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Abstract 
COVID-19 has a spectrum of disease severity, ranging from 
asymptomatic to requiring hospitalization. Understanding the 
mechanisms driving disease severity is crucial for developing 
effective treatments and reducing mortality rates. One way to 
gain such understanding is using a multi-class classification 
framework, in which patients’ biological features are used to 
predict patients’ severity classes. In this severity classification 
problem, it is beneficial to prioritize the identification of more 
severe classes and control the “under-classification” errors, 
in which patients are misclassified into less severe categories. 
The Neyman-Pearson (NP) classification paradigm has been 
developed to prioritize the designated type of error. However, 
current NP procedures are either for binary classification or 
do not provide high probability controls on the prioritized 
errors in multi-class classification. Here, we propose a 
hierarchical NP (H-NP) framework and an umbrella algorithm 
that generally adapts to popular classification methods and 
controls the under-classification errors with high probability. 
On an integrated collection of single-cell RNA-seq (scRNA-
seq) datasets for 864 patients, we explore ways of 
featurization and demonstrate the efficacy of the H-NP 
algorithm in controlling the under-classification errors 
regardless of featurization. Beyond COVID-19 severity 
classification, the H-NP algorithm generally applies to multi-
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class classification problems, where classes have a priority 
order. 

1 Introduction 

The COVID-19 pandemic has infected over 767 million people and caused 6.94 

million deaths (27 June 2023) (World Health Organization, 2023), prompting 

collective efforts from statistics and other communities to address data-driven 

challenges. Many statistical works have modeled epidemic dynamics (Betensky and 

Feng, 2020; Quick et al., 2021), forecasted the case growth rates and outbreak 

locations (Brooks et al., 2020; Tang et al., 2021; McDonald et al., 2021), and 

analyzed and predicted the mortality rates (James et al., 2021; Kramlinger 

et al., 2022). Classification problems, such as diagnosis (positive/negative) (Wu 

et al., 2020; Li et al., 2020; Zhang et al., 2021) and severity prediction (Yan 

et al., 2020; Sun et al., 2020; Zhao et al., 2020; Ortiz et al., 2022), have been tackled 

by machine learning approaches (e.g., logistic regression, support vector machine 

(SVM), random forest, boosting, and neural networks; see Alballa and Al-

Turaiki (2021) for a review). 

In the existing COVID-19 classification works, the commonly used data types are CT 

images, routine blood tests, and other clinical data including age, blood pressure and 

medical history (Meraihi et al., 2022). In comparison, multiomics data are harder to 

acquire but can provide better insights into the molecular features driving patient 

responses (Overmyer et al., 2021). Recently, the increasing availability of single-cell 

RNA-seq (scRNA-seq) data offers the opportunity to understand transcriptional 

responses to COVID-19 severity at the cellular level (Wilk et al., 2020; Stephenson 

et al., 2021; Ren et al., 2021). 

More generally, genome-wide gene expression measurements have been routinely 

used in classification settings to characterize and distinguish disease subtypes, both 

in bulk-sample (Aibar et al., 2015) and, more recently, single-cell level (Arvaniti and 

Claassen, 2017; Hu et al., 2019). While such genome-wide data can be costly, they 

provide a comprehensive view of the transcriptome and can unveil significant gene 

expression patterns for diseases with complex pathophysiology, where multiple 

genes and pathways are involved. Furthermore, as the patient-level measurements 
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continue to grow in dimension and complexity (e.g., from a single bulk sample to 

thousands-to-millions of cells per patient), a supervised learning setting enables us 

to better establish the connection between patient-level features and their associated 

disease states, paving the way towards personalized treatment. 

In this study, we focus on patient severity classification using an integrated collection 

of multi-patient scRNA-seq datasets. Based on the WHO guidelines (World Health 

Organization, 2020), COVID-19 patients have at least three severity categories: 

healthy, mild/moderate, and severe. The classical classification paradigm aims at 

minimizing the overall classification error. However, prioritizing the identification of 

more severe patients may provide important insights into the biological mechanisms 

underlying disease progression and severity, and facilitate the discovery of potential 

biomarkers for clinical diagnosis and therapeutic intervention. Consequently, it is 

important to prioritize the control of “under-classification” errors, in which patients are 

misclassified into less severe categories. 

Motivated by the gap in existing classification algorithms for severity classification 

(Section 1.1), we propose a hierarchical Neyman-Pearson (H-NP) classification 

framework that prioritizes the under-classification error control in the following sense. 

Suppose there are  classes with class labels [ ] {1, 2 , , }   ordered in 

decreasing severity. For [ 1]i   , the i-th under-classification error is the probability 

of misclassifying an individual in class i into any class j with j > i. We develop an H-

NP umbrella algorithm that controls the i-th under-classification error below a user-

specified level 
(0 ,1)

i
 

 with high probability while minimizing a weighted sum of the 

remaining classification errors. Similar in spirit to the NP umbrella algorithm for 

binary classification in Tong et al. (2018), the H-NP umbrella algorithm adapts to 

popular scoring-type multi-class classification methods (e.g., logistic regression, 

random forest, and SVM). To our knowledge, the algorithm is the first to achieve 

asymmetric error control with high probability in multi-class classification. 

Another contribution of this study is the exploration of appropriate ways to featurize 

multi-patient scRNA-seq data. Following the workflow in Lin et al. (2022), we 

integrate 20 publicly available scRNA-seq datasets to form a sample of 864 patients 

with three levels of severity. For each patient, scRNA-seq data were collected from 
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peripheral blood mononuclear cells (PBMCs) and processed into a sparse 

expression matrix, which consists of tens of thousands of genes in rows and 

thousands of cells in columns. We propose four ways of extracting a feature vector 

from each of these 864 matrices. Then we evaluate the performance of each 

featurization way in combination with multiple classification methods under both the 

classical and H-NP classification paradigms. We note that our H-NP umbrella 

algorithm is applicable to other featurizations of scRNA-seq data, other forms of 

patient data, and more general disease classification problems with a severity 

ordering. 

Below we review the NP paradigm and featurization of multi-patient scRNA-seq data 

as the background of our work. 

1.1 Neyman-Pearson paradigm and multi-class classification 

Classical binary classification focuses on minimizing the overall classification error, 

i.e., a weighted sum of type I and II errors, where the weights are the marginal 

probabilities of the two classes. However, the class priorities are not reflected by the 

class weights in many applications, especially disease severity classification, where 

the severe class is the minor class and has a smaller weight (e.g., HIV (Meyer and 

Pauker, 1987) and cancer (Dettling and Bühlmann, 2003)). One class of methods 

that addresses this error asymmetry is cost-sensitive learning 

(Elkan, 2001; Margineantu, 2002), which assigns different costs to type I and type II 

errors. However, such weights may not be easy to choose in practice, especially in a 

multi-class setting; nor do these methods provide high probability controls on the 

prioritized errors. The NP classification paradigm (Cannon et al., 2002; Scott and 

Nowak, 2005; Rigollet and Tong, 2011) was developed as an alternative framework 

to enforce class priorities: it finds a classifier that controls the population type I error 

(the prioritized error, e.g., misclassifying diseased patients as healthy) under a user-

specified level α while minimizing the type II error (the error with less priority, e.g., 

misdiagnosing healthy people as sick). Practically, using an order statistics 

approach, Tong et al. (2018) proposed an NP umbrella algorithm that adapts all 

scoring-type classification methods (e.g., logistic regression) to the NP paradigm for 

classifier construction. The resulting classifier has the population type I error under α 

Acc
ep

te
d 

M
an

us
cr

ipt



with high probability. Besides disease severity classification, the NP classification 

paradigm has found diverse applications, including social media text classification 

(Xia et al., 2021) and crisis risk control (Feng et al., 2021). Nevertheless, the original 

NP paradigm is for binary classification only. 

Although several works aimed to control prioritized errors in multi-class classification 

(Landgrebe and Duin, 2005; Xiong et al., 2006; Tian and Feng, 2021), they did not 

provide high probability control. That is, if they are applied to severe disease 

classification, there is a non-trivial chance that their under-classification errors 

exceed the desired levels. 

1.2 ScRNA-seq data featurization 

In multi-patient scRNA-seq data, every patient has a gene-by-cell expression matrix; 

genes are matched across patients, but cells are not. For learning tasks with patients 

as instances, featurization is a necessary step to ensure that all patients have 

feautures in the same space. A common featurization approach is to assign every 

patient’s cells into cell types, which are comparable across patients, by clustering 

(Stanley et al., 2020; Ganio et al., 2020) and/or manual annotation (Han et al., 2019). 

Then, each patient’s gene-by-cell expression matrix can be converted into a gene-

by-cell-type expression matrix using a summary statistic (e.g., every gene’s mean 

expression in a cell type), so all patients have gene-by-cell-type expression matrices 

with the same dimensions. We note here that most of the previous multi-patient 

single-cell studies with a reasonably large cohort used CyTOF data (Davis 

et al., 2017), which typically measures 50–100 protein markers, whereas scRNA-seq 

data have a much higher feature dimension, containing expression values of 
4

~ 1 0  

genes. Thus further featurization is necessary to convert each patient’s gene-by-cell-

type expression matrix into a feature vector for classification. 

Following the data processing workflow in Lin et al. (2022), we obtain 864 patients’ 

cell-type-by-gene expression matrices, which include 18 cell types and 3,000 genes 

(after filtering). We propose and compare four ways of featurizing these matrices into 

vectors, which differ in their treatments of 0 values and approaches to dimension 

reduction. Note that we perform featurization as a separate step before classification 
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so that all classification methods are applicable. Separating the featurization step 

also allows us to investigate whether a featurization way maintains robust 

performance across classification methods. 

The rest of the paper is organized as follows. In Section 2, we introduce the H-NP 

classification framework and propose an umbrella algorithm to control the under-

classification errors with high probability. Next, we conduct extensive simulation 

studies to evaluate the performance of the umbrella algorithm. In Section 3, we 

describe four ways of featurizing the COVID-19 multi-patient scRNA-seq data and 

show that the H-NP umbrella algorithm consistently controls the under-classification 

errors in COVID-19 severity classification across all featurization ways and 

classification methods. Furthermore, we demonstrate that utilizing the scRNA-seq 

data allows us to gain biological insights into the mechanism and immune response 

of severe patients at both the cell-type and gene levels. Supplementary Materials 

contain technical derivations, proofs and additional numerical results. 

2 Hierarchical Neyman-Pearson (H-NP) classification 

2.1 Under-classification errors in H-NP classification 

We first introduce the formulation of H-NP classification and define the under-

classification errors, which are the probabilities of individuals being misclassified to 

less severe (more generally, less important) classes. In an H-NP problem with 2  

classes, the class labels [ ] : {1, 2 , , }i     are ranked in a decreasing order of 

importance, i.e., class i is more important than class j if i < j. Let (X, Y) be a random 

pair, where  
d

X   R  represents a vector of features, and [ ]Y   denotes the 

class label. A classifier : [ ]   maps a feature vector X to a predicted class 

label. In the following discussion, we abbreviate ( · | )Y iP  as 
(·)

i
P

. Our H-NP 

framework aims to control the under-classification errors at the population level in the 

sense that 

( ) ( ( ) { 1, , } ) fo r [ 1],
i i i

R P X i i          (1) 
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where 
(0 ,1)

i
 

 is the desired control level for the i-th under-classification error 

( )
i

R 
. Simultaneously, our H-NP framework minimizes the weighted sum of the 

remaining errors, which can be expressed as 

1

1

( ) ( ( ) ) ( ) , w h e re ( ).  
c

i i i

i

R X Y R Y i    





    P P  (2) 

We note that when 2 , this H-NP formulation is equivalent to the binary NP 

classification (prioritizing class 1 over class 2), with 1
( )R 

 being the population type 

I error. 

For COVID-19 severity classification with three levels, severe patients labeled as Y = 

1 have the top priority, and we want to control the probability of severe patients not 

being identified, which is 1
( )R 

. The secondary priority is for moderate patients 

labeled as Y = 2; 2
( )R 

 is the probability of moderate patients being classified as 

healthy. Healthy patients that do not need medical care are labeled as Y = 3. Note 

that 
(·)

i
R

 and (·)
c

R  are population-level quantities as they depend on the intrinsic 

distribution of (X, Y), and it is hard to control the 
(·)

i
R

’s almost surely due to the 

randomness of the classifier. 

2.2 H-NP algorithm with high probability control 

In this section, we construct an H-NP umbrella algorithm that controls the population 

under-classification errors in the sense that 
ˆ( ( ) )

i i i
R    P

 for [ 1]i   , where 

1 1
( , , ) 




 is a vector of tolerance parameters, and ̂  is a scoring-type classifier to 

be defined below. 

Roughly speaking, we employ a sample-splitting strategy, which uses some data 

subsets to train the scoring functions from a base classification method and other 

data subsets to select appropriate thresholds on the scores to achieve population-

level error controls. Here, the scoring functions refer to the scores assigned to each 

possible class label for a given input observation and include examples such as the 

output from the softmax transformation in multinomial logistic regression. For [ ]i  , 

let 1
{ } i

Ni

i j j
X




 denote Ni independent observations from class i, where Ni is the size 
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of the class. In the following discussion, the superscript on X is dropped for brevity 

when it is clear which class the observation comes from. Our procedure randomly 

splits the class-i observations into (up to) three parts: is  ( [ ]i  ) for obtaining 

scoring functions, i t  ( [ 1]i   ) for selecting thresholds, and ie  ( 2 , ,i   ) for 

computing empirical errors. As will be made clear later, our procedure does not 

require 1e  or t  and splits class 1 and class  into two parts only. After splitting, 

we use the combination [ ]

s is

i



 to train the scoring functions. 

We consider a classifier that relies on 1  scoring functions 1 2 1
, , :  ,T T T


  R

, 

where the class decision is made sequentially with each 
( )

i
T X

 determining whether 

the observation belongs to class i or one of the less prioritized classes ( 1) , ,i   . 

Thus at each step i, the decision is binary, allowing us to use the NP Lemma to 

motivate the construction of our scoring functions. Note that 

( | ) / ( { 1, , } | ) ( ) / ( )
i i

Y i X x Y i X x f x f x


      P P
, where 

( )
i

f x
  and 

( )
i

f x
 

represent the density function of X when Y > i and Y = i, respectively, and the density 

ratio is the statistic that leads to the most powerful test with a given level of control 

on one of the errors by the NP Lemma. Given a typical scoring-type classification 

method (e.g., logistic regression, random forest, SVM, and neural network) that 

provides the probability estimates ( | )Y i XP  for [ ]i  , we can construct our 

scores using these estimates by defining 

1

1

( | )
( ) ( 1 | ) , a n d ( ) fo r 1 1.

( | )

i

j i

Y i X
T X Y X T X i

Y j X

 


     



P
P

P

 

Given thresholds 1 2 1
( , , , )t t t




, we consider an H-NP classifier of the form 

1 1

2 2 1 1

1 1 1 1 2 2

1, ( ) ;

2 , ( ) a n d ( ) ;

ˆ ( )

1, ( ) a n d ( ) , , ( ) ;

, o th e rw is e .

T X t

T X t T X t

X

T X t T X t T X t



   




 




 


    





 (3) 

Then the i-th under-classification error for this classifier can be written as 
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   1 1

ˆ ˆ( ) ( ) { 1, , } ( ) , , ( ) ,
i i i i i

R P X i P T X t T X t          (4) 

where X is a new observation from the i-th class independent of the data used for 

score training and threshold selection. The thresholds 1 2 1
( , , , )t t t




 are selected 

using the observations in 1 ( 1 )
, ,

t t


, and they are chosen to satisfy 

ˆ( ( ) )
i i i

R    P
 for all [ 1]i   . In what follows, we will develop our arguments 

conditional on the data s  for training the scoring functions so that Ti’s can be 

viewed as fixed functions. 

According to Eq (3), the first under-classification error 
 1 1 1 1

ˆ( ) ( )R P T X t  
 only 

depends on t1, while the other under-classification errors 
ˆ( )

i
R 

 depend on 1
, ,

i
t t

. 

To achieve the high probability controls with 
ˆ( ( ) )

i i i
R    P

 for all [ 1]i   , we 

select 1 1
,t t




 sequentially using an order statistics approach. We start with the 

selection of t1, which is covered by the following general proposition. The proof is a 

modification of Proposition 1 in Tong et al. (2018) and can be found in 

Supplementary Section B.1. 

Proposition 1. For any [ ]i  , denote { ( ) | }
i i it

T X X  , and let ( )i k
t

 be the 

corresponding k-th order statistic. Further denote the cardinality of i  as ni. 

Assuming that the data used to train the scoring functions and the left-out data are 

independent, then given a control level α, for another independent observation X 

from class i, 

 
1

( ) ( )

0

( ) | ( , , ) : ( ) (1 ) .i

k

i n jj

i i i k i k i

j

n
P T X t t v k n

j
   







 
     

  
 

P  (5) 

We remark that similar to Proposition 1 in Tong et al. (2018), if Ti is a continuous 

random variable, the bound in Eq (5) is tight. 

__________________________________________________________________ 

Algorithm 1: DeltaSearch ( , , )n    

Input : size: n; level: α; tolerance: δ. 
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1 k = 0, vk = 0 

2 while k
v 

 do 

3 

( ) (1 )
k n k

k k

n
v v

k
 


 

  
 
 

 

4 1k k   

5 end 

Output: k 

 

Let 
m ax { | ( , , ) }

i i i i
k k v k n   

, which can be computed using Algorithm 1. Then 

Proposition 1 and Eq (4) imply 

   ( ) ( )

ˆ( ) ( ) | fo r a ll .
i i

i i i i i i k i i i i k
R P T X t t t t         

 
P P  (6) 

We note that to have a solution for 
( , , )

i i i
v k n  

 among 
[ ]

i
k n

, we need 

lo g / lo g (1 )
i i i

n   
, the minimum sample size required for the class i t . When i = 

1, the first inequality in Eq (6) becomes equality, so 1
1 ( )k

t
 is an effective upper bound 

on t1 when we later minimize the empirical counterpart of (·)
c

R  in Eq (2) with respect 

to different feasible threshold choices. On the other hand, for i > 1, the inequality is 

mostly strict, which means that the bound ( )
i

i k
t

 on ti is expected to be loose and can 

be improved. To this end, we note that Eq (4) can be decomposed as 

   1 1 1 1 1 1 1 1

ˆ( ) ( ) ( ) , , ( ) · ( ) , , ( )
i i i i i i i i i

R P T X t T X t T X t P T X t T X t
   

         (7) 

leading to the following theorem that upper bounds ti given the previous thresholds. 

Theorem 1. Given the previous thresholds 1 1
, ,

i
t t


 , consider all the scores Ti on the 

left-out class , { ( ) | }
it i i it

T X X  , and a subset of these scores depending on the 

previous thresholds, defined as 1 1 1 1
{ ( ) | , ( ) , , ( ) }

i i it i i
T X X T X t T X t

 
      . We 
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use ( )i k
t

 and ( )i k
t 

 to denote the k-th order statistic of i  and i
 , respectively. Let ni 

and i
n   be the cardinality of i  and i

 , respectively, and αi and δi be the 

prespecified control level and violation tolerance for the i-th under-classification error 

(·)
i

R . We set 

2
ˆ ˆ, ( ) , , ex p { 2 ( )},

i i

i i i i i i i i i

i i

n
p p p c n n c n

n p


  


          (8) 

where ( ) (1 / )c n n . Let 

( )

( )

, i f  lo g / lo g (1 ) a n d 1;

, o th e rw ise ,

i

i

i k i i i i

i

i k

t n

t
t

  


       
 



 (9) 

where m ax{ [ ] | ( , , ) } and m ax{ [ ] | ( , , ) }.
i i i i i i i i i i

k k n v k n k k n v k n               

Then, 

  1 1

ˆ( ( ) ) ( ) , ( ) | fo r  a ll . 
i i i i i i i i i i

R P T X t T X t t t t          P P  (10) 

In other words, if the cardinality of i


 exceeds a threshold, we can refine the choice 

of the upper bound according to Eq (9); otherwise, the bound in Proposition 1 always 

applies. The proof of the theorem is provided in Supplementary Section B.2; the 

computation of the upper bound i
t

 is summarized in Algorithm 2. i
t

 guarantees the 

required high probability control on the i-th under-classification error, while providing 

a tighter bound compared with Eq (4). We make two additional remarks as follows. 

Remark 1. 

a) The minimum sample size requirement for i t  is still lo g / lo g (1 )
i i i

n     

because ( )
i

i k
t

 in Eq (9) always exists when this inequality holds. For instance, 

if 0 .0 5
i

   and 0 .0 5
i

  , then 5 9
i

n  . 

b) The choice of c(n) involves a trade-off between i
   and i

  , although under 

the constraint ( ) (1 / )c n n , any changes in both quantities are small in 

magnitude for large n. For example, a larger c(n) leads to a smaller i
   and a 

larger i
  , thus a looser tolerance level comes at the cost of a stricter error 
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control level. In practice, larger i
   and larger i

   values are desired since 

they lead to a wider region for ti. We set ( ) 2 /c n n  throughout the rest of 

the paper. Then by Eq (8), i
   increases as n increases, and 

4

i i
e 


  

, so 

the difference between i
   and the prespecified δi is sufficiently small. 

c) Eq (10) has two cases, as Eq (9) indicates. When ( )
i

i i k
t t

, the bound remains 

the same as Eq (6), which is not tight for i > 1. When ( )
i

i i k
t t


 

, Eq (10) 

provides a tighter bound through the decomposition in Eq (7), where the first 

part is bounded by a concentration argument, and the second part achieves a 

tight bound the same way as Proposition 1. 

With the set of upper bounds on the thresholds chosen according to Theorem 1, the 

next step is to find an optimal set of thresholds 1 2 1
( , , , )t t t




 satisfying these upper 

bounds while minimizing the empirical version of 
ˆ( )

c
R   , which is calculated using 

observations in 2

e ie

i 



 (since class-1 observations are not needed in 
ˆ( )

c
R  ). For 

brevity, we denote all the empirical errors as R , e.g., 
c

R . In Section 2.4, we will 

show numerically that Theorem 1 provides a wider search region for the threshold ti 

compared to Proposition 1, which benefits the minimization of Rc. 

As our COVID-19 data has three severity levels, in the next section, we will focus on 

the three-class H-NP umbrella algorithm and describe in more details how the above 

procedures can be combined to select the optimal thresholds in the final classifier. 

__________________________________________________________________ 

Algorithm 2: UpperBound 1 1 1
( , , , ( , , ), ( , , ))

it i i i i
T T t t 


 

 

Input : The left-out class-i samples: i t ; level: αi; tolerance: δi; score functions: 

1
( , , )

i
T T

; thresholds: 1 1
( , , )

i
t t




. 

1 
| |

i it
n 

  

2 (1 ) ( )
{ , , }

i
i i n

t t 
 sort 

{ ( ) | }
i i it

T X X 
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3 
D eltaS earch ( , , )

i i i i
k n  

 ; // i.e., Algorithm 1  

4 ( )
i

i i k
t t

  

5 if i > 1 then  

6 (1 ) ( ) 1 1 1 1
{ , , } so rt{ ( ) | , ( ) , , ( ) }

i
i i i n i it i i

t t T X X T X t T X t
  

         
 ; // Note that 

i
n 

 is random  

7 

2
2 ( )

ˆ ˆ, ( ) , / , i i
n c ni

i i i i i i i i i

i

n
p p p c n p e

n
   


       

; // e.g., c(n) = 

2

n
 

8 if 
lo g / lo g (1 ) an d 1

i i i i
n         

 then  

9 
D eltaS earch ( , , )

i i i i
k n      

 

10 ( )
i

i i k
t t


 

  

11 end 

12 end 

Output: i
t

 

 

2.3 H-NP umbrella algorithm for three classes 

Since our COVID-19 data groups patients into three severity categories, we 

introduce our H-NP umbrella algorithm for 3 . In this case, there are two under-

classification errors 1 1
( ) ( ( ) {2 , 3} )R P X  

 and 2 2
( ) ( ( ) 3)R P X  

, which need to 

be controlled at prespecified levels 1 2
, 

 with tolerance levels 1 2
, 

, respectively. In 

addition, we wish to minimize the weighted sum of errors 

1 1 2 2

2 2 3 3 3

( ) ( ( ) ) ( ) ( )

( ( ) 1) [ ( ( ) 1) ( ( ) 2 )].

c
R X Y R R

P X P X P X

     

    

   

     

P
 (11) 
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When 3 , our H-NP umbrella algorithm relies on two scoring functions 

1 2
, :  T T  R

, which can be constructed by Eq (3) using the estimates ( | )Y i XP  

from any scoring-type classification method: 

1 2

( 2 | )
( ) ( 1 | ) a n d ( ) .

( 3 | )

Y X
T X Y X T X

Y X


  



P
P

P

 (12) 

The H-NP classifier then takes the form 

1 1

2 2 1 1

1, ( ) ;

ˆ ( ) 2 , ( ) a n d ( ) ;

3 , o th e rw is e .

T X t

X T X t T X t




  




 (13) 

Here T2 determines whether an observation belongs to class 2 or class 3, with a 

larger value indicating a higher probability for class 2. Applying Algorithm 2, we can 

find 1
t

 such that any threshold 1 1
t t

 will satisfy the high probability control on the 

first under-classification error, that is 
  1 1 1 1 1 1 1 1

ˆ( ) ) ( | ( )R P T X t t       P P
. 

Recall that the computation of 2
t

 (and consequently t2) depends on the choice of t1. 

Given a fixed t1, the high probability control on the second under-classification errors 

is 
  2 2 2 1 1 2 2 2 2 2

ˆ( ( ) ) ( ) , ( ) | R P T X t T X t t        P P
, where 2

t
 is computed by 

Algorithm 2 so that any 2 2
t t

 satisfies the constraint. 

The interaction between t1 and t2 comes into play when minimizing the remaining 

errors in 
ˆ( )

c
R  . First note that using Eq (11) and (13), the other types of errors in 

ˆ( )
c

R   are 

       

   

2 2 1 1 3 3 1 1

3 3 1 1 2 2

ˆ ˆ( ) 1 ( ) , ( ) 1 ( ) ,

ˆ ( ) 2 ( ) , ( ) .

P X P T X t P X P T X t

P X P T X t T X t

 



     

   

 (14) 

To simplify the notation, let Ŷ  denote 
ˆ ( )X  in the following discussion. For a fixed t1, 

decreasing t2 leads to an increase in 3

ˆ( 2 )P Y 
 and has no effect on the other errors 

in (14), which means that 2 2
t t

 minimizes 
ˆ( )

c
R  . However, the selection of t1 is not 

as straightforward as t2. Figure 1(a) illustrates how the set 
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2 2 2 1 1
{ ( ) | , ( ) }

t
T X X T X t   

 (as appeared in Theorem 1) is constructed for a 

given t1, where the elements are ordered by their T2 values. Clearly, more elements 

are removed from 2


 as t1 decreases, leading to a smaller 2
n 

. Consider an 

element in the set 2


 which has rank k in the ordered list (colored yellow in 

Figure 1(a)). Then 2 2
, ,k n  

, and consequently 2 2
( , , )v k n  

, will all be affected by 

decreasing t1, but the change is not monotonic as shown in Figure 1(b). Decreasing 

t1 could remove elements (dashed circles in Figure 1(b)) either to the left side (case 

1) or right side (case 2) of the yellow element, depending on the values of the scores 

T1. In case 1, 2 2
( , , )v k n  

 decreases, resulting in a larger 2
t

 and a smaller 3

ˆ( 2 )P Y 
 

error, whereas the reverse can happen in case 2. The details of how 2 2
( , , )v k n  

 

changes can be found in Supplementary Section B.3, with additional simulations in 

Supplementary Figure S13. In view of the above, minimizing the empirical error 
c

R  

requires a grid search over t1, for which we use the set 1 1 1
{ ( ) | }

t
T X X 

, and the 

overall algorithm for finding the optimal thresholds and the resulting classifier is 

described in Algorithm 3, which we name as the H-NP umbrella algorithm. The 

algorithm for the general case with 3  can be found in Supplementary Section E. 

__________________________________________________________________ 

Algorithm 3: H-NP umbrella algorithm for 3

_____________________________________________ 

Input : Sample: 1 2 3
  

; levels: 1 2
( , ) 

; tolerances: 1 2
( , ) 

; grid set: A1 

(e.g., 1 ). 

1 2 2
ˆ | | / | | 

; 3 3
ˆ | | / | | 

 

2 1 1
, ,

s t


 Random split 1 ; 2 2 2
, ,

s t e


 Random split 2 ; 3 3
,

s e


 Random 

split 3  

3 1 2 3s s s s
  

 

4 1 2
, A  base  c lassification  m ethod ( )

s
T T 

 ; // c.f. Eq (12) 

5 1 1 1 1 1
U p p erB o u n d ( , , , ( ), N U L L )

t
t T 

 ; // i.e., Algorithm 2 

6 1
c

R   

7 for 1 1 1
( , ]t A t  

 do 

8 2 2 2 2 1 2 1
U pperB ound ( , , , ( , ), ( ))

t
t T T t 

 

9 ̂   a classifier with respect to t1, t2 
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10 2 3

2 1 2 3 3

ˆ ˆ{ ( ) 1} / | |, { ( ) {1, 2} } } / | |

e e

e e

X X

e X e X 

 

    1 1

 

11 n e w 2 2 1 3 3
ˆ ˆ

c
R e e  

 

12 if n e w
 

c c
R R

 then 

13 
*

n ew

ˆ ˆ, 
c c

R R   
 

14 end 

15 end 

Output: 
*

̂  

________________________________ 

2.4 Simulation studies 

We first examine the validity of our H-NP umbrella algorithm using simulated data 

from a setting denoted T1.1, where 3 , and the feature vectors in class i are 

generated as 
( ) ~ ( , )

i

i
X N I

, where 1 2 3
(0 , 1) , ( 1,1) , (1, 0 )      

 and I is the 

2 × 2 identity matrix. For each simulated dataset, we generate the feature vectors 

and labels with 500 observations in each of the three classes. The observations are 

randomly separated into parts for score training, threshold selection and computing 

empirical errors: 1  is split into 50%, 50% for 1 1
,

s t ; 2  is split into 45%, 50% and 

5% for 2 2
,

s t  and 2 e ; 3  is split into 95%, 5% for 3 3
,

s e , respectively. All the 

results in this section are based on 1, 0 0 0  repetitions from a given setting. We set 

1 2
0 .0 5  

 and 1 2
0 .0 5  

. To approximate and evaluate the true population 

errors 1 2
,R R

 and Rc, we additionally generate 2 0 , 0 0 0  observations for each class 

and refer to them as the test set. 

First, we demonstrate that Algorithm 3 outputs an H-NP classifier with the desired 

high probability controls. More specifically, we show that any 1 1
t t

 and 2 2
t t

 ( 1 2
,t t

 

are computed by Algorithm 2) will lead to a valid threshold pair (t1, t2) satisfying 

1 1 1

ˆ( ( ) )R    P
 and 2 2 2

ˆ( ( ) )R    P
, where 1

R
 and 2

R
 are approximated 

using the test set in each round of simulation. Here, we use multinomial logistic 

regression to construct the scoring functions T1 and T2, the inputs of Algorithm 3. 

Figure 2 displays the boxplots of various approximate errors with t1 chosen as the k-
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th largest element in 1 1
( , ]t 

 as k changes. In Figure 2(a) and 2(b), where the 

blue diamonds mark the 95% quantiles, we can see that the violation rate of the 

required error bounds (red dashed lines, representing α1 and α2) is about 5% or less, 

suggesting our procedure provides effective controls on the errors of concerns. In 

this case, in most simulation rounds, 1
t

 minimizes the empirical error 
c

R  computed 

on 2 e  and 3 e , and 1 1
t t

 is chosen as the optimal threshold by Algorithm 3 in the 

final classifier. We can see this coincide with Figure 2(c), which shows that the 

largest element in 1 1
( , ]t 

 (i.e., 1
t

) minimizes the approximate error Rc on the 

test set. We note here that the results from other splitting ratios can be found in 

Supplementary Section C.2, where we observe that once the sample size for 

threshold selection reaches about twice the minimum sample size requirement, there 

are little observable differences in the results. In Supplementary Section C.3, we also 

compare with variations in computing the scoring functions to examine the effect of 

score normalization and calibration, showing that our current scoring functions are 

ideal for our purpose. 

Next, we check whether indeed Theorem 1 gives a better upper bound on t2 than 

Proposition 1 for overall error minimization. Recall the two upper bounds in Eq (6) (

2
2 ( )k

t
) and Eq (9) ( 2

t
). For each base classification algorithm (e.g., logistic 

regression), we set 1 1
t t

 and t2 equal to these two upper bounds respectively, 

resulting in two classifiers with different t2 thresholds. We compare their performance 

by evaluating the approximate errors of 2

ˆ( )R 
 and 3

ˆ( 2 )P Y 
 since, as discussed in 

Section 2.3, the threshold t2 only influences these two errors for a fixed t1. Figure 3 

shows the distributions of the errors and also their averages for three different base 

classification algorithms. Under each algorithm, both choices of t2 effectively control 

2

ˆ( )R 
, but the upper bound from Proposition 1 is overly conservative compared with 

that of Theorem 1, which results in a notable increase in 3

ˆ( 2 )P Y 
. This is 

undesirable since 3

ˆ( 2 )P Y 
 is one component in 

ˆ( )
c

R  , and the goal is to minimize 

ˆ( )
c

R   under appropriate error controls. 

Now we consider comparing our H-NP classifier against alternative approaches. We 

construct an example of “approximate” error control using the empirical ROC curve 
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approach. In this case, each class of observations is split into two parts: one for 

training the base classification method, the other for threshold selection using the 

ROC curve. Under the setting T1.1, using similar splitting ratios as before, we 

separate i  into 50% and 50% for is  and i t  for i = 1, 2, 3. The same test set is 

used. We re-compute the scoring functions (T1 and T2) corresponding to the new 

split. t1 is selected using the ROC curve generated by T1 aiming to distinguish 

between class 1 (samples in 1 t ) and class 2   (samples in 2 3t t


) merging classes 

2 and 3, with specificity calculated as the rate of misclassifying a class-1 observation 

into class 2  . Similarly, t2 is selected using T2 dividing samples in 2 3t t


 into class 

2 and class 3, with specificity defined as the rate of misclassifying a class-2 

observation into class 3. More specifically, in Eq (13) we use 

1

1

1 1

1

{ ( ) }

su p :
| |

t
X

t

T X t

t t 


 

 
  

 
 

 1

 and 

2

2

2 2

2

{ ( ) }

su p :
| |

t
X

t

T X t

t t 


 

 
  

 
 

 1

 to obtain the 

classifier for the ROC curve approach. 

The comparison between our H-NP classifier and the ROC curve approach is 

summarized in Figure 4. Recalling αi and δi are both 0.05, we mark the 95% 

quantiles of the under-classification errors by solid black lines and the target error 

control levels by dotted red lines. First we observe that the 95% quantiles of 1
R

 

using the ROC curve approach well exceed the target level control, with their 

averages centering around the target. We also see the influence of t1 on the 2
R

 – 

without suitably adjusting t2 based on t1, the control on 2

ˆ( )R 
 in the ROC curve 

approach is overly conservative despite it being an approximate error control 

method, which in turn leads to inflation in error 3

ˆ( 2 )P Y 
. In view of this, we further 

consider a simulation setting where the influence of t1 on t2 is smaller. The setting 

T2.1 moves samples in class 1 further away from classes 2 and 3 by having 

1
(0 , 3)  

, while the other parts remain the same as in the setting T1.1. 
,

i i
 

 are 

still 0.05. As shown in Figure 5, the ROC curve approach does not provide the 

required level of control for 1
R

 or 2
R

. 
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In Supplementary Sections C.4-C.6, we include more comparisons with alternative 

methods with different overall approaches to the problem, including weight-adjusted 

classification, cost-sensitive learning, and ordinal regression, and show that our H-

NP framework is more ideal for our problem of interest. 

3 Application to COVID-19 severity classification 

3.1 ScRNA-seq data and featurization 

We integrate 20 publicly available scRNA-seq datasets to form a total of 864 COVID-

19 patients with three severity levels marked as “Severe/Critical” (318 patients), “

Mild/Moderate” (353 patients), and “Healthy” (193 patients). The detail of each 

dataset and patient composition can be found in Supplementary Table S1. The 

severe, moderate and healthy patients are labeled as class 1, 2 and 3, respectively. 

For each patient, PBMC scRNA-seq data is available in the form of a matrix 

recording the expression levels of genes in hundreds to thousands of cells. Following 

the workflow in Lin et al. (2022), we first perform data integration including cell type 

annotation and batch effect removal, before selecting 3 , 0 0 0  highly variable genes 

and constructing their pseudo-bulk expression profiles under each cell type, where 

each gene’s expression is averaged across the cells of this type in every patient. The 

resulting processed data for each patient j is a matrix 
( )

 
g c

n nj
A



 R , where nc = 18 is 

the number of cell types, and 
3, 0 0 0

g
n 

 is the number of genes for analysis. More 

details of the integration process can be found in Supplementary Section A. 

Supplementary Figure S1 shows the distribution of the sparsity levels, i.e., the 

proportion of genes with zero values, under each cell type across all the patients. 

Several cell types, despite having a significant proportion of zeros, have varying 

sparsity across the three severity classes (Supplementary Figure S3), suggesting 

their activity level might be informative for classification. Since age information is 

available (although in different forms, see Supplementary Table S4) in most of the 

datasets we integrate, we include it as an additional clinical variable for classification. 

The details of processing the age variable are deferred to Supplementary Section A. 
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Since classical classification methods typically use feature vectors as input, 

appropriate featurization that transforms the expression matrices into vectors is 

needed. We propose four ways of featurization that differ in their considerations of 

the following aspects. 

 As we observe the sparsity level in some cell types changes across the 

severity classes, we expect different treatments of zeros will influence the 

classification performance. Three approaches are proposed: 1) no special 

treatment (M.1); 2) remove individual zeros but keeping all cell types (M.4); 3) 

remove cell types with significant amount of zeros across all three classes 

(M.2 and M.3). 

 Dimension reduction is commonly used to project the information in a matrix 

onto a vector. We consider performing dimension reduction along different 

directions, namely row projections, which take combinations of genes (M.2), 

and column projections, which combine cell types with appropriate weights 

(M.3 and M.4). We aim to compare choices of projection direction, so we 

focus on principal component analysis (PCA) as our dimension reduction 

method. 

 We consider two approaches to generate the PCA loadings: 1) overall PCA 

loadings (M.2 and M.4), where we perform PCA on the whole data to output a 

loading vector for all patients; 2) patient-specific PCA loadings (M.3), where 

PCA is performed for each matrix 
( )j

A  to get an individual-specific loading 

vector. 

The details of each featurization method are as follows. 

M.1 Simple feature screening: we consider each element 
( )j

u v
A

 (gene u 

under cell type v) as a possible feature for patient j and use its standard 

deviation across all patients, denoted as SDuv, to screen the features. 

Elements that hardly vary across the patients are likely to have a low 

discriminative power for classification. Let ( )i
S D

 be the i-th largest element in 

{ | [ ] , [ ]}
u v g c

S D u n v n 
. The feature vector for each patient consists of the 
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entries in 
( )

( )
{ | }

f

j

u v u v n
A S D S D

, where nf is the number of features desired and 

set to 3 , 0 0 0 . 

M.2 Overall gene combination: removing cell types with mostly zero 

expression values across all patients (details in Supplementary Section A), we 

select 17 cell types to construct 
1 7( )

 
g

nj
A



 R  that only preserves columns in 

( )j
A  corresponding to the selected cell types. Then, 

(1 ) ( )
, ,  

N
A A  are 

concatenated column-wise to get 
( 1 7 )a ll

 
g

n N

A
 

 R , where N = 864. Let 

1

 
g

n

w


 R  denote the first principle component loadings of 
a ll

( )A , and the 

feature vector for patient j is given by 
( )

  
j

j
X w A

. 

M.3 Individual-specific cell type combination: for patient j, the loading vector 
1 1 7

 
j

w


 R
 is taken as the absolute values of first principle component 

loadings for 
( )j

A , the matrix with selected 17 cell types in M.2 (details in 

Supplementary Section A). The principle component loading vector j
w

 that 

produces 
( )

) (
j

j j
X A w

 is patient-specific, intending to reflect different cell 

type compositions in different individuals. 

M.4 Common cell type combination: we compute an expression matrix A  

averaged over all patients defined as 

( )

[ ]

( )
,

| { [ ] | 0} |

j

u v

j N

u v j

u v

A

A
j N A




 


 

where |· |  is the cardinality function. Let 
1

 c
n

w


 R  denote the first principle 

component loadings of A , then the feature vector for the j-th patient is 
( )

( )
j

j
X A w

. 

We next evaluate the performance of these featurizations when applied as input to 

different base classification methods for H-NP classification. 

 

Acc
ep

te
d 

M
an

us
cr

ipt



3.2 Results of H-NP classification 

After obtaining the feature vectors and applying a suitable base classification 

method, we apply Algorithm 3 to control the under-classification errors. Recall that Y 

= 1, 2, 3 represent the severe, moderate and healthy categories, respectively, and 

the goal is to control 1

ˆ( )R 
 and 2

ˆ( )R 
. In this section, we evaluate the performance 

of the H-NP classifier applied to each combination of featurization method in 

Section 3.1 and base classification method (logistic regression, random forest, SVM 

(linear)), which is used to train the scores (T1 and T2). In each class, we leave out 

30% of the data as the test set and split the rest 70% as follows for training the H-NP 

classifier: 35% and 35% of 1  form 1 s  and 1 t ; 35%, 25% and 10% of 2  form 

2 2
,

s t  and 1e ; 35% and 35% of 3  form 3 s  and 3 e . For each combination of 

featurization and base classification method, we perform random splitting of the 

observations for 50 times to produce the results in this section. 

In Figure 6, the yellow halves of the violin plots show the distributions of different 

approximate errors from the classical classification methods; Supplementary 

Table S7 records the averages of these errors. In all the cases, the average of the 

approximate 1
R

 error is greater than 20%, in many cases greater than 40%. On the 

other hand, the approximate 2
R

 error under the classical paradigm is already 

relatively low, with the averages around 10%. Under the H-NP paradigm, we set 

1 2
, 0 .2  

 and 1 2
, 0 .2  

, i.e., we want to control each under-classification error 

under 20% at a 20% tolerance level. 

With the prespecified 1 2 1 2
, , ,   

, for a given base classification method Algorithm 3 

outputs an H-NP classifier that controls the under-classification errors while 

minimizing the weighted sum of the other empirical errors. The blue half violin plots 

in Figure 6 show the resulting approximate errors after H-NP adjustment. We 

observe that the common cell type combination feature M.4 consistently leads to 

smaller errors under both the classical and H-NP classifiers, especially for linear 

classification models (logistic regression and SVM). We have also implemented a 

neural network classifier. However, as the training sample size is relatively small, its 
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performance is not as good as the linear classification models, and the results are 

deferred to Supplementary Figure S14. 

In each plot of Figure 6, the two leftmost plots are the distributions of the two 

approximate under-classification errors 1
R

 and 2
R

. We mark the 80% quantiles of 

1
R

 and 2
R

 by short black lines (since 1 2
, 0 .2  

), and the desired control levels (

1 2
, 0 .2  

) by red dashed lines. The four rightmost plots show the approximate 

errors for the overall risk and the three components in 
ˆ( )

c
R   as discussed in Eq (14). 

For all the featurization and base classification methods, the under-classification 

errors are controlled at the desired levels with a slight increase in the overall error, 

which is much smaller than the reduction in under-classification errors. This 

demonstrates consistency of our method and indicates its general applicability to 

various base classification algorithms chosen by users. 

Another interesting phenomenon is that when a classical classification method is 

conservative for specified αi and δi, our algorithm will increase the corresponding 

threshold ti, which relaxes the decision boundary for classes less prioritized than i. 

As a result, the relaxation will benefit some components in 
ˆ( )

c
R  . In Figure 6(d), in 

many cases the classifier produces an approximate error 2
R

 less than 0.2 under the 

classical paradigm, which means it is conservative for the control level 2
0 .2 

 at 

the tolerance level 2
0 .2 

. In this case, the NP classifier adjusts the threshold t2 to 

lower the requirement for class 3, thus notably decreasing the approximate error of 

3

ˆ( 2 )P Y 
. 

3.3 Identifying genomic features associated with severity 

Finally, we show that using this integrated scRNA-seq data in a classification setting 

enables us to identify genomic features associated with disease severity in patients 

at both the cell-type and gene levels. First, by combining logistic regression with an 

appropriate featurization, we generate a ranked list of features (i.e., cell types or 

genes) that are important in predicting severity. At the cell type level, we utilize 

logistic regression with the featurization M.2, which compresses the expression 

matrix for each patient into a cell-type-length vector, and rank the cell types based 
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on their coefficients from the log odds ratios of the severe category relative to the 

healthy category. Supplementary Table S8 shows the top-ranked cell types are CD

1 4


 monocytes, NK cells, CD 8


 effector T cells, and neutrophils, all with significant 

p-values. This is consistent with known involvement of these cell types in the 

immune response of severe patients (Lucas et al., 2020; Liu 

et al., 2020; Rajamanickam et al., 2021). 

At the gene level, we utilize logistic regression with the featurization M.4, which has 

the best overall classification performance, and compresses each patient’s 

expression matrix into a gene-length vector. Similar to the above analysis at the cell-

type level, we generate a ranked gene list which leads to the identification of 

pathways associated with the severe condition. By performing the pathway 

enrichment analysis on the ranked gene list, we find that the top-ranked genes are 

significantly enriched in pathways involved in viral defense and leukocyte-mediated 

immune response (Supplementary Table S9). 

Next, we perform further analysis to directly demonstrate the benefits of the H-NP 

classification results without relying on feature ranking. Based on the featurization 

M.4, we construct a gene co-expression network and identify modules with groups of 

genes that are potentially co-regulated and functionally related. By comparing the 

predicted severity labels from the H-NP classifier and the classical approach, we 

show that the H-NP labels are better correlated with the eigengenes from these 

functional modules, suggesting that the H-NP labels better capture the underlying 

signals in the data related to disease mechanism and immune response 

(Supplementary Figures S15-S17). Then, we compare the gene ontology enrichment 

of the functional modules constructed for the severe and healthy patients separately, 

using the predicted H-NP labels. We find strong evidence of immune response to the 

virus among severe patients, while no such evidence is observed in the healthy 

group (Supplementary Tables S10 and S11). Finally, we note that compared with the 

results from the severe patients as labeled by the classical paradigm, the H-NP 

paradigm shows more significantly enriched modules with specific references to 

important cell types, including T cells, and subtypes of T cells (Supplementary 

Tables S10 and S12). Together, these results demonstrate that by prioritizing the 

Acc
ep

te
d 

M
an

us
cr

ipt



severe category in our H-NP framework, we can uncover stronger biological signals 

in the data related to immune response. 

More detailed descriptions of the methods used and analysis of results can be found 

in Supplementary Sections D.4 and D.5. 

4 Discussion 

In general disease severity classification, under-classification errors are more 

consequential as they can increase the risk of patients receiving insufficient medical 

care. By assuming the classes have a prioritized ordering, we propose an H-NP 

classification framework and its associated algorithm (Algorithm 3) capable of 

controlling under-classification errors at desired levels with high probability. The 

algorithm performs post hoc adjustment on scoring-type classification methods and 

thus can be applied in conjunction with most methods preferred by users. The idea 

of choosing thresholds on the scoring functions based on a held-out set bears 

resemblance to conformal splitting methods (Lei, 2014; Wang and Qiao, 2022). 

However, our approach differs in that we assign only one label to each observation, 

while maintaining high probability error controls. Additionally, our approach prioritizes 

certain misclassification errors, unlike conformal prediction which treats all classes 

equally. 

Through simulations and the case study of COVID-19 severity classification, we 

demonstrate the efficacy of our algorithm in achieving the desired error controls. We 

have also compared different ways of constructing interpretable feature vectors from 

the multi-patient scRNA-seq data and shown that the common cell type PCA 

featurization overall achieves better performance under various classification 

settings. By performing extensive gene ontology enrichment analysis, we illustrate 

that the use of scRNA-seq data has allowed us to gain biological insights into the 

disease mechanism and immune response of severe patients. We note here that 

although parts of our analysis rely on a ranked feature list obtained from logistic 

regression, there exist tools to perform such a feature selection step for all the other 

base classification methods used in this paper, including neural networks, which can 

utilize saliency maps and other feature selection procedures (Adebayo 
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et al., 2018; Novakovsky et al., 2023). We have chosen logistic regression in our 

illustrative analysis based on its stable classification performance and ease of 

interpretation. In addition, if the main objective is to build a classifier for triage 

diagnostics using other clinical variables, one can easily apply our method to other 

forms of patient-level COVID-19 data with other base classification methods. 

Even though our case study has three classes, the framework and algorithm 

developed are general. Increasing the number of classes has no effect on the 

minimum size requirement of the left-out part of each class for threshold selection 

since it suffices for each class i to satisfy 
lo g / (1 )

i i i
n   

. We also note that the 

notion of prioritized classes can be defined in a context-specific way. For example, in 

some diseases like Alzheimer’s disease, the transitional stage is considered to be 

the most important (Xiong et al., 2006). 

There are several interesting directions for future work. For small data problems 

where the minimum sample size requirement is not full-filled, we might consider 

adopting a parametric model, under which we can not only develop a new algorithm 

without minimum sample size requirement, but also study the oracle type properties 

of the classifiers. In terms of featurizing multi-patient scRNA-seq data, we have 

chosen PCA as the dimension reduction method to focus on other aspects of 

comparison; more dimension reduction methods can be explored in future work. It is 

also conceivable that the class labels in the case study are noisy with possibly 

biased diagnosis. Accounting for label noise with a realistic noise model and 

extending the work of Yao et al. (2022) to a multi-class NP classification setting will 

be another interesting direction to pursue. 
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Fig. 1 The influence of t1 on the error 
 3

ˆ 2P Y 
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Fig. 2 The distribution of approximate errors on the test set when t1 is the k-th 

largest element in 1 1
( , )t 

. The 95% quantiles of 1
R

 and 2
R

 are marked by 

blue diamonds. The target control levels for 1

ˆ( )R 
 and 2

ˆ( )R 
 ( 1 2

0 .0 5  
) are 

plotted as red dashed lines. 

 

Fig. 3 The distribution and averages of approximate errors on the test set under 

the setting T1.1. “error23” and “error32” correspond to 2

ˆ( )R 
 and 3

ˆ( 2 )P Y 
, 

respectively. 
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Fig. 4 The distributions of approximate errors on the test set under setting T1.1. “

error1”, “error23” and “error32” correspond to 1 2

ˆ ˆ( ), ( )R R 
 and 3

ˆ( 2 )P Y 
, 

respectively. 

 

Fig. 5 The distributions of approximate errors on the test set under setting T2.1. “

error1” and “error23” correspond to the errors 1

ˆ( )R 
 and 2

ˆ( )R 
, respectively. 
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Fig. 6 The distribution of approximate errors for each combination of featurization 

method and base classification method. “error1”, “error23”, “error21”, “error31”, “

error32”, “overall” correspond to 1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ( ), ( ) , ( 1), ( 1), ( 2 )R R P Y P Y P Y    
 and 

ˆ( )P Y Y , respectively. Acc
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