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The Farm Animal Genotype–Tissue 
Expression (FarmGTEx) Project

 

Genetic mutation and drift, coupled with natural and human-mediated 
selection and migration, have produced a wide variety of genotypes 
and phenotypes in farmed animals. We here introduce the Farm 
Animal Genotype–Tissue Expression (FarmGTEx) Project, which aims 
to elucidate the genetic determinants of gene expression across 16 
terrestrial and aquatic domestic species under diverse biological and 
environmental contexts. For each species, we aim to collect multiomics 
data, particularly genomics and transcriptomics, from 50 tissues of 
1,000 healthy adults and 200 additional animals representing a specific 
context. This Perspective provides an overview of the priorities of 
FarmGTEx and advocates for coordinated strategies of data analysis 
and resource-sharing initiatives. FarmGTEx aims to serve as a platform 
for investigating context-specific regulatory effects, which will deepen 
our understanding of molecular mechanisms underlying complex 
phenotypes. The knowledge and insights provided by FarmGTEx will 
contribute to improving sustainable agriculture-based food systems, 
comparative biology and eventual human biomedicine.

The genomes of modern farmed animals reflect over 10,000 years of 
coevolution with humans1. Over this time frame of livestock domes-
tication, these species have adapted to a myriad of both natural and 
human-modified environments across the globe and have been selec-
tively bred by humans for specific needs, such as food, clothing and 
transportation1. This rich history of both natural and human-mediated 
selection has led to the establishment of thousands of genetically 
distinct populations, genetic lines and breeds. According to the FAO 
Domestic Animal Diversity Information System (https://www.fao.org/
dad-is), there are currently over 8,800 recognized breeds, represent-
ing 38 farmed animal species. These diverse genetic resources thus 
provide unparalleled opportunities to address fundamental gaps in our 
biological knowledge, such as the intricate pathways linking genome 
to phenome within and across species. In addition, several farmed 
animals have substantial potential as biomedical models for in vivo 
elucidation of human biology and diseases due to greater similarities 
to humans in anatomical size and structure, development, physiol-
ogy and immunology than the widely adopted rodent model2–8. For 
examples, pigs have been well recognized as human biomedical models 

for the identification of effective therapeutics for a range of diseases 
and as xenotransplant organ donors2,7. Sheep have been proposed as 
a model for cardiovascular and neurodegenerative disorders7, cat-
tle for viral infections (for example, respiratory syncytial virus and 
papillomavirus4,5) and chickens for spontaneous ovarian cancer and 
embryonic development3,8. These examples highlight the pivotal role of 
farm animal research in advancing our understanding of human health.

Recent developments in quantitative genetics and molecular 
genomics, coupled with advances in cost-effective sequencing tech-
nologies, are transforming our understanding of individual differences 
in DNA sequences (that is, both single point mutations and struc-
tural variations) and their roles in shaping complex phenotypes9. 
The Animal Quantitative Trait Loci (QTL) database (https://www. 
animalgenome.org/cgi-bin/QTLdb/index, release 54) has cataloged 
192,247 trait-associated loci in cattle, 55,688 in pigs, 18,602 in chickens, 
4,743 in sheep, 2,216 in horses and 2,201 in rainbow trout10. Similar to 
observations made in humans11, the majority of these trait-associated 
variants have small to medium effects and lie in noncoding regions  
of the genome. Therefore, the underlying biological mechanisms  
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and Duroc pigs, have well-defined pedigrees and selection histories, 
(3) the possibility of collecting numerous pan-tissue samples across 
diverse biological contexts (for example, embryonic developmental 
stages in chickens), (4) exposure to various environmental conditions 
(for example, diet, climate and pathogen exposure) at the population 
scale, making them ideal for studying gene–environment interactions, 
(5) the existence of wild progenitors and congeners for understand-
ing artificial selection and domestication (for example, wild boar and 
jungle fowl), (6) species, such as pigs and chickens, offer the potential 
for functional validation using gene editing or transgenesis in vitro and 
in vivo, and (7) several farmed species possess physiological charac-
teristics that are similar to those of humans (for example, the cardio-
vascular and respiratory systems of pigs and in utero development of 
the immune system of cattle)2,4.

Here, we present the FarmGTEx Project, a global initiative (includ-
ing 90 universities and research institutes worldwide to date) that 
aims to generate a comprehensive catalog of context-specific regula-
tory effects in farmed animals, including both terrestrial and aquatic 
species (Fig. 1). Since its inception in 2018, the FarmGTEx Consortium 
has completed several milestones in cattle, pigs and chickens using 
public datasets22–24, which have already offered valuable insights 
into the genetic and molecular basis of complex phenotypes. For 
instance, expression QTL (eQTL) and splicing QTL (sQTL) in 16 tis-
sues together explained approximately 70% of the heritability across  

(for example, causal variants, genes, pathways, cell types and tissues) 
by which they affect complex phenotypes remain largely unknown.

Population-based molecular quantitative trait locus (molQTL) 
mapping, statistically associating genomic variants with molecular 
phenotypes (for example, gene expression and epigenetic modifi-
cations), is a key approach to better understanding the biological 
mechanisms underlying complex phenotypes in vivo11,12. For example, 
the human Genotype–Tissue Expression (GTEx) project has explored 
the genetic control of gene expression across 54 nondiseased post-
mortem tissues from nearly 1,000 adults, highlighting the intricate 
interplay among variants, genes, tissues and diseases13. Similar but 
relatively small-scale efforts have been undertaken in nonhuman pri-
mates (NHPs)14, rats15 and fruit flies16. Given that many trait-associated 
noncoding variants likely exert regulatory effects only within specific 
biological contexts or environmental conditions17, several molQTL 
mapping projects have been initiated to study the dynamics of regu-
latory effects across distinct biological contexts, including ancestry, 
diet, developmental stage and pathogen exposure18–21.

Compared to laboratory animals (for example, mice and fruit 
flies) and NHPs that are often used as surrogate and organism-level 
models5, farmed animals offer multiple advantages for exploring 
context-specific regulatory effects at the natural population level. 
These advantages include (1) large and outbred populations with ample 
genetic and phenotypic variations, (2) species, such as Holstein cattle 
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Fig. 1 | Overview of the FarmGTEx Project. To date, we are considering 16 farmed 
animal species, including eight mammals (that is, cattle, pigs, goats, sheep, 
horses, rabbits, camels and donkeys), five birds (that is, chickens, ducks, geese, 
turkeys and pigeons) and three fish (that is, large yellow croaker, Atlantic salmon 
and rainbow trout). Additional farmed species will be considered as the project 
progresses. The regulatory effects of genomic variants on different molecular 

phenotypes across biological contexts and environmental conditions will be 
systematically exploited using cis-molQTL and trans-molQTL mapping. Different 
goals and milestones for the three phases of FarmGTEx are outlined. Asterisks 
indicate that the pilot phases for these species have been completed. Indel, short 
insertion and deletion (length less than 50 nucleotides); SNP, single nucleotide 
polymorphism; SV, structural variants.
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37 complex traits in cattle25. Additionally, around 80% of genome-wide 
association study loci colocalized with at least one of five types of 
molQTL in pigs23. Transcriptome-wide association studies (TWAS) 
revealed that expression of ABCD4 in the brain and alternative splic-
ing of MYO7B in the small intestine had been associated with back fat 
thickness in pigs23, and expression of KPNA3 in the retina had been 
linked to body weight in chickens24. These resources also accelerated 
research in comparative genomics and biology. For example, the 
regulatory effects of one-to-one orthologous genes were found to be 
generally conserved across species23,24,26. Furthermore, cross-species 
meta-TWAS based on orthologous genes has revealed that conserved 
gene regulation underlies complex phenotypes of physiological simi-
larity between species, such as pig back fat thickness versus human 
body mass index23,24.

Capitalizing on the substantial reduction in the costs of high- 
throughput sequencing, the FarmGTEx Consortium has begun to 
expand this pioneering work into the next decade (Fig. 1). It will gen-
erate paired genomic and functional genomic data at the population 
scale, with a focus on transcriptomes, across various biological con-
texts and environmental conditions in a range of both farmed species 
and their wild progenitors and congeners. To this end, we aim to sys-
tematically annotate context-specific effects of genomic variants on 
various molecular phenotypes through molQTL mapping. Moreover, 
the comparative analyses facilitated by the FarmGTEx resource are 
anticipated to deepen our understanding of the evolutionary pro-
cesses shaping molecular and phenotypic diversity across species. 
Such insights into animal biology and diseases, including reproductive 
and developmental biology, metabolic syndromes and cardiovascular 
diseases, will also aid in addressing human diseases through the devel-
opment of better animal models for understanding their pathogenesis 
and testing drug safety. For example, beef cows with excess intrafol-
licular androstenedione have been proposed as an animal model for 
polycystic ovarian syndrome in women27. Pregnant sheep have been 
used to study the potential impacts of analgesics on maternal and fetal 
well being28. Pigs are key models for cardiovascular diseases2, while 
chickens play a critical role in studying influenza A virus transmission 
and its pandemic risks29.

Overview of the FarmGTEx Project
In the pilot phase of the FarmGTEx Project (2018–2025), the aim is to 
explore tissue- and breed-specific regulatory effects on gene average 
expression and alternative splicing. By leveraging public RNA sequenc-
ing (RNA-seq) and whole-genome-sequencing (WGS) data, we have been 
able to publish multi-tissue and multi-breed atlases of molQTL (mainly 
for eQTL and sQTL) for cattle22, pigs23 and chickens24 (Table 1). Related 
efforts in other farmed animal species are underway, including in an 
additional six mammals (that is, goats, sheep, horses, rabbits, camels 
and donkeys), four birds (that is, ducks, geese, turkeys and pigeons) 
and three fish (that is, Atlantic salmon, rainbow trout and large yellow 
croaker). The addition of other farmed animal species to the project 
will be considered. To comprehend tissue-specific effects, we aim to 
generate RNA-seq data from 50 tissues with paired WGS information 
in 1,000 healthy adult animals per species. Here, we outline the future 
developments of the project, in which we aim to progressively incor-
porate broader biological contexts and diverse environmental condi-
tions by collecting 20–50 tissues from 200 additional animals in each 
context or condition (Fig. 1).

Phase 1 (2025–2030) is dedicated to unraveling sex- and 
development-specific regulatory effects. Such knowledge and 
insights would allow us to better understand how sex, development 
and genetics interact to affect complex phenotypes. A substantial 
body of multi-tissue RNA-seq data has been or is being collected with 
paired WGS data and rich metadata, spanning both sexes and multiple 
developmental stages. For instance, to explore sex-specific regulatory 
effects, we have generated 8,000 RNA-seq samples from 40 tissues 

in 200 healthy rabbits (a commercial breed at the age of 75 days; 100 
male and 100 female). Similarly, we collected 9,000 RNA-seq samples 
from 30 tissues in 300 healthy chickens (a Chinese village breed at 
the age of 90 days; 150 male, 150 female). To investigate postnatal 
development-specific regulatory effects and to complement human 
and NHP developmental GTEx resources, we generated 30,000 
RNA-seq samples from 50 tissues across four developmental stages 
(150 animals per stage) in a commercial pig population. Similarly, 
we produced 18,000 RNA-seq samples from 20 tissues across three 
developmental stages (300 animals per stage) in a commercial chicken 
breed. To study embryonic development-specific regulatory effects, we 
plan to collect RNA-seq samples from 20–50 tissues at three embryonic 
stages (that is, early, middle and late stages) in 200 animals per stage 
per species. Furthermore, we are expanding similar study designs to 
include other farmed species, such as sheep, goats and ducks.

To elucidate the effects of environment and disease on gene 
expression, phase 2 (2030–2035) will undertake a substantial expan-
sion to encompass multiple environmental conditions (50 tissues 
in 200 animals per condition), including alternative diets, climates, 
healthy status and pathogen exposures, at single-cell resolution and 
in a spatially resolved manner. We have started building the farmed 
animal cell atlas (systemic annotation of cell types and states across 
the whole body) by collecting single-cell and/or single-nucleus RNA-seq 
samples from 50 tissues in several species, including cattle, sheep, 
goats, pigs, rabbits and chickens30,31. By leveraging these cell atlases, 
we will deconvolute the cell type or cell state composition of bulk 
RNA-seq samples to study the regulatory effects at single-cell resolu-
tion and further resolve regulatory element annotation initiated in the 
Functional Annotation of Animal Genomes (FAANG) project32. Beyond 
the transcriptome, we will consider additional molecular phenotypes, 
starting with DNA methylation, chromatin accessibility, protein abun-
dance and metabolite profile. Moreover, we aim to maintain flexibility 
within the FarmGTEx framework to adapt to the rapidly evolving land-
scape of omic sequencing technologies. For instance, future efforts to 
generate population-level single-cell and spatial omics data, alongside 
the use of in vitro models (for example, organoids: self-organized 
three-dimensional tissue cultures derived from stem cells), will pro-
vide valuable opportunities to probe the spatiotemporal specificity 
of regulatory effects directly. This future single-cell refinement of 
FarmGTEx will align with our core mission of elucidating fundamental 
biological mechanisms while also developing practical applications in 
farmed animals and human biomedical research.

Metadata collection
To enhance the quality and reusability of the data resources generated 
by FarmGTEx, we are implementing rigorous standards for samples 
and experimental metadata, as outlined by the FAANG project33. This 
involves thorough documentation of the attributes of animals used 
in a project (for example, species, breed, sex, age and health status), 
specimens (for example, tissue, cell, time of collection, storage and 
histological images) and experimental assays (for example, sample 
storage, assay type, extraction protocol, RNA integrity, library prepa-
ration and sequencing strategy). These metadata descriptions will 
use standardized ontology terms, such as the Experimental Factor 
Ontology and the uber-anatomy ontology33, to ensure consistency 
and interoperability across datasets and projects. In addition, detailed 
experimental protocols will be stored separately but referenced in 
the metadata submissions to maintain reproducibility. Beyond gen-
erating data directly from groups participating in FarmGTEx, we will 
also integrate any existing datasets that meet our metadata standards 
into a centralized data resource portal to benefit the broader research 
community. To promote ‘best practices’ in data archiving, we plan to 
continuously advance metadata standards, support data submissions 
and develop user-friendly tools to facilitate the deposition and valida-
tion of metadata33.

http://www.nature.com/naturegenetics
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Table 1 | Summary of sample analysis in the pilot phase of FarmGTEx

Organ system Tissue CattleGTEx PigGTEx ChickenGTEx

n eGene sGene n eGene sGene n eGene sGene

Cardiovascular
Artery – – – 59 673 357 – – –

Heart – – – 164 688 398 258 768 735

Digestive

Liver 576 7,292 4,909 501 6,154 2,318 741 5,233 4,985

Rumen 202 3,488 2,361 – – – – – –

Jejunum 105 1,348 1,558 75 1,027 633 65 168 165

Ileum 43 173 188 128 1,729 665 62 201 196

Salivary gland 40 564 4 – – – – – –

Colon – – – 67 1,007 555 – – –

Duodenum – – – 49 371 261 50 53 52

Large intestine – – – 68 1,008 582 – – –

Small intestine – – – 270 3,518 1,836 169 835 797

Cecum – – – - - - 56 92 90

Embryonic

Blastocyst – – – 56 3,651 199 – – –

Blastomere – – – 76 1 17 – – –

Embryo 281 3,428 166 536 1,643 411 470 629 618

Morula – – – 150 46 21 – – –

Endocrine Adipose 151 2,073 2,973 285 4,078 2,080 115 479 448

Female reproductive

Uterus 359 5,192 4,132 213 2,127 1,103 – – –

Mammary 175 4,825 3,554 – – – – – –

Ovary 139 2,039 3,263 204 1,437 852 96 657 635

Oviduct 85 2,478 4,928 – – – 68 81 79

Oocyte – – – 98 147 57 – – –

Placenta – – – 61 111 87 – – –

Immune

Blood 698 10,157 6,693 386 6,076 2,217 224 2,549 2,476

Bursa – – – – – – 115 474 453

Milk cell 173 893 3,327 63 1,129 119 – – –

Lymph node 87 3,633 2,495 50 48 77 – – –

Leukocyte 63 554 237 – – – 122 1,197 1,162

Spleen – – – 91 1,030 808 383 4,833 4,604

Thymus – – – – – – 68 123 110

Macrophage 295 8,793 7,913 84 1,298 331 60 922 869

Monocytes 113 3,806 1,985 – – – – – –

Fetal thymus – – – 48 1,629 440 – – –

Integumentary Skin 41 423 33 - – – 163 392 373

Male reproductive Testis 60 809 1,573 184 6,175 3,482 44 120 119

Muscular Muscle 699 7,164 4,849 1,321 9,724 3,833 517 2,170 2,088

Nervous

Pituitary 134 1,794 1,751 53 356 68 135 216 199

Hypothalamus 112 1,403 1,481 73 2,099 695 107 551 528

Brain – – – 419 5,815 2,605 479 4,953 4,783

Frontal cortex – – – 75 928 128 – – –

Cerebellum – – – – – – 52 87 82

Retina – – – – – – 119 253 235

Respiratory
Lung 87 4,779 3,778 149 1,820 1,455 89 302 288

Trachea – – – – – – 92 427 403

Skeletal
Cartilage – – – 65 232 54 – – –

Synovial membrane – – – 88 1,051 168 – – –

Urinary Kidney – – – 44 139 164 78 211 202

n, sample size; –, not applicable; eGene, a gene with at least one significant eQTL; sGene, a gene with at least one significant sQTL; brain, all brain regions; CattleGTEx22; PigGTEx23; 
ChickenGTEx24.
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Analytical approaches used in FarmGTEx
In FarmGTEx, the primary data analysis tasks include genomic variant 
calling, molecular phenotyping, missing data imputation, batch effect 
inference and molQTL mapping (Fig. 2). As sequencing technologies 
and analytical methodologies are constantly evolving and improving, 
we will maintain and update FarmGTEx computational and statistical 
approaches with systematic version control, as outlined by the nf-core 
community34, to promote ‘best practices’ in data analysis, integration 
and interpretation in this field.

Genomic variant calling
Within FarmGTEx, different technologies are used for genotyp-
ing animals. The pilot phase focuses on common SNPs (with minor 
allele frequencies > 0.05) that are derived from RNA-seq, SNP arrays 
or low-coverage sequencing technology, followed by genotype 
imputation22–24. In FarmGTEx phase 1 and 2, we plan to use high-coverage 
WGS and telomere-to-telomere genome assemblies to detect rare 
and somatic mutations (minor allele frequencies < 0.05)35 as well as 
long-read sequencing technologies coupled with graph-based pange-
nome approaches to genotype short insertions and deletions, short 
tandem repeats and structural variants36,37.

Molecular phenotyping
Gene expression is a complex biological process that encompasses 
transcription, post-transcriptional modifications and translation. In 
the FarmGTEx pilot phase, we focus on average gene expression and 
alternative splicing owing to the limitations of short-read RNA-seq 
(for example, being insufficient to quantify individual isoforms)38. In 
phase 1, we will apply long-read RNA-seq to quantify the abundance 
of individual isoforms, haplotype-specific transcription and gene–
isoform coexpression networks. Finally, in phase 2, we will consider 
additional layers of gene expression information at both bulk tissue 
and single-cell levels, such as epigenetic modifications (for example, 
DNA methylation and chromatin accessibility), RNA modifications 
(for example, N6-methyladenosine and 7-methylguanosine), protein 
abundance and metabolite levels.

Imputation of missing data and removal of batch effects
To increase statistical power and reduce false-positive rates in 
molQTL mapping, it is critical to impute missing data, including 
genotypes, molecular phenotypes and metadata information. In 
the subsequent FarmGTEx phases, by integrating long-read WGS 
data, we will incorporate short tandem repeats and structural vari-
ants in the genotype reference panels to impute them in the target 
populations39. We will also develop and benchmark methods to infer 
missing or mislabeled molecular phenotypes and metadata (for 
example, sex and developmental stage), particularly for those in 
the public domain, such as hypergraph factorization for imputing 
gene expression from missing tissues40. To account for batch effects 
caused by local and global population stratification, we employ 
genotype principal components and genetic relationship matrices23. 
Additionally, we use phenotype principal components to account 
for nongenetic unmeasured confounders (for example, cell type or 
state composition)41–43.

MolQTL mapping
In the pilot phase of FarmGTEx, owing to the limited sample size 
(n < 1,000), we mainly considered cis effects of common SNPs 
(SNPs within 1 Mb of a transcript start site). In phases 1 and 2, 
once the sample size exceeds 1,000, we will map trans-molQTL 
and explore how they interact with cis-molQTL to affect molecu-
lar and complex phenotypes. In addition, we will systematically 
explore context-specific effects of both rare and common vari-
ants and use available cell type-specific expression and epigenetic 
data to resolve the cell type in which these variants function and 

potentially interact44,45. Although it is computationally intensive,  
we prefer linear mixed models to simple linear models for mapping 
molQTL, particularly trans-molQTL, in farmed animal populations 
with complex familial relatedness46. We are developing the Omics 
Genetic Analysis (OmiGA) toolkit to efficiently and effectively 
implement linear mixed models in molQTL mapping (https://omiga. 
farmgtex.org)47. Ultimately, we will integrate molQTL mapping with 
other computational approaches, such as allelic imbalance analyses 
and large language DNA models (for example, pre-trained bidirec-
tional encoder representations from transformers model for DNA 
language in genome (DNABERT) and DNA generative pre-trained 
transformer (DNAGPT))48 to fully understand the regulatory land-
scape of genomic variants.

Pilot phase Phase 1 Phase 2

a   Genomic variant calling
Common SNPs
(SNP array/low-
coverage DNA-seq +
genotype imputation)

Structure variants
(long-read DNA-seq
+ pangenome)

Rare/somatic
mutations (deep 
DNA-seq)

b   Molecular phenotyping
Gene expression
and splicing
(short-read RNA-seq)

Isoform expression
(long-read RNA-seq) 

Gene–isoform 
coexpression
(e.g., WGCNA)

Epigenetic marks
(e.g., ATAC-seq and
WGBS)

Protein abundance
(e.g., Olink proteomics)

Metabolites
(e.g., GC–MS, LC–MS)

c   Missing data imputation

Genotypes
(e.g., Beagle and GLIMPSE)

Metadata
Developmental stages, sexes, tissues, breeds, etc. (e.g., multilayer perceptron)

Molecular phenotypes 
(e.g., hypergraph factorization)

d   Covariate  inference

Population stratification
(e.g., genotype PC and GRM
via PLINK and GCTA)

Nongenetic confounder
(metadata and phenotype
PC via PCAForQTL)

Cis-molQTL Trans-molQTL Context-specific
molQTL

Allele 
imbalance
analysis
(e.g., phASER)

Large language
DNA model
(e.g., DNABERT
and DNAGPT)

Fine-mapping of 
causal variants
(e.g., SuSiEx
and dap-g)

e   Molecular QTL mapping

Fig. 2 | The overall data analysis pipeline of FarmGTEx. a–e, The flowchart 
highlights the key stages and methodologies of data generation and analyses 
across the three phases of FarmGTEx, including genomic variant calling (a), 
definition and quantification of molecular phenotypes (b), missing data 
imputation (c), batch effect inference and removal (d), and molQTL mapping 
via, for example, OmiGA (https://omiga.farmgtex.org) and ClipperQTL 
(e)47,68. Examples of approaches and methods used for each stage are shown 
in parentheses. ATAC-seq, assay for transposase-accessible chromatin 
with sequencing; dap-g, deterministic approximation of posteriors: 
genetics69; DNABERT70; DNAGPT71; DNA-seq, DNA sequencing; GC–MS, gas 
chromatography–mass spectrometry; GCTA, a tool for genome-wide complex 
trait analysis72; GRM, genetic relationship matrix; GLIMPSE, genotype likelihoods 
imputation and phasing method73; LC–MS, liquid chromatography–mass 
spectrometry; PC, principal component; PLINK, a tool for whole-genome 
association and linkage analyses74; phASER, phasing and allele-specific 
expression from RNA-seq75; SuSiEx, an enhanced tool for cross-ancestry  
fine-mapping of causal variants based on ‘sum of single effects’76; WGBS,  
whole-genome bisulfite sequencing; WGCNA, weighted gene coexpression 
network analysis.
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Applications of FarmGTEx
FarmGTEx resources have potential scientific and social impacts on 
fundamental biology (for example, sex- and development-specific gene 
regulation), animal precision breeding, local environmental adaptation, 
domestication and human health (Fig. 3). To improve our understand-
ing of the genetic and molecular architecture underpinning complex 
phenotypes in farmed animals, we will integrate context-specific 
molQTL obtained from FarmGTEx with genome-wide association study 
results via various integrative statistical approaches, including TWAS, 
colocalization, Mendelian randomization and artificial intelligence 
(AI)-based approaches (for example, large language models). This 
will allow us to systematically link molecular phenotypes to complex 
phenotypes in appropriate biological contexts and environmental 
conditions, enabling the detection of genes, tissues and mechanisms 
involved in phenotypic determination. Additionally, the rich selection 
history and population structures of farmed animals will enable us to 
determine the genetic architectures underlying both molecular and 
complex phenotypes. For example, systematic breeding of farmed 
animals has resulted in directional selection for specific phenotypes, 
such as milk production in dairy cattle and egg production in laying 
hens. FarmGTEx will develop new methodologies tailored specifically to 
reconstruct the regulatory mechanisms of complex traits in farmed ani-
mals, particularly for those of economic importance. We propose that 
knowledge and insights into these critical genes and mechanisms will 
have a positive impact on breeding strategies. For instance, advanced 
statistical models can be developed to use the functional annotation 
generated by FarmGTEx for genetic evaluation, particularly in predict-
ing performance for animals from genetically distant populations or 
those several generations away from the training set. Previous studies 
showed that incorporating regulatory variants into genomic prediction 
models has made the genomic selection of cattle more accurate and 
efficient49,50. Furthermore, the identified causal variants and genes 
can be exploited to improve productivity, reproductivity and disease 

resistance by creating ‘ultimate’ genotypes efficiently and effectively 
by integrating AI, gene editing and synthetic biology51.

By incorporating large-scale genotypes and ancient DNA that 
extend back in time52, the per-gene predictive models of molecular phe-
notypes obtained through FarmGTEx will allow us to predict molecular 
phenotypes in global farmed animal breeds and their wild progenitors 
and congeners. This will then enable us to explore the polygenic adap-
tation of molecular phenotypes in distinct environmental conditions 
and the common patterns of functional genomic alterations caused by 
domestication across breeds and species. The knowledge and insights 
obtained in this way will allow us to breed animals that are adaptable to 
climate change and disease resistant. Furthermore, the comparative 
information delivered by these population-level functional genomic 
studies of farmed and wild animals can also help to advance our under-
standing of recent human adaptation and evolution53,54.

Aside from their impacts on agriculture, the rich and unique 
resources provided by FarmGTEx will also hold promise for com-
parative genomics by integrating resources from biodiversity 
genome-sequencing projects, such as the Zoonomia55 and Earth BioG-
enome projects56. Furthermore, farmed animals offer a unique oppor-
tunity to study complex traits and mechanisms at a population scale in a 
context where ethical and/or regulatory concerns may be restrictive in 
humans and NHPs, such as early development and gene editing. Large 
language and deep learning models, such as DeepGCF57, can be used 
to explore the conservation and evolution of regulatory variants and 
elements, which will provide extensive insights into the evolutionary 
mechanisms underlying shared and specialized traits across species. 
Given that synteny and linkage disequilibrium patterns of genes are 
not conserved among species, cross-species meta-TWAS analysis can 
help discriminate which among the multiple linked genes is the most 
promising candidate for physiologically similar complex traits between 
species. For instance, we have demonstrated that meta-TWAS analy-
sis between pig back fat thickness and human body weight revealed 

Fundamental and developmental biology Precision breeding

Human health and disease Adaptation and domestication

FarmGTEx

Gene

mRNA

CpG

Gene

Isoforms

Other molecular
phenotypes

Fig. 3 | Potential applications of FarmGTEx resources. Insights into the 
dynamic landscape of the regulatory effects of genomic variants across diverse 
biological contexts (for example, sex and developmental stage) can advance 
our understanding of how genetics, development and sex interact with complex 
phenotypes. Identified causal variants and genes for complex traits and diseases 
can be used in precision animal breeding via gene editing and synthetic biology. 

Determining the genetic control of molecular phenotypes in global farmed 
animal breeds and their wild progenitors and congeners can enable us to 
understand the molecular mechanisms that underlie domestication and local 
environmental adaptation. Comparative analyses of farmed animals and humans 
across multiple biological layers can help to develop suitable animal models for 
studying human biology, disease and xenotransplantation.
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novel genes associated with human body weight23. Further insights 
into the molecular mechanisms of animal complex phenotypes pro-
vided by FarmGTEx thus can help to advance our understanding of 
context-specific regulation and origin of diseases relevant to humans, 
potentially leading to diagnostic and therapeutic advances.

Resource sharing and outreach
The FarmGTEx Project is dedicated to promoting open science and 
international collaboration to advance both fundamental and applied 
genetic research in farmed animals. It will thus adhere to data-sharing 
principles of making data findable, accessible, interoperable and reusa-
ble58. To that end, four key strategies have been implemented to share all 
the datasets, resources and results generated by the project: (1) FarmG-
TEx will use public repositories, such as NCBI-SRA, CNCB-NGDC-GSA 
and EMBL-ENA, to disseminate raw sequencing and metadata, allowing 
direct access for further investigations. (2) The central FarmGTEx web 
portal (https://www.farmgtex.org) summarizes all resources from the 
project, including publications, computer code and public servers 
with specific functions. For instance, the PigGTEx (https://piggtex.
farmgtex.org) and ChickenGTEx (https://chicken.farmgtex.org) serv-
ers allow any researcher to explore and download all processed data 
and results. The FarmGTEx TWAS-server (https://twas.farmgtex.org) 
supports online interactive TWAS analyses, while PigBiobank (https://
pigbiobank.farmgtex.org) facilitates online queries for results from 
integrative dissection of various complex phenotypes in pigs. Addition-
ally, processed datasets will be shared on public repositories, such as 
Zenodo and Figshare, for wider accessibility and application. (3) We 
will post manuscripts on preprint servers (such as bioRxiv) before sub-
mission and release all computer codes under an open-source license. 
These workflows will be made available using containerized shareable 
pipeline framework tools, such as Snakemake59 and Nextflow60, and 
code-sharing platforms, such as GitHub and Bioconductor (https://
github.com/FarmGTEx). (4) We plan to support interactive real-time 
analyses to conduct self-defined analyses using cloud-based platforms, 
such as AnVIL61, and fine-tune the ChatGPT application programming 
interface to assist users.

Understanding genomic variation and downstream functional 
impacts is a complex challenge that demands global and interdiscipli-
nary collaboration. Therefore, FarmGTEx fosters partnerships with 
research consortia, genomic companies and service providers, breeding 
industry leaders and the broader scientific community to advance our 
understanding. Researchers interested in FarmGTEx can seek interac-
tions and collaborations (50 researchers have joined already) via the 
FarmGTEx web portal (https://www.farmgtex.org/) and the FAANG–
FarmGTEx Task Force (https://www.faang.org/tf?name=FarmGTEx) 
to actively participate in working groups and other initiatives within 
the consortium. FarmGTEx has established close collaborations with 
several existing farm animal research consortia, such as the 1000 Bull 
Genomes62, VarGoats63, Bovine Pangenome36, Bovine Long Read39 and 
Chicken Genomic Diversity64 consortia, focusing on specific species, 
and with AG2PI65, FAANG66 and RT2T67, aiming to address multiple 
farmed species. We have also established collaborations and commu-
nications with breeding industry partners (for example, the US Council 
on Dairy Cattle Breeding, Hendrix Genetics and Guangxi Yangxiang) and 
policymakers (for example, the US National Pork Board and the Danish 
Dairy Board) toward the shared goal of integrating FarmGTEx resources 
with additional phenotypic and genotypic information in large breeding 
populations to improve the sustainability of farmed animal production. 
Finally, we will closely collaborate and coordinate with similar efforts 
in humans, such as GTEx13 and IGVF44, to enhance the application of 
FarmGTEx resources in human genetic and biomedical research.

Concluding remarks
Farmed animals are integral to global food production and secu-
rity. Identifying the causal genetic and molecular factors governing 

economically important performance, sustainability and welfare traits 
is key to optimizing precision breeding strategies. To accelerate this, 
the FarmGTEx Consortium aims to pursue a coordinated strategy for 
resource generation and data analyses across multiple research groups 
that would not be possible through individual efforts alone. These 
collective efforts by FarmGTEx members from various disciplines are 
crucial in developing best-practice recommendations for identifying, 
analyzing and interpreting meaningful genomic effects.

The key outcomes from FarmGTEx are anticipated to include 
(1) novel insights into the genetic mechanisms that control gene 
expression across a range of biological contexts, environmental 
conditions and evolutionary timescales, including recent artificial 
selection (for example, between breeds), and long-term evolution-
ary processes (for example, within species and subspecies), (2) a 
comprehensive catalog of context-specific regulatory effects for 
detecting causal variants, genes and mechanisms involved in complex 
phenotypes, local environmental adaption and domestication, (3) 
uniformly processed multiomics datasets for developing advanced 
integrative genomic methods (for example, AI-based approaches) 
to improve gene prioritization and genomic prediction of complex 
phenotypes and (4) powerful web platforms for querying, visualizing 
and downloading results as well as accelerating in vitro and/or in vivo 
functional follow-ups, such as massively parallel reporter assays and 
CRISPR-based editing. Looking ahead, the FarmGTEx Consortium 
will be instrumental in developing precision breeding strategies, 
leading to the selection of farmed animals that are efficient, healthy 
and environmentally friendly. This multidisciplinary team effort will 
also pave the way for innovative applications of farm animal models 
in human biomedical fields through in-depth comparative genomics 
and biology analyses.
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