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ABSTRACT
COVID-19 has a spectrum of disease severity, ranging from asymptomatic to requiring hospitalization.
Understanding the mechanisms driving disease severity is crucial for developing effective treatments and
reducing mortality rates. One way to gain such understanding is using a multi-class classification framework,
in which patients’biological features are used to predict patients’severity classes. In this severity classification
problem, it is beneficial to prioritize the identification of more severe classes and control the “under-
classification”errors, in which patients are misclassified into less severe categories. The Neyman-Pearson (NP)
classification paradigm has been developed to prioritize the designated type of error. However, current NP
procedures are either for binary classification or do not provide high probability controls on the prioritized
errors in multi-class classification. Here, we propose a hierarchical NP (H-NP) framework and an umbrella
algorithm that generally adapts to popular classification methods and controls the under-classification
errors with high probability. On an integrated collection of single-cell RNA-seq (scRNA-seq) datasets for 864
patients, we explore ways of featurization and demonstrate the efficacy of the H-NP algorithm in controlling
the under-classification errors regardless of featurization. Beyond COVID-19 severity classification, the H-
NP algorithm generally applies to multi-class classification problems, where classes have a priority order.
Supplementary materials for this article are available online.
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1. Introduction

The COVID-19 pandemic has infected over 767 million peo-
ple and caused 6.94 million deaths (June 27, 2023) (World
Health Organization 2023), prompting collective efforts from
statistics and other communities to address data-driven chal-
lenges. Many statistical works have modeled epidemic dynamics
(Betensky and Feng 2020; Quick, Dey, and Lin 2021), forecasted
the case growth rates and outbreak locations (Brooks et al. 2020;
Tang et al. 2021; McDonald et al. 2021), and analyzed and
predicted the mortality rates (James, Menzies, and Radchenko
2021; Kramlinger, Krivobokova, and Sperlich 2022). Classifica-
tion problems, such as diagnosis (positive/negative) (Wu et al.
2020; Li et al. 2020; Zhang, Ding, and Yang 2021) and severity
prediction (Yan et al. 2020; Sun et al. 2020; Zhao et al. 2020; Ortiz
et al. 2022), have been tackled by machine learning approaches
(e.g., logistic regression, support vector machine (SVM), ran-
dom forest, boosting, and neural networks; see Alballa and Al-
Turaiki (2021) for a review).

In the existing COVID-19 classification works, the com-
monly used data types are CT images, routine blood tests, and
other clinical data including age, blood pressure and medical
history (Meraihi et al. 2022). In comparison, multiomics data
are harder to acquire but can provide better insights into the
molecular features driving patient responses (Overmyer et al.
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2021). Recently, the increasing availability of single-cell RNA-
seq (scRNA-seq) data offers the opportunity to understand tran-
scriptional responses to COVID-19 severity at the cellular level
(Wilk et al. 2020; Stephenson et al. 2021; Ren et al. 2021).

More generally, genome-wide gene expression measurements
have been routinely used in classification settings to characterize
and distinguish disease subtypes, both in bulk-sample (Aibar
et al. 2015) and, more recently, single-cell level (Arvaniti and
Claassen 2017; Hu, Glicksberg, and Butte 2019). While such
genome-wide data can be costly, they provide a comprehen-
sive view of the transcriptome and can unveil significant gene
expression patterns for diseases with complex pathophysiol-
ogy, where multiple genes and pathways are involved. Further-
more, as the patient-level measurements continue to grow in
dimension and complexity (e.g., from a single bulk sample to
thousands-to-millions of cells per patient), a supervised learning
setting enables us to better establish the connection between
patient-level features and their associated disease states, paving
the way toward personalized treatment.

In this study, we focus on patient severity classification using
an integrated collection of multi-patient scRNA-seq datasets.
Based on the WHO guidelines (World Health Organization
2020), COVID-19 patients have at least three severity categories:
healthy, mild/moderate, and severe. The classical classification
paradigm aims at minimizing the overall classification error.
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However, prioritizing the identification of more severe patients
may provide important insights into the biological mechanisms
underlying disease progression and severity, and facilitate the
discovery of potential biomarkers for clinical diagnosis and ther-
apeutic intervention. Consequently, it is important to prioritize
the control of “under-classification” errors, in which patients are
misclassified into less severe categories.

Motivated by the gap in existing classification algorithms for
severity classification (Section 1.1), we propose a hierarchical
Neyman-Pearson (H-NP) classification framework that priori-
tizes the under-classification error control in the following sense.
Suppose there are I classes with class labels [I] = {1, 2, . . . , I}
ordered in decreasing severity. For i ∈ [I − 1], the ith
under-classification error is the probability of misclassifying
an individual in class i into any class j with j > i. We develop an
H-NP umbrella algorithm that controls the ith
under-classification error below a user-specified level αi ∈ (0, 1)

with high probability while minimizing a weighted sum of
the remaining classification errors. Similar in spirit to the NP
umbrella algorithm for binary classification in Tong, Feng, and
Li (2018), the H-NP umbrella algorithm adapts to popular
scoring-type multi-class classification methods (e.g., logistic
regression, random forest, and SVM). To our knowledge, the
algorithm is the first to achieve asymmetric error control with
high probability in multi-class classification.

Another contribution of this study is the exploration of
appropriate ways to featurize multi-patient scRNA-seq data.
Following the workflow in Lin et al. (2022), we integrate 20
publicly available scRNA-seq datasets to form a sample of 864
patients with three levels of severity. For each patient, scRNA-
seq data were collected from peripheral blood mononuclear cells
(PBMCs) and processed into a sparse expression matrix, which
consists of tens of thousands of genes in rows and thousands of
cells in columns. We propose four ways of extracting a feature
vector from each of these 864 matrices. Then we evaluate the
performance of each featurization way in combination with
multiple classification methods under both the classical and H-
NP classification paradigms. We note that our H-NP umbrella
algorithm is applicable to other featurizations of scRNA-seq
data, other forms of patient data, and more general disease
classification problems with a severity ordering.

Below we review the NP paradigm and featurization of multi-
patient scRNA-seq data as the background of our work.

1.1. Neyman-Pearson Paradigm and Multi-Class
Classification

Classical binary classification focuses on minimizing the overall
classification error, that is, a weighted sum of Type I and II errors,
where the weights are the marginal probabilities of the two
classes. However, the class priorities are not reflected by the class
weights in many applications, especially disease severity classifi-
cation, where the severe class is the minor class and has a smaller
weight (e.g., HIV (Meyer and Pauker 1987) and cancer (Dettling
and Bühlmann 2003)). One class of methods that addresses
this error asymmetry is cost-sensitive learning (Elkan 2001;
Margineantu 2002), which assigns different costs to Type I and
Type II errors. However, such weights may not be easy to choose
in practice, especially in a multi-class setting; nor do these

methods provide high probability controls on the prioritized
errors. The NP classification paradigm (Cannon et al. 2002; Scott
and Nowak 2005; Rigollet and Tong 2011) was developed as an
alternative framework to enforce class priorities: it finds a clas-
sifier that controls the population Type I error (the prioritized
error, for example, misclassifying diseased patients as healthy)
under a user-specified level α while minimizing the Type II
error (the error with less priority, e.g., misdiagnosing healthy
people as sick). Practically, using an order statistics approach,
Tong, Feng, and Li (2018) proposed an NP umbrella algorithm
that adapts all scoring-type classification methods (e.g., logistic
regression) to the NP paradigm for classifier construction. The
resulting classifier has the population Type I error under α with
high probability. Besides disease severity classification, the NP
classification paradigm has found diverse applications, includ-
ing social media text classification (Xia et al. 2021) and crisis risk
control (Feng, Tong, and Xin 2021). Nevertheless, the original
NP paradigm is for binary classification only.

Although several works aimed to control prioritized errors in
multi-class classification (Landgrebe and Duin 2005; Xiong et al.
2006; Tian and Feng 2021), they did not provide high probability
control. That is, if they are applied to severe disease classification,
there is a nontrivial chance that their under-classification errors
exceed the desired levels.

1.2. ScRNA-seq Data Featurization

In multi-patient scRNA-seq data, every patient has a gene-by-
cell expression matrix; genes are matched across patients, but
cells are not. For learning tasks with patients as instances, fea-
turization is a necessary step to ensure that all patients have
feautures in the same space. A common featurization approach
is to assign every patient’s cells into cell types, which are com-
parable across patients, by clustering (Stanley et al. 2020; Ganio
et al. 2020) and/or manual annotation (Han et al. 2019). Then,
each patient’s gene-by-cell expression matrix can be converted
into a gene-by-cell-type expression matrix using a summary
statistic (e.g., every gene’s mean expression in a cell type), so
all patients have gene-by-cell-type expression matrices with the
same dimensions. We note here that most of the previous multi-
patient single-cell studies with a reasonably large cohort used
CyTOF data (Davis, Tato, and Furman 2017), which typically
measures 50–100 protein markers, whereas scRNA-seq data
have a much higher feature dimension, containing expression
values of ∼ 104 genes. Thus, further featurization is necessary to
convert each patient’s gene-by-cell-type expression matrix into a
feature vector for classification.

Following the data processing workflow in Lin et al. (2022),
we obtain 864 patients’ cell-type-by-gene expression matrices,
which include 18 cell types and 3000 genes (after filtering). We
propose and compare four ways of featurizing these matrices
into vectors, which differ in their treatments of 0 values and
approaches to dimension reduction. Note that we perform fea-
turization as a separate step before classification so that all clas-
sification methods are applicable. Separating the featurization
step also allows us to investigate whether a featurization way
maintains robust performance across classification methods.

The rest of the article is organized as follows. In Section 2,
we introduce the H-NP classification framework and propose
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an umbrella algorithm to control the under-classification errors
with high probability. Next, we conduct extensive simulation
studies to evaluate the performance of the umbrella algorithm.
In Section 3, we describe four ways of featurizing the COVID-19
multi-patient scRNA-seq data and show that the H-NP umbrella
algorithm consistently controls the under-classification errors in
COVID-19 severity classification across all featurization ways
and classification methods. Furthermore, we demonstrate that
utilizing the scRNA-seq data allows us to gain biological insights
into the mechanism and immune response of severe patients
at both the cell-type and gene levels. Supplementary Materials
contain technical derivations, proofs and additional numerical
results.

2. Hierarchical Neyman-Pearson (H-NP) Classification

2.1. Under-Classification Errors in H-NP Classification

We first introduce the formulation of H-NP classification and
define the under-classification errors, which are the probabilities
of individuals being misclassified to less severe (more generally,
less important) classes. In an H-NP problem with I ≥ 2 classes,
the class labels i ∈ [I] := {1, 2, . . . , I} are ranked in a decreasing
order of importance, that is, class i is more important than class
j if i < j. Let (X, Y) be a random pair, where X ∈ X ⊂ Rd

represents a vector of features, and Y ∈ [I] denotes the class
label. A classifier φ : X → [I] maps a feature vector X to a
predicted class label. In the following discussion, we abbreviate
P(· | Y = i) as Pi(·). Our H-NP framework aims to control the
under-classification errors at the population level in the sense
that
Ri�(φ) = Pi(φ(X) ∈ {i + 1, . . . , I}) ≤ αi for i ∈ [I − 1] ,

(1)
where αi ∈ (0, 1) is the desired control level for the ith under-
classification error Ri�(φ). Simultaneously, our H-NP frame-
work minimizes the weighted sum of the remaining errors,
which can be expressed as

Rc(φ) = P(φ(X) 	= Y)−
I−1∑
i=1

πiRi�(φ), where πi = P(Y = i).

(2)
We note that when I = 2, this H-NP formulation is equivalent
to the binary NP classification (prioritizing class 1 over class 2),
with R1�(φ) being the population Type I error.

For COVID-19 severity classification with three levels, severe
patients labeled as Y = 1 have the top priority, and we want
to control the probability of severe patients not being identified,
which is R1�(φ). The secondary priority is for moderate patients
labeled as Y = 2; R2�(φ) is the probability of moderate patients
being classified as healthy. Healthy patients that do not need
medical care are labeled as Y = 3. Note that Ri�(·) and Rc(·)
are population-level quantities as they depend on the intrinsic
distribution of (X, Y), and it is hard to control the Ri�(·)’s almost
surely due to the randomness of the classifier.

2.2. H-NP Algorithm with High Probability Control

In this section, we construct an H-NP umbrella algorithm that
controls the population under-classification errors in the sense

that P(Ri�(φ̂) > αi) ≤ δi for i ∈ [I − 1], where (δ1, . . . , δI−1)
is a vector of tolerance parameters, and φ̂ is a scoring-type
classifier to be defined below.

Roughly speaking, we employ a sample-splitting strategy,
which uses some data subsets to train the scoring functions from
a base classification method and other data subsets to select
appropriate thresholds on the scores to achieve population-
level error controls. Here, the scoring functions refer to the
scores assigned to each possible class label for a given input
observation and include examples such as the output from the
softmax transformation in multinomial logistic regression. For
i ∈ [I], let Si = {Xi

j}Ni
j=1 denote Ni independent observations

from class i, where Ni is the size of the class. In the following
discussion, the superscript on X is dropped for brevity when it
is clear which class the observation comes from. Our procedure
randomly splits the class-i observations into (up to) three parts:
Sis (i ∈ [I]) for obtaining scoring functions, Sit (i ∈ [I − 1])
for selecting thresholds, and Sie (i = 2, . . . , I) for computing
empirical errors. As will be made clear later, our procedure does
not requireS1e orSIt and splits class 1 and class I into two parts
only. After splitting, we use the combination Ss = ⋃

i∈[I] Sis to
train the scoring functions.

We consider a classifier that relies on I − 1 scoring functions
T1, T2, . . . , TI−1 : X → R, where the class decision is made
sequentially with each Ti(X) determining whether the observa-
tion belongs to class i or one of the less prioritized classes (i +
1), . . . , I . Thus, at each step i, the decision is binary, allowing us
to use the NP Lemma to motivate the construction of our scoring
functions. Note that P(Y = i | X = x)/P(Y ∈ {i + 1, . . . , I} |
X = x) ∝ fi(x)/f>i(x), where f>i(x) and fi(x) represent the
density function of X when Y > i and Y = i, respectively, and
the density ratio is the statistic that leads to the most powerful
test with a given level of control on one of the errors by the NP
Lemma. Given a typical scoring-type classification method (e.g.,
logistic regression, random forest, SVM, and neural network)
that provides the probability estimates P̂(Y = i | X) for i ∈ [I],
we can construct our scores using these estimates by defining

T1(X) = P̂(Y = 1 | X) , and

Ti(X) = P̂(Y = i | X)∑I
j=i+1 P̂(Y = j | X)

for 1 < i < I − 1 .

Given thresholds (t1, t2, . . . , tI−1), we consider an H-NP
classifier of the form

φ̂(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 , T1(X) ≥ t1 ;
2 , T2(X) ≥ t2 and T1(X) < t1 ;
· · ·
I − 1 , TI−1(X) ≥ tI−1 and

T1(X) < t1, . . . , TI−2(X) < tI−2 ;
I , otherwise .

(3)

Then the ith under-classification error for this classifier can be
written as

Ri�(φ̂) = Pi
(
φ̂(X) ∈ {i + 1, . . . , I})

= Pi (T1(X) < t1, . . . , Ti(X) < ti) , (4)

where X is a new observation from the ith class independent
of the data used for score training and threshold selection. The
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thresholds (t1, t2, . . . , tI−1) are selected using the observations
in S1t , . . . ,S(I−1)t , and they are chosen to satisfy P(Ri�(φ̂) >

αi) ≤ δi for all i ∈ [I − 1]. In what follows, we will develop our
arguments conditional on the data Ss for training the scoring
functions so that Ti’s can be viewed as fixed functions.

According to (3), the first under-classification error R1�(φ̂) =
P1 (T1(X) < t1) only depends on t1, while the other under-
classification errors Ri�(φ̂) depend on t1, . . . , ti. To achieve the
high probability controls with P(Ri�(φ̂) > αi) ≤ δi for all
i ∈ [I − 1], we select t1, . . . tI−1 sequentially using an order
statistics approach. We start with the selection of t1, which is
covered by the following general proposition. The proof is a
modification of Proposition 1 in Tong, Feng, and Li (2018) and
can be found in Supplementary Section B.1.

Proposition 1. For any i ∈ [I], denote Ti = {Ti(X) | X ∈ Sit},
and let ti(k) be the corresponding kth order statistic. Further
denote the cardinality of Ti as ni. Assuming that the data used to
train the scoring functions and the left-out data are independent,
then given a control level α, for another independent observa-
tion X from class i,

P
(
Pi

[
Ti(X) < ti(k) | ti(k)

]
> α

) ≤ v(k, ni, α)

:=
k−1∑
j=0

(
ni
j

)
(α)j(1 − α)ni−j . (5)

We remark that similar to Proposition 1 in Tong, Feng, and
Li (2018), if Ti is a continuous random variable, the bound in (5)
is tight.

Algorithm 1: DeltaSearch(n, α, δ)
Input : size: n; level: α; tolerance: δ.

1 k = 0, vk = 0
2 while vk ≤ δ do
3 vk = vk + (n

k
)
(α)k(1 − α)n−k

4 k = k + 1
5 end

Output: k

Let ki = max{k | v(k, ni, αi) ≤ δi}, which can be computed
using Algorithm 1. Then Proposition 1 and (4) imply

P
(
Ri�(φ̂) > αi

) ≤ P
(
Pi

[
Ti(X) < ti | ti(ki)

]
> αi

)
≤ δi for all ti ≤ ti(ki) . (6)

We note that to have a solution for v(k, ni, αi) ≤ δi among k ∈
[ni], we need ni ≥ log δi/ log(1 − αi), the minimum sample size
required for the class Sit . When i = 1, the first inequality in
(6) becomes equality, so t1(k1) is an effective upper bound on t1
when we later minimize the empirical counterpart of Rc(·) in (2)
with respect to different feasible threshold choices. On the other
hand, for i > 1, the inequality is mostly strict, which means that
the bound ti(ki) on ti is expected to be loose and can be improved.
To this end, we note that (4) can be decomposed as

Ri�(φ̂) = Pi (Ti(X) < ti| T1(X) < t1, . . . , Ti−1(X) < ti−1)

× Pi (T1(X) < t1, . . . , Ti−1(X) < ti−1) (7)
leading to the following theorem that upper bounds ti given the
previous thresholds.

Theorem 1. Given the previous thresholds t1, . . . , ti−1, consider
all the scores Ti on the left-out class Sit , Ti = {Ti(X) | X ∈
Sit}, and a subset of these scores depending on the previous
thresholds, defined as T ′

i = {Ti(X) | X ∈ Sit , T1(X) <

t1, . . . , Ti−1(X) < ti−1}. We use ti(k) and t′i(k) to denote the
kth order statistic of Ti and T ′

i , respectively. Let ni and n′
i be

the cardinality of Ti and T ′
i , respectively, and αi and δi be the

prespecified control level and violation tolerance for the ith
under-classification error Ri�(·). We set

p̂i = n′
i

ni
, pi = p̂i + c(ni) , α′

i = αi
pi

, δ′
i = δi − exp{−2nic2(ni)} ,

(8)

where c(n) = O(1/
√

n). Let

ti =
{

t′i(k′
i)

, if n′
i ≥ log δ′

i/ log(1 − α′
i) and α′

i < 1 ;
ti(ki) , otherwise ,

(9)

where ki = max{k ∈ [ni] | v(k, ni, αi) ≤ δi} and k′
i =

max{k ∈ [n′
i] | v(k, n′

i, α
′
i) ≤ δ′

i} . Then,

P(Ri�(φ̂) > αi) = P
(
Pi

[
T1(X) < t1, . . . Ti(X) < ti | ti

]
> αi

)
≤ δi for all ti ≤ ti . (10)

In other words, if the cardinality of T ′
i exceeds a threshold,

we can refine the choice of the upper bound according to (9);
otherwise, the bound in Proposition 1 always applies. The proof
of the theorem is provided in Supplementary Section B.2; the
computation of the upper bound ti is summarized in Algo-
rithm 2. ti guarantees the required high probability control
on the ith under-classification error, while providing a tighter
bound compared with (4). We make two additional remarks as
follows.

Remark 1. (a) The minimum sample size requirement for Sit is
still ni ≥ log δi/ log(1−αi) because ti(ki) in (9) always exists
when this inequality holds. For instance, if αi = 0.05 and
δi = 0.05, then ni ≥ 59.

(b) The choice of c(n) involves a tradeoff between α′
i and

δ′
i , although under the constraint c(n) = O(1/

√
n), any

changes in both quantities are small in magnitude for large
n. For example, a larger c(n) leads to a smaller α′

i and a larger
δ′

i , thus, a looser tolerance level comes at the cost of a stricter
error control level. In practice, larger α′

i and larger δ′
i values

are desired since they lead to a wider region for ti. We set
c(n) = 2/

√
n throughout the rest of the article. Then by (8),

α′
i increases as n increases, and δ′

i = δi − e−4, so the differ-
ence between δ′

i and the prespecified δi is sufficiently small.
(c) Equation (10) has two cases, as (9) indicates. When ti =

ti(ki), the bound remains the same as (6), which is not tight
for i > 1. When ti = t′i(k′

i)
, (10) provides a tighter bound

through the decomposition in (7), where the first part is
bounded by a concentration argument, and the second part
achieves a tight bound the same way as Proposition 1.

With the set of upper bounds on the thresholds chosen
according to Theorem 1, the next step is to find an optimal
set of thresholds (t1, t2, . . . , tI−1) satisfying these upper bounds
while minimizing the empirical version of Rc(φ̂) , which is
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calculated using observations in Se = ⋃I
i=2 Sie (since class-1

observations are not needed in Rc(φ̂)). For brevity, we denote all
the empirical errors as R̃, for example, R̃c. In Section 2.4, we will
show numerically that Theorem 1 provides a wider search region
for the threshold ti compared to Proposition 1, which benefits
the minimization of Rc.

As our COVID-19 data has three severity levels, in the next
section, we will focus on the three-class H-NP umbrella algo-
rithm and describe in more details how the above procedures
can be combined to select the optimal thresholds in the final
classifier.

Algorithm 2: UpperBound(Sit , αi, δi, (T1, . . . , Ti),
(t1, . . . , ti−1))

Input : The left-out class-i samples: Sit ; level: αi;
tolerance: δi; score functions: (T1, . . . , Ti);
thresholds: (t1, . . . , ti−1).

1 ni ← |Sit|
2 {ti(1), . . . , ti(ni)} ← sort Ti = {Ti(X) | X ∈ Sit}
3 ki ← DeltaSearch(ni, αi, δi) ; // i.e.,
Algorithm 1

4 ti ← ti(ki)

5 if i > 1 then
6 T ′

i ← {t′i(1), . . . , t′i(n′
i)
} = sort{Ti(X) | X ∈

Sit , T1(X) < t1, . . . , Ti−1(X) < ti−1} ; // Note
that n′

i is random

7 p̂i ← n′
i

ni
, pi ← p̂i + c(ni), α′

i ← αi/pi ,
δ′

i ← δi − e−2nic2(ni); // e.g., c(n) = 2√
n

8 if n′
i ≥ log δ′

i/ log(1 − α′
i) and α′

i < 1 then
9 k′

i ← DeltaSearch(n′
i, α

′
i , δ

′
i)

10 ti ← t′i(k′
i)

11 end
12 end

Output: ti

2.3. H-NP Umbrella Algorithm for Three Classes

Since our COVID-19 data groups patients into three severity
categories, we introduce our H-NP umbrella algorithm for I =
3. In this case, there are two under-classification errors R1�(φ) =
P1(φ(X) ∈ {2, 3}) and R2�(φ) = P2(φ(X) = 3), which
need to be controlled at prespecified levels α1, α2 with tolerance
levels δ1, δ2, respectively. In addition, we wish to minimize the
weighted sum of errors

Rc(φ) = P(φ(X) 	= Y) − π1R1�(φ) − π2R2�(φ)

= π2P2(φ(X) = 1) + π3[P3(φ(X) = 1) + P3(φ(X) = 2)] .
(11)

When I = 3, our H-NP umbrella algorithm relies on two
scoring functions T1, T2 : X → R, which can be constructed
by (3) using the estimates P̂(Y = i | X) from any scoring-type
classification method:

T1(X) = P̂(Y = 1 | X) and T2(X) = P̂(Y = 2 | X)

P̂(Y = 3 | X)
.

(12)

The H-NP classifier then takes the form

φ̂(X) =

⎧⎪⎨⎪⎩
1 , T1(X) ≥ t1 ;
2 , T2(X) ≥ t2 and T1(X) < t1 ;
3 , otherwise .

(13)

Here T2 determines whether an observation belongs to class 2
or class 3, with a larger value indicating a higher probability
for class 2. Applying Algorithm 2, we can find t1 such that
any threshold t1 ≤ t1 will satisfy the high probability control
on the first under-classification error, that is P(R1�(φ̂) >

α1) = P
(
P1

[
T1(X) < t1 | t1

]
> α1

) ≤ δ1. Recall that the
computation of t2 (and consequently t2) depends on the choice
of t1. Given a fixed t1, the high probability control on the
second under-classification errors is P(R2�(φ̂) > α2) =
P

(
P2

[
T1(X) < t1, T2(X) < t2 | t2

]
> α2

) ≤ δ2, where t2 is
computed by Algorithm 2 so that any t2 ≤ t2 satisfies the
constraint.

The interaction between t1 and t2 comes into play when
minimizing the remaining errors in Rc(φ̂). First note that using
(11) and (13), the other types of errors in Rc(φ̂) are

P2
(
φ̂(X) = 1

) = P2 (T1(X) ≥ t1) ,
P3

(
φ̂(X) = 1

) = P3 (T1(X) ≥ t1) , (14)
P3

(
φ̂(X) = 2

) = P3 (T1(X) < t1, T2(X) ≥ t2) .

To simplify the notation, let Ŷ denote φ̂(X) in the following
discussion. For a fixed t1, decreasing t2 leads to an increase in
P3(Ŷ = 2) and has no effect on the other errors in (14), which
means that t2 = t2 minimizes Rc(φ̂). However, the selection
of t1 is not as straightforward as t2. Figure 1(a) illustrates how
the set T ′

2 = {T2(X) | X ∈ S2t , T1(X) < t1} (as appeared in
Theorem 1) is constructed for a given t1, where the elements are
ordered by their T2 values. Clearly, more elements are removed
from T ′

2 as t1 decreases, leading to a smaller n′
2. Consider an

element in the set T ′
2 which has rank k in the ordered list

(colored yellow in Figure 1(a)). Then k, n′
2, α′

2, and consequently
v(k, n′

2, α′
2), will all be affected by decreasing t1, but the change

is not monotonic as shown in Figure 1(b). Decreasing t1 could
remove elements (dashed circles in Figure 1(b)) either to the
left side (case 1) or right side (case 2) of the yellow element,
depending on the values of the scores T1. In case 1, v(k, n′

2, α′
2)

decreases, resulting in a larger t2 and a smaller P3(Ŷ = 2) error,
whereas the reverse can happen in case 2. The details of how
v(k, n′

2, α′
2) changes can be found in Supplementary Section B.3,

with additional simulations in Supplementary Figure S13. In
view of the above, minimizing the empirical error R̃c requires a
grid search over t1, for which we use the set T1 = {T1(X) | X ∈
S1t}, and the overall algorithm for finding the optimal thresholds
and the resulting classifier is described in Algorithm 3, which
we name as the H-NP umbrella algorithm. The algorithm for
the general case with I > 3 can be found in Supplementary
Section E.

2.4. Simulation Studies

We first examine the validity of our H-NP umbrella algorithm
using simulated data from a setting denoted T1.1, where I =
3, and the feature vectors in class i are generated as (Xi)

� ∼
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N(μi, I), where μ1 = (0, −1)�, μ2 = (−1, 1)�, μ3 = (1, 0)�
and I is the 2 × 2 identity matrix. For each simulated dataset,
we generate the feature vectors and labels with 500 observations
in each of the three classes. The observations are randomly
separated into parts for score training, threshold selection and
computing empirical errors: S1 is split into 50%, 50% for S1s,

Algorithm 3: H-NP umbrella algorithm for I = 3
Input : Sample: S = S1 ∪ S2 ∪ S3; levels: (α1, α2);

tolerances: (δ1, δ2); grid set: A1 (e.g., T1).
1 π̂2 = |S2|/|S|; π̂3 = |S3|/|S|
2 S1s,S1t , ← Random split S1; S2s,S2t ,S2e ← Random

split S2; S3s,S3e ← Random split S3
3 Ss = S1s ∪ S2s ∪ S3s
4 T1, T2 ← A base classification method(Ss) ; // see

(12)
5 t1 ← UpperBound(S1t , α1, δ1, (T1), NULL) ;
// i.e., Algorithm 2

6 R̃c = 1
7 for t1 ∈ A1 ∩ (−∞, t1] do
8 t2 ← UpperBound(S2t , α2, δ2, (T1, T2), (t1))

9 φ̂ ← a classifier with respect to t1, t2
10 e21 = ∑

X∈S2e 1{φ̂(X) = 1}/|S2e|,
e3 = ∑

X∈S3e 1{φ̂(X) ∈ {1, 2}}}/|S3e|
11 R̃cnew = π̂2e21 + π̂3e3
12 if R̃cnew < R̃c then
13 R̃c ← R̃cnew, φ̂∗ ← φ̂

14 end
15 end

Output: φ̂∗

S1t ; S2 is split into 45%, 50%, and 5% for S2s, S2t and S2e; S3
is split into 95%, 5% for S3s, S3e, respectively. All the results in
this section are based on 1000 repetitions from a given setting.
We set α1 = α2 = 0.05 and δ1 = δ2 = 0.05. To approximate
and evaluate the true population errors R1�, R2�, and Rc, we
additionally generate 20,000 observations for each class and refer
to them as the test set.

First, we demonstrate that Algorithm 3 outputs an H-NP
classifier with the desired high probability controls. More specif-
ically, we show that any t1 ≤ t1 and t2 = t2 (t1, t2 are
computed by Algorithm 2) will lead to a valid threshold pair
(t1, t2) satisfying P(R1�(φ̂) > α1) ≤ δ1 and P(R2�(φ̂) >

α2) ≤ δ2, where R1� and R2� are approximated using the test set
in each round of simulation. Here, we use multinomial logistic
regression to construct the scoring functions T1 and T2, the
inputs of Algorithm 3. Figure 2 displays the boxplots of various
approximate errors with t1 chosen as the kth largest element in
T1∩(−∞, t1] as k changes. In Figure 2(a) and (b), where the blue
diamonds mark the 95% quantiles, we can see that the violation
rate of the required error bounds (red dashed lines, representing
α1 and α2) is about 5% or less, suggesting our procedure provides
effective controls on the errors of concerns. In this case, in
most simulation rounds, t1 minimizes the empirical error R̃c

computed on S2e and S3e, and t1 = t1 is chosen as the optimal
threshold by Algorithm 3 in the final classifier. We can see this
coincide with Figure 2(c), which shows that the largest element
in T1 ∩ (−∞, t1] (i.e., t1) minimizes the approximate error Rc

on the test set. We note here that the results from other splitting
ratios can be found in Supplementary Section C.2, where we
observe that once the sample size for threshold selection reaches
about twice the minimum sample size requirement, there are
little observable differences in the results. In Supplementary
Section C.3, we also compare with variations in computing the

Figure 1. The influence of t1 on the error P3
(̂

Y = 2
)

.

Figure 2. The distribution of approximate errors on the test set when t1 is the kth largest element in T1 ∩ (−∞, t1). The 95% quantiles of R1� and R2� are marked by blue
diamonds. The target control levels for R1�(φ̂) and R2�(φ̂) (α1 = α2 = 0.05) are plotted as red dashed lines.
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Figure 3. The distribution and averages of approximate errors on the test set under the setting T1.1. “error23” and “error32” correspond to R2�(φ̂) and P3(Ŷ = 2),
respectively.

scoring functions to examine the effect of score normalization
and calibration, showing that our current scoring functions are
ideal for our purpose.

Next, we check whether indeed Theorem 1 gives a better
upper bound on t2 than Proposition 1 for overall error
minimization. Recall the two upper bounds in (6) (t2(k2)) and
(9) (t2). For each base classification algorithm (e.g., logistic
regression), we set t1 = t1 and t2 equal to these two upper
bounds, respectively, resulting in two classifiers with different
t2 thresholds. We compare their performance by evaluating
the approximate errors of R2�(φ̂) and P3(Ŷ = 2) since, as
discussed in Section 2.3, the threshold t2 only influences these
two errors for a fixed t1. Figure 3 shows the distributions
of the errors and also their averages for three different base
classification algorithms. Under each algorithm, both choices
of t2 effectively control R2�(φ̂), but the upper bound from
Proposition 1 is overly conservative compared with that of
Theorem 1, which results in a notable increase in P3(Ŷ = 2).
This is undesirable since P3(Ŷ = 2) is one component in Rc(φ̂),
and the goal is to minimize Rc(φ̂) under appropriate error
controls.

Now we consider comparing our H-NP classifier against
alternative approaches. We construct an example of “approxi-
mate” error control using the empirical ROC curve approach. In
this case, each class of observations is split into two parts: one for
training the base classification method, the other for threshold
selection using the ROC curve. Under the setting T1.1, using
similar splitting ratios as before, we separate Si into 50% and
50% for Sis and Sit for i = 1, 2, 3. The same test set is used. We
re-compute the scoring functions (T1 and T2) corresponding to
the new split. t1 is selected using the ROC curve generated by T1
aiming to distinguish between class 1 (samples in S1t) and class
2′ (samples in S2t ∪S3t) merging classes 2 and 3, with specificity

calculated as the rate of misclassifying a class-1 observation into
class 2′. Similarly, t2 is selected using T2 dividing samples in
S2t ∪ S3t into class 2 and class 3, with specificity defined as the
rate of misclassifying a class-2 observation into class 3. More

specifically, in (13) we use t1 = sup
{

t :
∑

X∈S1t 1{T1(X)<t}
|S1t | ≤ α1

}
and t2 = sup

{
t :

∑
X∈S2t 1{T2(X)<t}

|S2t | ≤ α2

}
to obtain the classi-

fier for the ROC curve approach.
The comparison between our H-NP classifier and the ROC

curve approach is summarized in Figure 4. Recalling αi and
δi are both 0.05, we mark the 95% quantiles of the under-
classification errors by solid black lines and the target error
control levels by dotted red lines. First we observe that the 95%
quantiles of R1� using the ROC curve approach well exceed
the target level control, with their averages centering around
the target. We also see the influence of t1 on the R2�—without
suitably adjusting t2 based on t1, the control on R2�(φ̂) in the
ROC curve approach is overly conservative despite it being
an approximate error control method, which in turn leads to
inflation in error P3(Ŷ = 2). In view of this, we further consider
a simulation setting where the influence of t1 on t2 is smaller. The
setting T2.1 moves samples in class 1 further away from classes
2 and 3 by having μ1 = (0, −3)�, while the other parts remain
the same as in the setting T1.1. αi, δi are still 0.05. As shown in
Figure 5, the ROC curve approach does not provide the required
level of control for R1� or R2�.

In Supplementary Sections C.4–C.6, we include more
comparisons with alternative methods with different over-
all approaches to the problem, including weight-adjusted
classification, cost-sensitive learning, and ordinal regression,
and show that our H-NP framework is more ideal for our
problem of interest.
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Figure 4. The distributions of approximate errors on the test set under setting T1.1. “error1”, “error23”, and “error32” correspond to R1�(φ̂), R2�(φ̂), and P3(Ŷ = 2),
respectively.

Figure 5. The distributions of approximate errors on the test set under setting T2.1. “error1” and “error23” correspond to the errors R1�(φ̂) and R2�(φ̂), respectively.

3. Application to COVID-19 Severity Classification

3.1. ScRNA-seq Data and Featurization

We integrate 20 publicly available scRNA-seq datasets to form
a total of 864 COVID-19 patients with three severity levels
marked as “Severe/Critical” (318 patients), “Mild/Moderate”
(353 patients), and “Healthy” (193 patients). The detail of each
dataset and patient composition can be found in Supplementary
Table S1. The severe, moderate, and healthy patients are labeled
as class 1, 2, and 3, respectively.

For each patient, PBMC scRNA-seq data is available in the
form of a matrix recording the expression levels of genes in
hundreds to thousands of cells. Following the workflow in
Lin et al. (2022), we first perform data integration including
cell type annotation and batch effect removal, before selecting
3000 highly variable genes and constructing their pseudo-bulk
expression profiles under each cell type, where each gene’s
expression is averaged across the cells of this type in every
patient. The resulting processed data for each patient j is a
matrix A(j) ∈ Rng×nc , where nc = 18 is the number of cell
types, and ng = 3000 is the number of genes for analysis. More
details of the integration process can be found in Supplementary
Section A. Supplementary Figure S1 shows the distribution of
the sparsity levels, that is, the proportion of genes with zero
values, under each cell type across all the patients. Several cell

types, despite having a significant proportion of zeros, have
varying sparsity across the three severity classes (Supplementary
Figure S3), suggesting their activity level might be informative
for classification. Since age information is available (although in
different forms, see Supplementary Table S4) in most of the
datasets we integrate, we include it as an additional clinical
variable for classification. The details of processing the age
variable are deferred to Supplementary Section A.

Since classical classification methods typically use feature
vectors as input, appropriate featurization that transforms the
expression matrices into vectors is needed. We propose four
ways of featurization that differ in their considerations of the
following aspects.

• As we observe the sparsity level in some cell types changes
across the severity classes, we expect different treatments
of zeros will influence the classification performance. Three
approaches are proposed: (a) no special treatment (M.1); (b)
remove individual zeros but keeping all cell types (M.4); (c)
remove cell types with significant amount of zeros across all
three classes (M.2 and M.3).

• Dimension reduction is commonly used to project the infor-
mation in a matrix onto a vector. We consider performing
dimension reduction along different directions, namely row
projections, which take combinations of genes (M.2), and
column projections, which combine cell types with appro-
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priate weights (M.3 and M.4). We aim to compare choices
of projection direction, so we focus on principal component
analysis (PCA) as our dimension reduction method.

• We consider two approaches to generate the PCA loadings:
(a) overall PCA loadings (M.2 and M.4), where we perform
PCA on the whole data to output a loading vector for all
patients; (c) patient-specific PCA loadings (M.3), where PCA
is performed for each matrix A(j) to get an individual-specific
loading vector.

The details of each featurization method are as follows.

M.1 Simple feature screening: we consider each element A(j)
uv

(gene u under cell type v) as a possible feature for patient j
and use its standard deviation across all patients, denoted
as SDuv, to screen the features. Elements that hardly vary
across the patients are likely to have a low discriminative
power for classification. Let SD(i) be the ith largest element
in {SDuv | u ∈ [ng], v ∈ [nc]}. The feature vector for each
patient consists of the entries in {A(j)

uv | SDuv ≥ SD(nf )},
where nf is the number of features desired and set to 3000.

M.2 Overall gene combination: removing cell types with mostly
zero expression values across all patients (details in Sup-
plementary Section A), we select 17 cell types to construct
Ã(j) ∈ Rng×17 that only preserves columns in A(j) corre-
sponding to the selected cell types. Then, Ã(1), . . . , Ã(N)

are concatenated column-wise to get Ãall ∈ Rng×(N×17),
where N = 864. Let w̃ ∈ Rng×1 denote the first principle
component loadings of (Ãall)�, and the feature vector for
patient j is given by Xj = w̃�Ã(j).

M.3 Individual-specific cell type combination: for patient j, the
loading vector w̃j ∈ R1×17 is taken as the absolute values
of first principle component loadings for Ã(j), the matrix
with selected 17 cell types in M.2 (details in Supplementary
Section A). The principle component loading vector w̃j that
produces Xj = (Ã(j)w̃j)� is patient-specific, intending to
reflect different cell type compositions in different individ-
uals.

M.4 Common cell type combination: we compute an expression
matrix A averaged over all patients defined as

Auv =
∑

j∈[N] A(j)
uv

|{j ∈ [N] | A(j)
uv 	= 0}|

,

where | · | is the cardinality function. Let w ∈ Rnc×1

denote the first principle component loadings of A, then
the feature vector for the jth patient is Xj = (A(j)w)�.

We next evaluate the performance of these featurizations
when applied as input to different base classification methods
for H-NP classification.

3.2. Results of H-NP Classification

After obtaining the feature vectors and applying a suitable base
classification method, we apply Algorithm 3 to control the
under-classification errors. Recall that Y = 1, 2, 3 represent
the severe, moderate and healthy categories, respectively, and
the goal is to control R1�(φ̂) and R2�(φ̂). In this section, we

evaluate the performance of the H-NP classifier applied to each
combination of featurization method in Section 3.1 and base
classification method (logistic regression, random forest, SVM
(linear)), which is used to train the scores (T1 and T2). In each
class, we leave out 30% of the data as the test set and split the
rest 70% as follows for training the H-NP classifier: 35% and
35% of S1 form S1s and S1t ; 35%, 25% and 10% of S2 form S2s,
S2t and S1e; 35% and 35% of S3 form S3s and S3e. For each
combination of featurization and base classification method, we
perform random splitting of the observations for 50 times to
produce the results in this section.

In Figure 6, the yellow halves of the violin plots show the
distributions of different approximate errors from the classi-
cal classification methods; Supplementary Table S7 records the
averages of these errors. In all the cases, the average of the
approximate R1� error is greater than 20%, in many cases greater
than 40%. On the other hand, the approximate R2� error under
the classical paradigm is already relatively low, with the averages
around 10%. Under the H-NP paradigm, we set α1, α2 = 0.2 and
δ1, δ2 = 0.2, that is, we want to control each under-classification
error under 20% at a 20% tolerance level.

With the prespecified α1, α2, δ1, δ2, for a given base classi-
fication method Algorithm 3 outputs an H-NP classifier that
controls the under-classification errors while minimizing the
weighted sum of the other empirical errors. The blue half violin
plots in Figure 6 show the resulting approximate errors after H-
NP adjustment. We observe that the common cell type com-
bination feature M.4 consistently leads to smaller errors under
both the classical and H-NP classifiers, especially for linear
classification models (logistic regression and SVM). We have
also implemented a neural network classifier. However, as the
training sample size is relatively small, its performance is not
as good as the linear classification models, and the results are
deferred to Supplementary Figure S14.

In each plot of Figure 6, the two leftmost plots are the distri-
butions of the two approximate under-classification errors R1�

and R2�. We mark the 80% quantiles of R1� and R2� by short
black lines (since δ1, δ2 = 0.2), and the desired control levels
(α1, α2 = 0.2) by red dashed lines. The four rightmost plots
show the approximate errors for the overall risk and the three
components in Rc(φ̂) as discussed in (14). For all the featur-
ization and base classification methods, the under-classification
errors are controlled at the desired levels with a slight increase
in the overall error, which is much smaller than the reduction
in under-classification errors. This demonstrates consistency of
our method and indicates its general applicability to various base
classification algorithms chosen by users.

Another interesting phenomenon is that when a classical
classification method is conservative for specified αi and δi, our
algorithm will increase the corresponding threshold ti, which
relaxes the decision boundary for classes less prioritized than
i. As a result, the relaxation will benefit some components in
Rc(φ̂). In Figure 6(d), in many cases the classifier produces an
approximate error R2� less than 0.2 under the classical paradigm,
which means it is conservative for the control level α2 = 0.2
at the tolerance level δ2 = 0.2. In this case, the NP classifier
adjusts the threshold t2 to lower the requirement for class 3, thus,
notably decreasing the approximate error of P3(Ŷ = 2).
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Figure 6. The distribution of approximate errors for each combination of featurization method and base classification method. “error1”, “error23”, “error21”, “error31”,
“error32”, “overall” correspond to R1�(φ̂), R2�(φ̂), P2(Ŷ = 1), P3(Ŷ = 1), P3(Ŷ = 2) and P(Ŷ 	= Y), respectively.

3.3. Identifying Genomic Features Associated with
Severity

Finally, we show that using this integrated scRNA-seq data in
a classification setting enables us to identify genomic features
associated with disease severity in patients at both the cell-
type and gene levels. First, by combining logistic regression
with an appropriate featurization, we generate a ranked list of
features (i.e., cell types or genes) that are important in predicting
severity. At the cell type level, we use logistic regression with the
featurization M.2, which compresses the expression matrix for
each patient into a cell-type-length vector, and rank the cell types

based on their coefficients from the log odds ratios of the severe
category relative to the healthy category. Supplementary Table S8
shows the top-ranked cell types are CD14+ monocytes, NK cells,
CD8+ effector T cells, and neutrophils, all with significant p-
values. This is consistent with known involvement of these cell
types in the immune response of severe patients (Lucas et al.
2020; Liu et al. 2020; Rajamanickam et al. 2021).

At the gene level, we use logistic regression with the featuriza-
tion M.4, which has the best overall classification performance,
and compresses each patient’s expression matrix into a gene-
length vector. Similar to the above analysis at the cell-type level,
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we generate a ranked gene list which leads to the identification
of pathways associated with the severe condition. By performing
the pathway enrichment analysis on the ranked gene list, we
find that the top-ranked genes are significantly enriched in path-
ways involved in viral defense and leukocyte-mediated immune
response (Supplementary Table S9).

Next, we perform further analysis to directly demonstrate
the benefits of the H-NP classification results without relying
on feature ranking. Based on the featurization M.4, we con-
struct a gene co-expression network and identify modules with
groups of genes that are potentially co-regulated and function-
ally related. By comparing the predicted severity labels from the
H-NP classifier and the classical approach, we show that the H-
NP labels are better correlated with the eigengenes from these
functional modules, suggesting that the H-NP labels better cap-
ture the underlying signals in the data related to disease mech-
anism and immune response (Supplementary Figures S15-S17).
Then, we compare the gene ontology enrichment of the func-
tional modules constructed for the severe and healthy patients
separately, using the predicted H-NP labels. We find strong evi-
dence of immune response to the virus among severe patients,
while no such evidence is observed in the healthy group (Sup-
plementary Tables S10 and S11). Finally, we note that compared
with the results from the severe patients as labeled by the clas-
sical paradigm, the H-NP paradigm shows more significantly
enriched modules with specific references to important cell
types, including T cells, and subtypes of T cells (Supplementary
Tables S10 and S12). Together, these results demonstrate that by
prioritizing the severe category in our H-NP framework, we can
uncover stronger biological signals in the data related to immune
response.

More detailed descriptions of the methods used and anal-
ysis of results can be found in Supplementary Sections D.4
and D.5.

4. Discussion

In general disease severity classification, under-classification
errors are more consequential as they can increase the risk of
patients receiving insufficient medical care. By assuming the
classes have a prioritized ordering, we propose an H-NP clas-
sification framework and its associated algorithm (Algorithm 3)
capable of controlling under-classification errors at desired lev-
els with high probability. The algorithm performs post hoc
adjustment on scoring-type classification methods and thus can
be applied in conjunction with most methods preferred by users.
The idea of choosing thresholds on the scoring functions based
on a held-out set bears resemblance to conformal splitting meth-
ods (Lei 2014; Wang and Qiao 2022). However, our approach
differs in that we assign only one label to each observation,
while maintaining high probability error controls. Additionally,
our approach prioritizes certain misclassification errors, unlike
conformal prediction which treats all classes equally.

Through simulations and the case study of COVID-19 sever-
ity classification, we demonstrate the efficacy of our algorithm
in achieving the desired error controls. We have also compared
different ways of constructing interpretable feature vectors from
the multi-patient scRNA-seq data and shown that the common

cell type PCA featurization overall achieves better performance
under various classification settings. By performing extensive
gene ontology enrichment analysis, we illustrate that the use
of scRNA-seq data has allowed us to gain biological insights
into the disease mechanism and immune response of severe
patients. We note here that although parts of our analysis rely
on a ranked feature list obtained from logistic regression, there
exist tools to perform such a feature selection step for all the
other base classification methods used in this article, including
neural networks, which can use saliency maps and other feature
selection procedures (Adebayo et al. 2018; Novakovsky et al.
2023). We have chosen logistic regression in our illustrative
analysis based on its stable classification performance and ease
of interpretation. In addition, if the main objective is to build
a classifier for triage diagnostics using other clinical variables,
one can easily apply our method to other forms of patient-level
COVID-19 data with other base classification methods.

Even though our case study has three classes, the framework
and algorithm developed are general. Increasing the number
of classes has no effect on the minimum size requirement of
the left-out part of each class for threshold selection since it
suffices for each class i to satisfy ni ≥ log δi/(1 − αi). We
also note that the notion of prioritized classes can be defined
in a context-specific way. For example, in some diseases like
Alzheimer’s disease, the transitional stage is considered to be the
most important (Xiong et al. 2006).

There are several interesting directions for future work. For
small data problems where the minimum sample size require-
ment is not full-filled, we might consider adopting a parametric
model, under which we can not only develop a new algorithm
without minimum sample size requirement, but also study the
oracle type properties of the classifiers. In terms of featuriz-
ing multi-patient scRNA-seq data, we have chosen PCA as the
dimension reduction method to focus on other aspects of com-
parison; more dimension reduction methods can be explored in
future work. It is also conceivable that the class labels in the case
study are noisy with possibly biased diagnosis. Accounting for
label noise with a realistic noise model and extending the work
of Yao et al. (2022) to a multi-class NP classification setting will
be another interesting direction to pursue.

Supplementary Materials

In supplementary materials, Section A provides more details on the data
preprocessing. Section B contains all the mathematical proofs. Additional
results from the simulations and real data are provided in Sections C and D.
Section E contains the general version of the H-NP algorithm for handling
more than 3 classes.
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