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Nearly a quarter of visits to the Emergency Department are for conditions that could have been
managed via outpatient treatment; improvements that allow patients to quickly recognize and re-
ceive appropriate treatment are crucial. The growing popularity of mobile technology creates new
opportunities for real-time adaptive medical intervention, and the simultaneous growth of “big data”
sources allows for preparation of personalized recommendations. Here we focus on the reduction of
chronic suffering in the sickle cell disease community. Sickle cell disease is a chronic blood disorder in
which pain is the most frequent complication. There currently is no standard algorithm or analytical
method for real-time adaptive treatment recommendations for pain. Furthermore, current state-of-
the-art methods have difficulty in handling continuous-time decision optimization using big data.
Facing these challenges, in this study we aim to develop new mathematical tools for incorporating
mobile technology into personalized treatment plans for pain. We present a new hybrid model for
the dynamics of subjective pain that consists of a dynamical systems approach using differential
equations to predict future pain levels, as well as a statistical approach tying system parameters to
patient data (both personal characteristics and medication response history). Pilot testing of our
approach suggests that it has significant potential to predict pain dynamics given patients’ reported
pain levels and medication usages. With more abundant data, our hybrid approach should allow
physicians to make personalized, data driven recommendations for treating chronic pain.

INTRODUCTION

In the fields of physics, chemistry, and engineering,
models are often derived from mechanistic fundamental
laws expressed in the form of differential equations. Re-
sulting “dynamical systems” models can be used both
to gain intuition into the expected behavior of the sys-
tem, and to make specific predictions about results of
experiments (e.g., see [1]). In fields such as social sci-
ences, bioinformatics, and medicine, models are often
constructed from data via statistical inference, without
direct derivation from fundamental principles (e.g. [2]).

The mechanistic and statistical approaches to mathemat-
ical modeling have different advantages. The former al-
lows prior knowledge to be introduced and validated or
rejected based on the success of the model. The latter
requires almost no a-priori information about how the
system is expected to behave.

In this paper, we present a hybrid approach to mathe-
matical modeling that incorporates both mechanistic and
statistical elements, with the goal of gaining a deeper un-
derstanding of the human experience of subjective pain.
Specifically, we hope to predict how patient-reported pain
levels vary over time based on medication dosage infor-
mation and other patient characteristics.
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FIG. 1. Smartphone app. Sample images of SMART app for iPhone/Android smartphone devices.

Application to pain

Sickle cell disease (SCD) is a chronic illness associ-
ated with frequent medical complications and hospital-
izations. Approximately 90% of acute care visits are for
pain events, and 30-day hospital re-utilization rates are
alarmingly high [3]. While factors influencing these high
re-utilization rates are poorly understood, close follow-up
and continued use of pain medications has been shown to
decrease re-hospitalization rates. Mobile technology has
become an integral part of health care management, and
our recently self-developed mobile application (Sickle cell
Mobile Application to Record symptoms via Technology,
or SMART app—see Figure 1) for SCD assists with doc-
umentation and intervention of pain.

Pain in particular is difficult to quantify and has never
before been monitored at the temporal scale we report
here across so many patients. It is known that subjec-
tive pain, though indeed subjective, is correlated with ob-
jective measurable stimuli qualities in experiments (see,
e.g., [4–6]). Thus there is reason to believe that subjec-
tive pain may follow understandable dynamics in time,
especially when mitigated by opioid or non-opioid drugs.
Our approach to the problem is motivated by the hope
that a reasonable model for pain dynamics will yield some
level of predictive power, despite the clear expectation
that there will also be significant noise within and across
patients. We can attribute the stochastic variation to
sources like patient mood, temporal changes in patient
state, weather, etc. In contrast, we hope that patient
attributes like age, gender, SCD disease type, etc. will
remain roughly constant on the time scale of the experi-
ment and allow us to explore possible correlation of these
attributes with model parameters.

Data source: mobile health application

We seek to understand the temporal dynamics of
chronic pain as experienced by SCD patients. To that
end, we have developed a mobile phone application that
allows patients to record medication usage and subjec-
tive pain levels (measured on a 0-10 scale) in real time
[7, 8].

Figure 1 shows several images of the app interface,
while Figure 2 shows a typical data set resulting from
a single patient’s use of the app over the course of sev-
eral weeks.

MATERIALS AND METHODS

Data

As of October 2016, data were available from 47 pa-
tients using the SMART app. Data sets from 8 of
those patients were excluded because of excessive sparsity
based on the following criteria:(1) total number of reports
≤ 5; or (2) pain reports never exceeded zero during the
period under consideration. See Table I for demographic
details of included patients. We denote the sample size
n = 39.

Predictive model

In order to develop a hybrid model that incorporates
both a mechanistic a-priori knowledge-driven component
and a statistical data-driven component, we divide tasks
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Demographic characteristics
N (%)

Institution
A 14 (35.9)
B 17 (43.6)
C 8 (20.5)

Gender
Male 16 (41.0)
Female 23 (59.0)

Age at baseline (years)
18-34 24 (61.5)
> 34 15 (38.5)

SCD disease type
Hemoglobin SC 8 (20.5)
Hemoglobin SS 22 (56.4)
Hemoglobin SB+ (Beta) Thalassemia 5 (12.8)
Beta-Zero Thalassemia 3 (7.7)
SO−Ara 1 (2.6)

Hydroxyurea user 27 (69.2)
Folic acid vitamin user 26 (66.7)
Long-acting opioid user 29 (74.4)
Short-acting opioid user 35 (89.7)
Non-opioid user 29 (74.4)

Mean SD (Min, Max)
Number of pain reports 67.2 60.4 ( 9.0, 257.0 )
Days of pain reports 164.6 109.6 ( 10.3, 435.1 )
Within-patient average VAS score 4.7 2.1 ( 0.3, 9.4 )

Mean SD (Min, Max)
Number of pain reports (first 2 weeks) 13.2 9.6 ( 2.0, 45.0 )
Number of long-acting opioid doses (first 2 weeks) 6.0 8.4 ( 0.0, 35.0 )
Number of short-acting opioid doses (first 2 weeks) 7.2 7.5 ( 0.0, 35.0 )
Number of non-opioid doses (first 2 weeks) 2.1 3.1 ( 0.0, 12.0 )

TABLE I. Patient demographic information and the number of pain reports supplied by patients across entire study.
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FIG. 2. Sample pain and medication data from a single
patient. Upper panel: patient reported pain (black circles)
and model fit (red solid line); red shading indicates model
fit plus/minus one standard deviation. Lower panel: long-
acting methadone (red solid line) and short-acting oxycodone
(blue dashed line) medication concentrations in patient blood-
stream as inferred from medication usage reported via the
SMART application.

into two disjoint sets that fit these two categories; see
the Discussion section for more context. We begin with
a “dynamical systems” model for subjective pain mo-

tivated by the hypothesis that human sensory systems
function on a roughly “return to setpoint” basis [9–12].
Any model of human pain response, however, will in-
evitably require specification of a variety of parameters
determining the time scale(s) and degree of severity of
the response. The statistical modeling tasks employ pa-
tient data to infer parameters (1) from patient character-
istics and population distributions and (2) from patient-
specific pain and medication response history.

To make this more concrete, in Figure 3 we present a
flow chart summarizing our approach to the hybrid mod-
eling problem. Steps I2 and A comprise the statistical
modeling component; steps B and C comprise the mech-
anistic modeling component. A further optimization step
D builds on the predictions of the hybrid model to allow
for a balance between competing demands of pain re-
duction and medication usage minimization. This paper
details steps I1, I2, A and B. We leave the remaining
steps for future work.

Mechanistic component (for every patient)

We propose and evaluate two related mechanistic mod-
els based on a set of coupled ordinary differential equa-
tions (ODEs), either (a) deterministic or (b) stochastic.
The stochastic differential equation (SDE) model com-
prises a Langevin equation, which can be converted into a
Fokker-Planck partial differential equation (PDE) for the
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FIG. 3. Schematic flowchart showing model framework. Rounded rectangles represent modeling or computation steps,
rhombuses represent data inputs or outputs, and diamond represents decision step. Items I1 and I2 are only necessary for
initialization of the model. Items A through E are the focus of this paper.

evolution of the probability distribution for pain ρ(P, t)
[13]. This allows for prediction of both the expected pain
level for a patient at any point in the future and an as-
sessment of the confidence in (and a confidence interval
for) that prediction.

Mathematically, the deterministic mechanistic model
we propose is the following, for a single patient:

dP

dt
= −(k0 + k1D1 + k2D2 + k3D3)P + k0u

dD1

dt
= −kD1

D1 +

N1∑
j=1

δ(t− τ1,j)

dD2

dt
= −kD2D2 +

N2∑
j=1

δ(t− τ2,j)

dD3

dt
= −kD3

D3 +

N3∑
j=1

δ(t− τ3,j) ,

(1)

where P is the patient pain level (on a scale of 1–10),
k0 is the pain relaxation rate without drugs, ki is the
marginal effect on the pain relaxation rate due to drug i
(i = 1, 2, 3), u is the unmitigated pain level (i.e. without
drug intervention), Di is the amount of standard drug i
doses within the patient, kDi

is the elimination rate of
drug i within the patient, {τi,j}Ni

j=1 are the drug i dosage
times, and Ni is the number of doses of drug i taken. δ
represents the Dirac delta function. Note that the param-
eters and variables will in general need to be indexed with
distinct values for each patient in a population, though
we omit those indices here for clarity. For convenience
and clarity we also here omit “hatted” notation (e.g.,

P̂ (t)) sometimes used for model predictions.
Tables II and III summarize the meanings of model

variables and parameters, respectively.

Variable Meaning Units
P (t) Instantaneous pain level on 0–

10 scale
[pain]

D1(t) Concentration of drug 1 (long-
acting opioid) in the body

[standard doses]

D2(t) Concentration of drug 2 (short-
acting opioid) in the body

[standard doses]

D3(t) Concentration of drug 3 (non-
opioid) in the body

[standard doses]

ρ(P, t) Instantaneous probability dis-
tribution of pain level P

[probability]

TABLE II. Variables in mechanistic models.

In this very simple model for pain dynamics (1), pain
is expected to relax at rate k0 to unmitigated level u
set by aggravating factors (like sickle cell disease) in the
absence of intervention through opioids (drugs 1 and 2)
or non-opioids (drug 3). When drugs are present in the
patient’s body, pain drops at a faster rate and the short-
term equilibrium pain level (not the unmitigated pain
level u) is reduced. Note that we treat all parameters as
constant over the time period of interest, which we take
to be two weeks (based on clinical heuristic experience).

In the model for drug concentrations, medication in
the body is assumed to be metabolized at a constant
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Parameter Meaning Units
u unmitigated pain level [pain]
k0 rate of decrease of pain in the absence of drugs or acute sources of pain [T−1]
k1 effect of drug 1 (long-acting opioid) on pain relaxation rate [T−1]
k2 effect of drug 2 (short-acting opiod) on pain relaxation rate [T−1]
k3 effect of drug 3 (non-opioid) on pain relaxation rate [T−1]
kD1 rate of decay of drug 1 (long-acting opioid) in body due to metabolism [T−1]
kD2 rate of decay of drug 2 (short-acting opioid) in body due to metabolism [T−1]
kD3 rate of decay of drug 3 (non-opioid) in body due to metabolism [T−1]

ε amplitude of intrinsic variability in human subjective pain reports [T 1/2]
Ni number of standard drug i doses taken [count]
{τi,j} drug i dose times (indexed by j) [T ]

TABLE III. Parameters in mechanistic models.

rate. Rates can be determined from existing substanti-
ated pharmacokinetic models (e.g., [14, 15]); Dirac delta
function onset of medication serum concentration is a
good approximation to the fast rise typical of the med-
ications under consideration. See Fig. 2 for a sample
deterministic model output.

Note that we deliberately chose to employ an extremely
simple conceptual model for pain dynamics. More so-
phisticated versions might be developed to incorporate
higher order dynamics for P , or to include nonlinear or
nonautonomous effects (e.g., allowing for explicit param-
eter variation with time of day or year), but currently
available data are insufficient to constrain a model of
greater complexity.

The stochastic differential (Langevin) equation version
of our mechanistic model is as follows:

dP = −(k0 + k1D1 + k2D1)Pdt+ k0u(dt+ εdW )

dD1 =

−kD1D1 +

N1∑
j=1

δ(t− τ1,j)

 dt,

dD2 =

−kD2D2 +

N2∑
j=1

δ(t− τ2,j)

 dt

dD3 =

−kD3D3 +

N3∑
j=1

δ(t− τ3,j)

 dt ,

(2)

where a hypothesis of uncorrelated additive white noise
has been made. From this we derive the Fokker-Planck
equation for the probability distribution of pain over time
ρ(P, t):

∂ρ

∂t
= − ∂

∂P

[(
− (k0 + k1D1 + k2D2 + k3D3)P+

k0u
)
ρ(P, t)

]
+

∂2

∂P 2

[
1

2
(εk0u)2ρ(P, t)

]
.

(3)

Absent any pain medication, this Fokker-Planck equation
implies the steady-state pain distribution

ρ∗(P ) =

√
1

πk0u2ε2
exp

[
− (P − u)2

k0u2ε2

]
, (4)

a Gaussian distribution with mean u and standard de-
viation uε

√
k0/2. See Figure 4 for a sample stochastic

model output.
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FIG. 4. Sample output from stochastic differential
equation model (2). Red thick line: theoretical mean
pain; red thin lines: ± one theoretical standard deviation;
black thick line: mean of pain distribution in ensemble of 100
stochastic simulations; blue thin lines: ± one standard devi-
ation in ensemble of 100 stochastic simulations; blue dashed
line: drug 1 dose in bloodstream. Spikes occur when patient
takes recommended dosage.

Statistical component (for all patients)

In order to account for the variation among patients
and improve prediction of the unmitigated pain level,
we associate patient characteristics and history with the
unmitigated pain level u (an n-dimensional vector with
uj corresponding to the j-th patient’s unmitigated pain
level) using a linear model.

Let X be an n×p design matrix containing the covari-
ates of patients (i.e., patient characteristics). We write
X = (X1, . . . , Xn)T , with Xj corresponding to the p-
dimensional covariates of patient j. Then we formulate
the relationship between between u and the p predictors
as:

u = Xβ + ε, (5)

where β is a p-dimensional coefficient vector, and ε is an
n-dimensional vector of zero-mean random errors. When
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p is small, the estimate for β is obtained using the or-
dinary least squares procedure: β̂ = arg min

β∈Rp

‖u−Xβ‖22,

where ‖ · ‖q denotes the `q norm. Then the unmitigated

pain level uj is updated by unewj = XT
j β̂, j = 1, . . . , n.

Since the unmitigated pain levels are not observable
from patient pain reports, the initial uj ’s are indepen-
dently sampled from a uniform distribution between 0
and 10, i.e. u0

j ∼ U(0, 10). After using {u0
j} as initial

values to fit the mechanistic model, the resulting esti-
mated {uj} will be updated by the linear model (5) as
{unewj }, which will then be used as initial values in the
next round of fitting of the mechanistic model. See Sec-
tion for more detail on the hybridization of the statistical
component with the mechanistic component.

Given a high-dimensional set of patient characteris-
tics, we need to select a subset of patient characteristics
that are significantly associated with u by minimizing the
penalized loss function. In this study, we select patient
characteristics using the LASSO (Least Absolute Shrink-
age and Selection Operator) [16], by minimizing the pe-
nalized loss function Γ(β) = ‖u − Xβ‖22 + λ‖β‖1 with
respect to β. The penalty parameter λ is determined us-
ing 5-fold cross-validation. The selected p features are
then used to fit the linear model (5) by ordinary least
squares.

If time-varying unmitigated pain levels and time-
varying covariates are present, the regression model (5)
can be extended to the linear mixed model [17, 18]: u =
Xβ+Zδ+ ε, where Z = (Z1, . . . , Zn)T is an n× r design
matrix for r random effect factors and δ = (δ1, . . . , δr)

T

is a vector of random effects. Patient characteristics can
be selected by maximizing the penalized log-likelihood:
`pen(β, δ) = `(β, δ) − λ‖β‖1 [19]. Such an extension of
the proposed hybrid model to allow for time-varying un-
mitigated pain levels and covariates will be considered in
a future study with more data available.

Model fitting

We fit our model to real patient data by minimizing
the residual sum of squares between model predictions
and patient reports provided within the first two weeks
of reporting. We expect that the assumption of constant
model parameters breaks down after approximately two
weeks (clinical heuristics). Minimization over parameters
u, k1, k2, and k3 was done via the Nelder-Mead simplex
algorithm [20]. Parameter k0 was fixed at 2 ln(2) ≈ 1.4
corresponding to a pain equilibration half-life time scale
of 30 minutes in the absence of medication. If a patient
did not take all three classes of drugs, the model and
fitting only included the consumed drugs.

We initialize the parameter optimization in n mecha-
nistic models (one per patient) with random values dur-
ing a first iteration, then we feed the optimization output

into the statistical model (for all patients). Once the sta-
tistical model is run, it results in a new set of parameter
estimates that can then be employed as initial parameter
seeds for a second round of optimization in n mechanistic
models (to minimize the residual sum of squares). Pro-
ceeding iteratively in this fashion (see Fig. 3), we find
convergence to a consistent set of parameters for each
patient (details below).

Method verification

Before applying our hybrid model to real-world pa-
tient data, we verify the soundness of the approach with
synthetic data constructed to resemble real-world data,
but generated by the model itself with high sampling
frequency. The synthetic data used for verification of
the method are generated directly from the mechanistic
model with an assumed parameter set generated in the
following way: unmitigated pain u = (patient age)/10,
initial pain level P (t = 0) = u− 2, and drug parameters
k1, k2, k3 ∼ N(0.75, 0.25). Each patient reports pain ev-
ery 1/2 hour for 336 hours (two weeks). At each report
time, the probability of the patient taking a particular
drug (among three drug classes) is 1/16; in other words,
the patients took each drug on average every 8 hours.
White noise of magnitude 1 is added to each pain report.

As an illustration using real patient drug times (specif-
ically those of Patient A3), we create synthetic data gen-
erated using u = 5, k1 = 3, and k2 = 2: see Figure 5.
When the initial parameter search is seeded with random
parameter values, the mechanistic model fit can lead to
convergence to either the “true” optimum (5, 3, 2) or to
other “spurious” optima with incorrect values of u, k1,
and k2.

In this illustrative example, the method converges to
u = 5.01, k1 = 3.19, and k2 = 1.84. The relevant root-
mean-square (RMS) error is 1.01; this is close to the
lowest possible expected error given the unit magnitude
noise added to the synthetic data. This numerical exper-
iment shows that the mechanistic model fitting method
can converge even in the presence of significant amounts
of noise. However, with only the mechanistic model it
can be quite difficult to find a good set of initial param-
eter seeds1: that is one motivation for introducing the
statistical model.

To test our hybrid method using both the mechanistic
model for fitting and the statistical model for parameter
estimation, we create a synthetic patient database of 39
patients as described above. We then iterate rounds of
fitting between mechanistic and statistical models, start-

1 The seeding problem becomes exponentially harder as the di-
mension of the parameter space increases.
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FIG. 5. Model fitting demonstration for densely re-
ported noisy synthetic data. Upper panel: hypothetical
densely-reported patient pain (black circles) and model fit
(red solid line); red shading indicates model fit plus/minus
one standard deviation. Lower panel: long-acting opioid (red
solid line) and short-acting opioid (blue dashed line) medica-
tion concentration in patient bloodstream.

ing with uniform random guesses for all patient param-
eters (u, k1, k2, k3). Figure 6 demonstrates how the pa-
rameter u converges to a value with small error after just
a few iterations steps, even in the presence of significant
noise. In order to evaluate the performance of the model
on new data, we use the hold-out validation method by
splitting the dataset into a training set (first week) and a
test set (second week). Model fit error and hold-out vali-
dation error, as well as other parameters values, converge
similarly: see Figure 7.
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FIG. 6. Hybrid model fitting demonstration for en-
semble of densely reported noisy synthetic data. For
an ensemble of 39 synthetic patient data sets, the average ab-
solute error in u gradually decreases. Iteration 0 indicates one
fit to the mechanistic model alone. Subsequent iterations in-
dicate the number of hybrid model (statistical + mechanistic)
fits.
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FIG. 7. Hybrid model fitting demonstration for en-
semble of densely reported noisy synthetic data. For
an ensemble of 39 synthetic patient data sets, the average
root-mean-squared (RMS) error in patient pain levels gradu-
ally decreases. Iteration 0 indicates one fit to the mechanistic
model alone. Subsequent iterations indicate the number of
hybrid model (statistical+mechanistic) fits. Training error
(or fit error) is on the left; test error (or validation error) is
on the right. Due to the additive white noise of magnitude 1,
the smallest testing or training error we could expect is 1.

RESULTS

General results

One key result is that our model for chronic pain does
indeed have some predictive value (see Fig. 8). This is an
improvement over the current state of the art, since no
other predictive model exists of which we are aware. Fur-
thermore, fitted parameter values correlate significantly
with patient characteristics, suggesting that meaningful
information is captured by this minimal plausible model.
It may be possible to motivate new clinical insight on
the basis of the observed correlations, perhaps leading
to differential treatment of SCD sufferers with differing
characteristics.

Statistical results

We use the following baseline patient characteristics to
predict the unmitigated pain levels in the statistical mod-
eling step: age, gender, SCD disease type, hydroxyurea
use, folic acid vitamin use, long-acting opioid use, short-
acting opioid use, and non-opioid use. We explore the
marginal effects of these characteristics and their possi-
ble pairwise two-way interactions using the LASSO. The
model (5) can be extended to include time-varying co-
variates such as temperature, weather, patient’s walk-
ing/social activities, and patient’s mood at time t, once
these data become available in a future study.

The statistical model that resulted from the LASSO
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FIG. 8. Hybrid model fitting on real patient data. For
an ensemble of 39 real patient data sets, the average root-
mean-squared (RMS) error in patient pain levels gradually
decreases. Iteration 0 indicates one fit to the mechanistic
model alone. Subsequent iterations indicate the number of
hybrid model (statistical+mechanistic) fits. Training error
(or fit error) is on the left; test error (or validation error) is
on the right.

variable selection is given by

u = β0 + β11{SCD disease type = HgbSC}
+ β21{SCD disease type = SB+Thal or SO-Ara}
+ β3(age− 18) + β41{Hydroxyurea user}
+ β51{Non-opioid user }
+ β61{SCD disease type = SB+Thal or So-Ara}
× (age− 18) + ε,

(6)

where εj ∼ N(0, σ2), j = 1, . . . , n, and 1{·} is the indi-
cator function.

Table IV summarizes the results from one round of
fitting of the regression model (6). Adjusting for the
effect of other terms in the regression model, SCD disease
type of SB+Thal or So-Ara (with coefficient β2), non-
opioid use (with coefficient β5), and the interaction term
between SCD disease type of SB+Thal or So-Ara and
age (with coefficient β6) are important predictors of the
unmitigated pain levels at the significant level of 0.05.
Using non-opioid medication is associated with decreased
unmitigated pain levels. Unmitigated pain levels increase
with patients’ age for SB+Thal or So-Ara patients.

Mechanistic model validation

With such sparse data and up to four fitting parame-
ters, one may worry that the model (1) is being overfitted.
To test this concern, we propose 6 related alternative
models with fewer fitting parameters, and we compare

cross-validation error and Akaike information criterion
(AIC) among the models. See Table V for model descrip-
tions. Neither measure selected a best-fit model across
all patients, but none of these simple models is overfit-
ting the data. See Figure 9 for AIC results and Figure
10 for cross validation results.
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FIG. 9. Akaike information criterion (AIC) for alternative
models listed in Table V. Most models perform equally well;
among patients with differing model performance, there exists
no clear ‘best’ model for all patients.
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FIG. 10. Two-fold cross validation testing error for alternative
models listed in Table V. For every patient, each model was
independently fitted to the first and second half of the time
series pain report data (training). Then the fitted models were
used to test the other half of the data. This figure shows the
average root-mean-square testing error for the two tests. Most
models perform equally well; among patients with differing
model performance, there exists no clear ‘best’ model for all
patients. Note that patient #36 did not have enough data to
fit any models, so zero error is misleading.

BIASED PAIN REPORTING

Perhaps the most significant limitation of our model
lies in a potential bias in our data set. Patients typically
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Variable Estimate Std Err T-value P-value
Intercept 7.646 1.228 6.228 0.000 ***
HgbSC -1.566 0.890 -1.761 0.088
SB+Thal or So-Ara -5.479 2.332 -2.349 0.025 *
Age at baseline −18 0.001 0.034 0.290 0.773
Hydroxyurea user -1.205 0.839 -1.437 0.160
Non-opioid user -2.523 0.842 -2.995 0.005 **
(SB+Thal or So-Ara) × (Age at baseline -18) 0.241 0.010 2.419 0.021 *

TABLE IV. Result of the prediction model of the unmitigated pain using the linear regression model. Significance ∗(p <
0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)

Model name Description Fitting parameters
Full model Include all drugs taken (model (1)) up to 4
No drugs Include no drug dosing information 1

Merge drugs Combine all drugs into one drug class with same response up to 2
LA only Include only long-acting opioid doses up to 2
SA only Include only short-acting opioid doses up to 2
NO only Include only non-opioid doses up to 2

Threshold Include drug class only if drug is taken at least n times* up to 4

TABLE V. Mechanistic model variations. Fitting parameters include unmitigated pain level u and drug response parameters
ki for all drugs consumed. Therefore some patients have fewer fitting parameters than listed if they consumed fewer than three
types of drugs. *In our tests, n = 5 was the drug dose threshold.

report pain levels when taking medication, but many of
them only take medication when pain levels rise. Thus we
suspect a selection bias of unknown significance, causing
higher pain levels to be reported at a disproportionately
high rate. To test this concern, we compare the unbiased
model (1) with a similar model incorporating biased pain
reporting.

Suppose the probability density function of pain at a
particular time is a normal distribution with mean µ and
variance σ2:

ρ(x |µ, σ) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
. (7)

Integrating model (1) gives the expected pain value µ at
any point in time.

If higher pain is disproportionately reported through
the mobile health application, then we will be much more
likely to see higher pain levels from this normal distribu-
tion. As a first approximation, we assume the reporting
bias is linear:

ρr(x |µ, σ) = α(ax+ b) exp

[
− (x− µ)2

2σ2

]
H(x), (8)

where α normalizes the distribution, a, b tune the prob-
abilities of reporting a pain value x, and the Heaviside
function H(x) prevents negative pain values. Figure 11
shows both real and reported pain distributions at a par-
ticular time.

We need a way to connect these distributions because
we want to control real pain described by (7), but the
patient only provides data from the reported distribution
(8). In other words, real pain is important but invisible,

pain

0.14

di
st

rib
ut

io
n

0 2 4 6 8 100

µ rµ

FIG. 11. Probability density distributions for unbiased (solid)
and biased (dashed) pain reporting at a particular time ti.
The standard deviation (here, σ = 3) has been exaggerated
for illustrative purposes. In real data, the typical standard
deviation is around σ = 1.8.

and reported pain is unimportant but visible. One way
to connect the distributions is through their means and
variances2:

µr(µ, σ) =

∫ ∞
−∞

x ρr(x |µ, σ) dx (9)

σ2
r(µ, σ) =

∫ ∞
−∞

x2 ρr(x |µ, σ) dx. (10)

2 Note that the means and variances also change in time. We omit
time dependence for notational clarity.
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Assuming σr is approximately constant in time3, we
can also estimate σ2

r using the definition of variance:

σ2
r =

1

M

M∑
i=1

(
Pi − µr(ti)

)2
, (11)

where M is the number of pain reports, Pi is the ith
reported pain value, and µr(ti) is the expected reported
pain given distribution (8) at time ti.

Given a proposed model for real pain, we can solve this
system of three equations for the three unknowns: µr(ti),
σ(ti), and σr. We can then compute the likelihood of the
reported pain using

L =

M∏
i=1

ρr(Pi |µ(ti), σ(ti)). (12)

Because we can compute the likelihood of the supplied
data given any proposed model for real pain, we can tune
the model parameters to maximize likelihood (techni-
cally, we minimize the negative logarithm of likelihood).
This results in a best-fit model under the assumption of
biased pain reporting. We compare the best-fits of the
model under both biased and unbiased reporting assump-
tions, and find that neither model is a better fit for most
patients. See Figure 12.
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FIG. 12. Akaike information criterion for unbiased and biased
pain reporting. Because both models have an equal number of
fitting parameters, AIC is a proxy for model likelihood (lower
AIC implies higher likelihood). Again, it is not clear that one
model performs universally better than the other. Note that
missing biased reporting model fits indicate that the fitting
algorithm did not converge (a = 0.08, b = 0.1).

3 It is not possible to verify this with data because patients only re-
port one pain value at a particular time. However, a Kolmogorov-
Smirnov normality test on residuals over the first two weeks of
data rejects normality (p < 0.05) for only 2 of the 39 patients.

PAIN AND MEDICATION OPTIMIZATION

A key goal of the modeling of human pain dynam-
ics is to develop predictions that allow optimized treat-
ment: both pain and medication use should be mini-
mized. Excess medication carries particular long-term
risks for chronic pain sufferers [21–24], but pain mitiga-
tion is also a primary goal of SCD treatment. How can
these contradictory objectives be balanced?

Our model allows us to forecast the probability distri-
bution of pain for a patient at a point in the near future,
given past data and future drug dosage protocol. This
information may be useful to a physician, allowing him or
her to make an optimized, data-driven decision balancing
medication and pain for the patient in real time.

We propose several tools that may be useful to a physi-
cian. First, we find the optimal drug timing given that
a certain amount of each drug will be taken over a cer-
tain time period (say, within 24 hours). For instance,
if the patient will take two short-acting opioids and one
long-acting opioid within 24 hours, then the algorithm
will offer the best times to take those three drug doses in
order to minimize the expected average pain. We provide
the physician with the expected optimal average pain for
all drug combinations up to a certain maximum number
of safe drug doses. See Figure 13.
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FIG. 13. Example expected pain given optimal drug dosage
protocol (in this case, for Patient A3). For each set of drug
dosage protocols, from no drugs to 4 doses of each drug, a
physician can see the expected average pain over a certain
time period. Given a patient’s maximum acceptable pain
level, the physician can select the best compromise between
drug doses and expected pain. In this case, the physician may
tell the patient to take no long-acting (LA) drugs but take 3-4
short-acting (SA) drugs. Alternatively, the physician might
tell the patient to take one LA and 1-2 doses of SA medica-
tion. The timing of those LA and SA drugs is provided by
the optimization algorithm.

Second, we select the best drug dosing protocol (both
number of drugs and dose timings) given an objective
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function balancing pain and medication. There are an
unlimited number of possible objective functions that
balance pain and medication, but we propose the fol-
lowing:

m(P̄ , d1, d2, d3) = wP

(
(Pmax − P̄ )−α − P−αmax

)
+ wd1

(
(d1max − d1)−β − d1−βmax

)
+ wd2

(
(d2max − d2)−γ − d2−γmax

)
+ wd3

(
(d3max − d3)−η − d3−ηmax

)
,

(13)

where P̄ is the average expected pain; {d1, d2, d3}
are the number of drug doses of each type;
{wP , wd1, wd2, wd3} are the weights of pain and drugs;
{Pmax, d1max, d2max, d3max} are the maximum safe levels
of pain and drugs; and {α, β, γ, η} tune the steepness of
the objective function near those dangerous levels.

See Figure 14 for the contributions of the pain and
one drug component to the objective function m. The
contribution to the objective function is zero if no pain
exists or if no drugs are taken. As pain or drug doses ap-
proach dangerous levels, the contribution to the objective
function blows up. After a physician has made sufficient
recommendations to a patient, a machine learning algo-
rithm could select the weight parameters for each physi-
cian/patient pair. At that point, the algorithm could
propose the optimal dosing protocol without much effort
on the physician’s part. See Figure 15.

1 2 3 4 5 6
expected pain

1

2

3

pa
in

 o
bj

ec
tiv

e

0
0 2 4 6 8 10 12

0.5

1.0

1.5

0
0

dr
ug

 o
bj

ec
tiv

e

drug doses

FIG. 14. Contribution of the pain and one drug component to
the objective function (13). The contribution to the objective
function is 0 if no pain exists or if no drugs are taken. As pain
or drug doses approach dangerous levels, the contribution to
the objective function blows up.

DISCUSSION AND LIMITATIONS

Reflection on hybrid modeling

Statistical models and mechanistic models have both
been successfully applied to various aspects of human
behavior. The inference of “black box” statistical mod-
els from empirical data has the advantage that it obvi-
ates the need for a-priori knowledge of system dynamics.
However, mechanistic models (sometimes referred to as
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FIG. 15. Example patient intervention recommendation (in
this case, for Patient A3). For a set of personalized optimiza-
tion parameters (selected by a physician or machine learning
algorithm), the optimal drug timing minimizes the objective
function (13) for each number of drug doses per 24-hour pe-
riod. In this case, the patient is advised to take two standard
doses of the long-acting (LA) opioid and two standard doses
of the short-acting (SA) opioid, indicated by the red box.

“white box” or “clear box”) can easily incorporate such
knowledge when available.

Perhaps because of the often distinct educational back-
grounds of practitioners or distinct typical applications,
statistical and mechanistic approaches are not frequently
combined in addressing a single problem. Compared
with our work, the most similar hybrid modeling idea
was developed by Sheiner and colleagues in the field of
pharmacokinetics, where they proposed models to esti-
mate population characteristics of pharmacokinetic pa-
rameters [25–27]. In their work, the pharmacokinetic
models (i.e., mechanistic models) are well established,
and the novelty and focus was the introduction of statis-
tical models for pharmacokinetic parameter estimation.
On the contrary, in our study the mechanistic model is
not known before but developed by us based on clinical
knowledge and reasonable assumptions, and our focus is
the prediction of pain levels rather than parameter esti-
mation.

Other attempts based on the hybrid modeling idea in
the scientific literature have appeared in the context of
neural networks (e.g., [28–30]) and chemical engineering
(e.g., [29, 31, 32]), where they largely played a computa-
tional rather than analytical role. Some attempts have
also been made with medical applications: Rosenberg et
al. ([33]) and Adams et al. ([34]) developed a model by
combining a dynamical systems approach with a statisti-
cal model to predict a patient’s CD4 cell counts and HIV
viral load over time in an HIV study. Timms et al. ([35])
proposed a dynamical systems approach using ODEs to
improve self-regulation in a smoking cessation study. Re-
inforcement learning techniques such as Q-learning (e.g.,
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[36]) also share some commonalities with the hybrid ap-
proach.

In this work we make our own attempt at a novel in-
corporation of statistical inference together with mecha-
nistic dynamical systems modeling to produce a hybrid
mathematical model for predicting and explaining human
behavior. We apply the new approach specifically to the
problem of predicting the dynamics of subjective pain in
a population of individuals suffering from sickle cell dis-
ease. The rationale behind our method development is
that we have prior knowledge of pain trajectories with
medication, making the problem suitable for mechanistic
modeling; meanwhile, we do not know the relationship
between patient health characteristics and pain levels, so
we would like to investigate this using a statistical model.

Limitations

The hybrid dynamical systems/statistical approach
appears to have great potential. The low frequency of
pain reporting currently limits its usefulness, but future
addition of high-frequency pain correlates like blood pres-
sures, heart rate, activity level, etc., via wearable med-
ical devices (e.g. the “Fitbit”) may drastically improve
on that. Furthermore, application of similar methods to
more data-rich forecasting problems (e.g. insulin levels)
may also expand the utility of our work.

Another important limitation to our current model lies
in the mechanistic component. We presented here what
we considered to be the simplest plausible model: pain
fluctuates about an “unmitigated” equilibrium u, and
medication reduces pain below that level, but pain re-
turns as medication is metabolized and removed from the
bloodstream. This simple model cannot capture long-
term changes in the unmitigated pain level, and hence
its forecast validity is likely limited to short time scales
(days to weeks).

Society is clearly moving in the direction of an over-
whelming amount of medical data. It is imperative that
we learn to take advantage of this information to im-
prove patient treatments beyond the traditional standard
of care. The approach we report here not only addresses
the specific challenge of chronic pain mitigation in SCD
patients, but also provides a testbed for new ways of
dealing with big, ever-growing data sets in real time.

CONCLUSIONS

We have successfully demonstrated the hybrid appli-
cation of statistical and mechanistic mathematical mod-
eling with application to understanding the dynamics of
subjective human pain. Our model explains real-world
data on human pain and can generate predictions of fu-
ture pain dynamics.

We expect that similar methods could be used to in-
corporate disease-specific knowledge and modeling with
statistical inference in a variety of medical applications.
Given the coming deluge of data from wearables (includ-
ing clinical trial NCT02895841 already underway) and
mobile health applications, there is a clear need for new
mathematical methods to take advantage of the opportu-
nity for personalizable, data-driven medical treatments.
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