PseudotimeDE: inference of differential gene expression along cell pseudotime from single-cell RNA sequencing data

Dongyuan Song 1 Jingyi Jessica Li 2, 3, 4

1Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, CA 2Department of Statistics, University of California, Los Angeles, CA
3Department of Human Genetics, University of California, Los Angeles, CA 4Department of Computational Medicine, University of California, Los Angeles

Abstract

To investigate molecular mechanisms underlying cell state changes, a crucial analysis is to identify differentially expressed (DE) genes along the pseudotime inferred from single-cell RNA-sequencing data. Therefore, we propose PseudotimeDE, a DE method that adapts to various pseudotime inference methods, accounts for pseudotime inference uncertainty, and outputs well-calibrated p-values.

Methods

We compare PseudotimeDE to existing DE methods on simulated datasets. PseudotimeDE generates well-calibrated p-values (a,b,g) and strongly correlates with true cell-cycle signals (b). PseudotimeDE also yields highest power (f).

Results: Comparison to Existing DE Methods on LPS-Dendritic Cell Dataset

Histograms show all genes' p-values by the three DE methods (a & e). Compared to other DE methods, many more GO terms are enriched in the PseudotimeDE-specific DE genes (c & g). Many of these GO terms are related to LPS, immune process, and defense to bacterium (d & f).

Results: Comparison to Existing DE Methods by Simulation

We compare PseudotimeDE to existing DE methods on simulated datasets. PseudotimeDE generates well-calibrated p-values (a,b,g), better FDR control (c & h) and higher power (e & j).