC
marker genes30, 33, 34 shows that the imputed data by scImpute
best reflect the gene expression signatures by removing undesir-
able technical variation resulted from dropouts (Fig. 7a and
Supplementary Fig. 13). To determine whether the DE genes
identified in scRNA-seq data are biologically meaningful, we
performed gene ontology (GO) enrichment analysis35. In the
~300 DEC upregulated genes that are only detected in the
imputed data by scImpute but not in the raw data, enriched GO
terms are highly relevant to the functions of DECs (Fig. 7c,
Supplementary Fig. 12 and Supplementary Tables 4 and 5).
However, in the ~300 DEC upregulated genes that are only
detected in the raw data, enriched GO terms are general and not
characteristic to DECs (Supplementary Tables 6 and 7). These
results also demonstrate that scImpute can facilitate the usage of
DE methods that were not designed for single-cell data.
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scImpute recovers gene expression temporal dynamics. Aside
from the data we used in differential expression analysis, Chu
et al.30 also generated bulk and single-cell time-course RNA-seq
data profiled at 0, 12, 24, 36, 72, and 96 h of differentiation during
DEC emergence (Supplementary Table 2). We utilize this dataset
to show that scImpute can help recover the DE signals that are
difficult to identify in the raw time-course data, and reduce false
discoveries resulted from dropouts. We first apply scImpute to
the raw scRNA-seq data with true cell type labels, and then study
how the time-course expression patterns change in the imputed
data. The imputed data better distinguish cells of different time
points (Supplementary Fig. 14), suggesting that imputed read
counts reflect more accurate transcriptome dynamics along the
time course. Even though the scRNA-seq data present more
biological variation than the bulk data, it is reasonable to expect
that the average gene expression signal across cells in scRNA-seq
should correlate with the signal in bulk RNA-seq. For a genome-
wide comparison, the imputed data have significantly higher
Pearson correlations with the bulk data (Supplementary Fig. 15).
We study 70 genes associated with the GO term “endoderm
development”36 and found that a subset of these genes that are
likely affected by dropout events show higher expression and
better consistency with the bulk data after the imputation by
scImpute (Fig. 7b and Supplementary Fig. 16). Similarly, we also
study the marker genes (e.g., FOXA2, HHEX, and CXCR4) of
DECs30, 33, 34 and these genes’ expression levels at time point 96 h
are recovered by scImpute even though they have a median read
count of zero in the raw data (Supplementary Fig. 17).

Discussion
We propose a statistical method scImpute to address the dropout
events prevalent in scRNA-seq data. scImpute focuses on
imputing the missing expression values of dropout genes, while
retaining the expression levels of genes that are largely unaffected
by dropout events. Hence, scImpute can reduce technical varia-
tion resulted from scRNA-seq and better represent cell-to-cell
biological variation, while it also avoids introducing excess biases
during its imputation process. To achieve the above goals,
scImpute first learns each gene’s dropout probability in each cell

by fitting a mixture model for each cell type. Next, scImpute
imputes the (highly probable) dropout values of genes in a cell by
borrowing information of the same gene in other similar cells,
which are selected based on the genes not severely affected by
dropout events. Comprehensive studies on both simulated and
real data suggest that compared with the raw scRNA-seq data, the
imputed data by scImpute better present cell type identity and
lead to more accurate DE analysis results.

An attractive advantage of scImpute is that it can be incor-
porated into most existing pipelines or downstream analysis of
scRNA-seq data, such as normalization4, 37, differential expres-
sion analysis7, 32, clustering and classification12, 13, etc. Despite
the availability of computational methods that directly model
zero-inflation in data[7, 32], scImpute takes the imputation per-
spective to improve the data quality, and its applicability is not
restricted to a specific task. scImpute inputs the raw read count
matrix and outputs an imputed count matrix of the same
dimensions, so that it can be seamlessly combined with other
computational tools without data reformatting or transformation.
We also note that new analyzing tools specifically designed for the
imputed scRNA-seq data by scImpute may have improved per-
formance over existing methods developed for raw scRNA-seq
data, by incorporating features, such as smaller proportions of
zero expression, dropout rates, and dropout probabilities esti-
mated by the mixture models. Another important feature of
scImpute is that it only involves two parameters that can be easily
understood and selected. The first parameter K denotes the
potential number of cell populations. It can be chosen based
on the clustering result of the raw data and the resolution level
desired by the users. If users are only interested in the differences
among the major clusters, they could use a relatively small K, and
scImpute can borrow more information among individual cells;
otherwise, users can select a relatively large K, and scImpute
would be more conservative in the imputation process. The sec-
ond parameter is a threshold t on dropout probabilities. We show
in a sensitivity analysis that scImpute is robust to the different
parameter values (Supplementary Fig. 20), and a default threshold
value 0.5 is sufficient for most scRNA-seq data. Moreover, cell
type information is not necessary for the scImpute method. When
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cell type information is available, separate imputation for each
cell type is expected to produce more accurate results. But as
illustrated by simulation and real data results, scImpute is able to
infer cell-type-specific expression even when the true cell
type labels are not supplied.

scImpute scales up well when the number of cells increases,
and the computation efficiency can be largely improved if a fil-
tering step on cells can be performed based on biological
knowledge. Aside from computational complexity, another future
direction is to improve imputation efficiency further when
dropout rates in the raw data are severely high, as with the
droplet-based technologies. Imputation task becomes more dif-
ficult with a more substantial proportion of missing values. More
complicated models that account for gene similarities may yield
more accurate imputation results, but the prevalence of dropout
events may require additional prior knowledge on similar genes
to assist modeling.

Methods
Data processing and normalization. The input of our method is a count matrix
XC with rows representing genes and columns representing cells, and our eventual
goal is to construct an imputed count matrix with the same dimensions. We start
by normalizing the count matrix by the library size of each sample (cell) so that all
samples have one million reads. Denoting the normalized matrix by XN, we then
make a matrix X by taking the log10 transformation with a pseudo count 1.01:

Xij ¼ log10 XN
ij þ 1:01

� �
; i ¼ 1; 2; ¼ ; I; j ¼ 1; 2; ¼ ; J;

where I is the total number of genes and J is the total number of cells. The pseudo
count is added to avoid infinite values in parameter estimation in a later step. The
advantage of the logarithmic transformation is to prevent a few large observations
from being extremely influential, and the transformed values become continuous,
allowing for greater flexibility for the modeling.

Detection of cell subpopulations and outliers. Since scImpute borrows infor-
mation of the same gene from similar cells to impute the dropout values, a critical
step is to determine first which cells are from the same subpopulation. Due to
excess zero counts in scRNA-seq data, it is difficult to cluster cells into true cell
types accurately. Hence, the goal of this step is to find a candidate pool of
“neighbors” for each cell. scImpute will select similar cells from the candidate
neighbors in a subsequent imputation step. Suppose that scImpute clusters the cells
in a dataset into K subpopulations in this step. For each cell, its candidate
neighbors are the other cells in the same cluster.

1. PCA is performed on matrix X for dimension reduction and the resulting
matrix is denoted as Z, where columns represent cells and rows represent
principal components (PCs). The purpose of dimension reduction is to reduce
the impact of large portions of dropout values. The PCs are selected such that
at least 40% of the variance in data could be explained.

2. Based on the PCA-transformed data Z, the distance matrix DJ×J between the
cells could be calculated. For each cell j, we denote its distance to the nearest
neighbor as lj. For the set L= {l1, …, lJ}, we denote its first quartile as Q1, and
third quartile as Q3. The outlier cells are those cells which do not have close
neighbors:

O ¼ j : lj>Q3 þ 1:5 Q3 � Q1ð Þ� �
:

For each outlier cell, we set its candidate neighbor set Nj=∅. Please note that
the outlier cells could be a result of experimental/technical errors or biases,
but they may also represent real biological variation as rare cell types.
scImpute would not impute gene expression values in outlier cells, nor use
them to impute gene expression values in other cells.

3. The remaining cells {1, …, J}\O are clustered into K groups by spectral
clustering23. We denote gj= k if cell j is assigned to cluster k (k= 1, …, K).
Hence, cell j has the candidate neighbor set Nj ¼ j′ : gj′ ¼ gj; j′≠j

� �
.

Identification of dropout values. Once we obtain the transformed gene expres-
sion matrix X and the candidate neighbors of each cell Nj, the next step is to infer
which genes are affected by the dropout events in which cells. Instead of treating all
zero values as dropout events, we construct a statistical model to systematically
determine whether a zero value comes from a dropout event or not. With the
existence of dropout events, most genes have a bimodal expression pattern across
similar cells, and that pattern can be described by a mixture model of two com-
ponents (Supplementary Fig. 18). The first component is a Gamma distribution
used to account for the dropouts, while the second component is a Normal

distribution to represent the actual gene expression levels. Please note that the
transformed gene expression levels are no longer integers, so the widely used
negative binomial distribution for read counts is not a proper choice here. For each
gene, the proportions and parameters of the two components could be different in
various cell types, so we construct separate mixture models for different cell
subpopulations.

For each gene i, its expression in cell subpopulation k is modeled as a random
variable XðkÞ

i with density function

f
XðkÞ
i
ðxÞ ¼ λðkÞi Gamma x; αðkÞi ; βðkÞi

� �
þ 1� λðkÞi

� �
Normal x; μðkÞi ; σðkÞi

� �
; ð1Þ

where λðkÞi is gene i’s dropout rate in cell subpopulation k, αðkÞi ; βðkÞi are the shape
and rate parameters of Gamma distribution, and μðkÞi ; σðkÞi are the mean and
standard deviation of Normal distribution. The intuition behind this mixture
model is that if a gene has high expression and low variation in most cells within a
cell subpopulation, a zero count is more likely to be a dropout value; on the other
hand, if a gene has constantly low or medium expression with high variation, then
a zero count may reflect real biological variability. An advantage of this model is
that it does not assume an empirical relationship between dropout rates and mean
gene expression levels, as Kharchenko et al.7 did, thus allowing more flexibility in
the model estimation. The parameters in the mixture model are estimated by the
Expectation–Maximization (EM) algorithm, and we denote their estimates as λ̂ðkÞi ,
α̂ðkÞi , β̂ðkÞi , μ̂ðkÞi , and σ̂ðkÞi . It follows that the dropout probability of gene i in cell j,
which belongs to subpopulation k, can be estimated as

dij ¼ λ̂
ðkÞ
i Gamma Xij ;α̂

ðkÞ
i ;β̂

ðkÞ
ið Þ

λ̂
ðkÞ
i Gamma Xij ;α̂

ðkÞ
i ;β̂

ðkÞ
ið Þþ 1�λ̂

ðkÞ
ið ÞNormal Xij ;μ̂

ðkÞ
i ;σ̂

ðkÞ
ið Þ:

Therefore, each gene i has an overall dropout rate λ̂ðkÞi in cell subpopulation k,
which does not depend on individual cells within the subpopulation. Gene i also
has dropout probabilities dij (j= 1, 2, …, J), which may vary among different cells.
During the preparation of this manuscript, it came to our attention that Ghazanfar
et al.38 also used the Gamma-Normal mixture model to analyze scRNA-seq data
but only applied it to categorize non-zero expression values into low-expression
values and high-expression values.

Imputation of dropout values. Now, we impute the gene expressions cell by cell.
For each cell j, we select a gene set Aj in need of imputation based on the genes’
dropout probabilities in cell j: Aj= {i : dij ≥ t}, where t is a threshold on dropout
probabilities. We also have a gene set Bj= {i : dij < t} that have accurate gene
expression with high confidence and do not need imputation. We learn cells’
similarities through the gene set Bj. Then we impute the expression of genes in
the set Aj by borrowing information from the same gene’s expression in other
similar cells learned from Bj. Supplementary Figs. 19 and 20c give some real data
distributions of genes' zero count proportions across cells and genes' dropout
probabilities, showing that it is reasonable to divide genes into two sets. To learn
the cells similar to cell j from Bj, we use the non-negative least squares (NNLS)
regression:

bβðjÞ ¼ argminβðjÞ XBj ;j � XBj ;Njβ
ðjÞ

��� ���2
2
; subject toβðjÞ � 0 : ð2Þ

Recall that Nj represents the indices of cells that are candidate neighbors of cell
j. The response XBj ;j is a vector representing the Bj rows in the j-th column of X, the
design matrix XBj ;Nj is a sub-matrix of X with dimensions Bj

�� �� ´ Nj

�� ��, and the
coefficients β(j) is a vector of length Nj

�� ��. Note that NNLS itself has the property of
leading to a sparse estimate bβðjÞ, whose components may have exact zeros39, so
NNLS can be used to select similar cells of cell j from its neighbors Nj. Finally, the
estimated coefficients bβðjÞ from the set Bj are used to impute the expression of genes
in the set Aj in cell j:

X̂ij ¼
Xij; i 2 Bj;

Xi;Nj
bβðjÞ; i 2 Aj:

(
ð3Þ

We construct a separate regression model for each cell to impute the expression
of genes with high dropout probabilities (Fig. 1). scImpute simultaneously
determines the values that need imputation, and would not introduce biases to the
high expression values of accurately measured genes. Supplementary Fig. 21
illustrates the expression distributions of four example genes (before and after
imputation) across the 268 cells in the mouse embryo dataset. Since scImpute
corrects the identified dropouts, the proportion of zero expression is reduced in the
imputed data. However, we can clearly see that scImpute does not inflate all the
zero expressions, and some genes remain to have bimodal distributions after the
imputation. Therefore, scImpute takes a relatively conservative approach to impute
dropouts, attempting to avoid introducing biases and retain the stochasticity of
gene expression.

The application of scImpute involves two parameters. The first parameter is K,
which determines the number of initial clusters to help identify candidate
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neighbors of each cell. The imputation results do not heavily rely on the choice of K
because scImpute uses a model-based method to select similar cells at a later stage.
However, setting K to a value close to the true number of cell subpopulations can
assist the selection of similar cells. The second parameter is a threshold t, and the
imputation is only applied to the genes with dropout probabilities larger than t in a
cell to avoid over-imputation. Please note that the threshold is set on the dropout
probability (the probability that a gene being a dropout in a cell), not on the
dropout rate (the proportion of cells in which the gene is affected by dropout
events). The sensitivity analysis based on the mouse embryo data22 suggests that
scImpute is robust to varying parameter values (Supplementary Fig. 20a,b).
Notably, the choice of parameter t only affects a minute fraction of genes
(Supplementary Fig. 20c).

Generation of simulated scRNA-seq data. We suppose there are three cell types
c1, c2, and c3, each with 50 cells, and there are 20,000 genes in total. In the gene
population, only 810 genes are truly differentially expressed, with one third having
higher expression in each cell type, respectively. We directly generate genes’ log10-
transformed read counts as expression values. First, mean expression levels of the
20,000 genes are randomly drawn from a Normal distribution with mean 1.8 and
standard deviation 0.5. Standard deviations of the gene expression of the 20,000
genes are randomly drawn from a Normal distribution with mean 0.6 and standard
deviation 0.1. These parameters are estimated from the real dataset of mouse
embryo cells. Second, we randomly draw 270 genes and multiply each of their
mean expression in cell type c1 by an integer randomly sampled from {2, 3, …, 10};
we also create 270 highly expressed genes for each of cell types c2 and c3 in the same
way. Finally, the expression values of each gene in the 150 cells are simulated from
Normal distributions defined by the mean and standard deviation parameters
obtained in the first step, and shifted as described in the second step. We refer to
the resulting gene expression data as the complete data. Finally, we suppose the
dropout rate of each gene follows a double exponential function exp(−0.1 ×
mean expression2), as assumed in15. Zero values are then introduced into the
simulated data for each gene based on a Bernoulli distribution defined by the
dropout rate of the gene, resulting in a gene expression matrix with excess zeros
and in need of imputation. We refer to the gene expression data, which have zero
values introduced, as the raw data. Please note that the generation of gene
expression values does not directly follow the mixture model used in scImpute, so
that we use this simulation to investigate the efficacy and robustness of scImpute in
a fair way.

Four evaluation measures of clustering results. The four measures (adjusted
Rand index, Jaccard index, normalized mutual information (nmi), and purity)
focus on different properties of the clustering results. The adjusted Rand index
penalizes both false positive and false negative decisions, where a positive decision
means that two cells are clustered into one cluster, while a negative decision means
that two cells are clustered into different clusters. The Jaccard index is similar to the
adjusted Rand index, but it does not account for true negatives. The nmi measures
the similarity from the perspective of information theory. The purity score
is simply the percentage of the total number of samples that are from the same true
class and clustered together correctly, and it does not penalize on splitting a true
class into multiple clusters.

We choose a to represent the number of observation pairs which are correctly
grouped into the same class by the clustering method. b represents the number of
observation pairs which are grouped into the same cluster but actually belong to
different classes. c represents the number of observation pairs which are grouped
into different clusters but actually belong to the same class. d represents the
number of observation pairs which are correctly grouped into different clusters
(Supplementary Table 1).

We use U= {u1, …, uP} to denote the true partition of P classes and V= {v1,…,
vK} to denote the partition given by spectral clustering results. Let n i and n j be the
numbers of observations in class ui and cluster vj respectively, and nij denotes the
number of observations in both class ui and cluster vj.

The adjusted Rand index is calculated asPP
i¼1

PK
j¼1

nij
2

� 	� PP
i¼1

ni�
2

� 	PK
j¼1

n�j
2

� 	h i
= n

2

� 	
1
2

PP
i¼1

ni�
2

� 	þPK
j¼1

n�j
2

� 	h i
� PP

i¼1
ni�
2

� 	PK
j¼1

n�j
2

� 	h i
= n

2

� 	
where n=

PP
i¼1 ni�¼

PK
j¼1n�j .

The Jaccard index is calculated as

a
aþ bþ c

:

The normalized mutual information is calculated as

2IðU ;VÞ
HðUÞ þ HðVÞ ;

where I(U,V) is mutual information, and H(U) and H(V) are the entropies of
partitions U and V.

The purity score is calculated as

1
n

X
i

max
j

vi \ uj
�� �� :

Data availability. The scRNA-seq data used in this manuscript are all publicly
available, and their sources are summarized in Supplementary Table 3. The ERCC
spike-ins data are available at the Gene Expression Omnibus (GEO) under
accession code GSE60361. The cell cycle data are available at ArrayExpress under
accession code E-MTAB-2512. The mouse embryo data are available at GEO under
accession code GSE45719. The PBMC dataset is available at 10x Genomics’s official
website (https://support.10xgenomics.com/single-cell-gene-expression/datasets).
The human ESC and DEC data are available at GEO under accession code
GSE75748. The R package scImpute is freely available at https://github.com/
Vivianstats/scImpute.
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