

Generalized *R*² **Measures for a Mixture of Bivariate Linear Dependences**

Jingyi Jessica Li

Department of Statistics University of California, Los Angeles

http://jsb.ucla.edu

Joint work with Drs. Xin Tong (USC) and Peter J. Bickel (UC Berkeley)

Motivation: Maximal Information Coefficient

A Correlation for the 21st Century

Terry Speed

+ See all authors and affiliations

Science 16 Dec 2011: Vol. 334, Issue 6062, pp. 1502-1503 DOI: 10.1126/science.1215894

Motivation: Maximal Information Coefficient

Relationship Type	МІС	Pearson	Spearman	Mutual I (KDE)	nformation (Kraskov)	CorGC (Principal Curve-Based)	Maximal Correlation
Random	0.18	-0.02	-0.02	0.01	0.03	0.19	0.01
Linear	1.00	1.00	1.00	5.03	3.89	1.00	1.00
Cubic	1.00	0.61	0.69	3.09	3.12	0.98	1.00
Exponential	1.00	0.70	1.00	2.09	3.62	0.94	1.00
Sinusoidal (Fourier frequency)	1.00	-0.09	-0.09	0.01	-0.11	0.36	0.64
Categorical	1.00	0.53	0.49	2.22	1.65	1.00	1.00
Periodic/Linear	1.00	0.33	0.31	0.69	0.45	0.49	0.91
Parabolic	1.00	-0.01	-0.01	3.33	3.15	1.00	1.00
Sinusoidal (non-Fourier frequency)	1.00	0.00	0.00	0.01	0.20	0.40	0.80
Sinusoidal (varying frequency)	1.00	-0.11	-0.11	0.02	0.06	0.38	0.76

These maximal correlation values $< 1 \mbox{ were due to lack of convergence}$

Motivation: Maximal Information Coefficient

Motivation: Gene Expression Analysis

Five functionally related genes in *A. thaliana* (Kim et al., 2012) Red: root tissues; Blue: shoot tissues

Motivation: Simpson's Paradox

Pearson cor (red) ≈ 0.8 Pearson cor (blue) ≈ -0.8 Pearson cor (all) ≈ 0

Motivation: Simpson's Paradox

Science 07 Feb 1975: Vol. 187, Issue 4175, pp. 398-404 DOI: 10.1126/science.187.4175.398

Review: Scalar-valued Association Measures

Measure: ${\rm I\!R} \times {\rm I\!R} \to {\rm I\!R}$

Relationship Type		Measure		
	Linear	Pearson correlation		
Functional (1-to-1)	Monotone	Spearman's rank correlation		
		Kendall's $ au$		
	General	maximal correlation (Rényi, 1959)		
		correlation curves (Bjerve and Doksum, 1993)		
		principal curves (Delicado and Smrekar, 2009)		
		generalized measures of correlation (Zheng et al., 2012)		
		count statistics (Wang et al., 2014)		
		G^2 statistic (Wang et al., 2017)		
Dependent		Hoeffding's D		
		mutual information		
		HSIC (Gretton et al., 2005)		
		distance correlation (Székely et al., 2007)		
		maximal information coefficient (Reshef et al., 2011)		
		HHG association test statistic (Heller et al., 2012)		

Measure: ${\rm I\!R} \times {\rm I\!R} \to {\rm I\!R}$

Measures for Relationship Type		Interpretability	Flexibility
	Linear	best	worst
Functional	Monotone		Î
(1-to-1)	General		
Dependent		worst	best

Measure: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Measures for Relationship Type		Interpretability	Flexibility
	Linear	best	worst
Functional	Monotone		Î
(1-to-1)	General		
Dependent		worst	best

Mixture of linear dependences

- Widespread
- Easy to interpret
- Calling for a new powerful measure

Review: Mixture of Linear Dependences

Model parameter estimation & inference:

- (Quandt and Ramsey, 1978; De Veaux, 1989)
- (Jacobs et al., 1991; Jones and McLachlan, 1992)
- (Wedel and DeSarbo, 1994; Turner, 2000)
- (Hawkins et al., 2001; Hurn et al., 2003)
- (Leisch, 2008; Benaglia et al., 2009)
- (Scharl et al., 2009)

Algorithm:

• (Murtaph and Raftery, 1984)

- Statistics
- Economics
- Social sciences
- Machine learning

Review: Mixture of Linear Dependences

Model parameter estimation & inference:

- (Quandt and Ramsey, 1978; De Veaux, 1989)
- (Jacobs et al., 1991; Jones and McLachlan, 1992)
- (Wedel and DeSarbo, 1994; Turner, 2000)
- (Hawkins et al., 2001; Hurn et al., 2003)
- (Leisch, 2008; Benaglia et al., 2009)
- (Scharl et al., 2009)

Algorithm:

• (Murtaph and Raftery, 1984)

Association measure: question of interest

Over 40 years

- Statistics
- Economics
- Social sciences
- Machine learning

Formulation: Supervised and Unsupervised Scenarios

- $X, Y \in {\rm I\!R}$ random variables whose relationship is of interest
 - observed
- $Z \in \{1, \dots, K\}$ indicator of linear relationship
 - observed (supervised scenario)
 - hidden (unsupervised scenario)
- When K = 1, only the supervised scenario exists

Unsupervised

Supervised Population Generalized R^2 : $\rho^2_{\mathcal{G}(S)}$

Given the joint distribution of (X, Y, Z), denote

$$p_{k(S)} := \mathbb{P}(Z = k), \ k = 1, \dots, K, \ \text{with} \ \sum_{k=1}^{K} p_{k(S)} = 1.$$

and

$$\rho_{k(\mathcal{S})} := \frac{\operatorname{cov}(X, Y|Z = k)}{\sqrt{\operatorname{var}(X|Z = k)}\sqrt{\operatorname{var}(Y|Z = k)}}$$

as the population Pearson correlation of (X, Y)|Z = k.

Definition: $\rho_{\mathcal{G}(\mathcal{S})}^2$

The supervised population generalized R^2 is defined as

$$\rho_{\mathcal{G}(\mathcal{S})}^{2} := \mathbb{E}_{Z} \left[\rho_{Z(\mathcal{S})}^{2} \right] = \mathbb{E}_{Z} \left[\frac{\operatorname{cov}^{2}(X, Y|Z)}{\operatorname{var}(X|Z) \operatorname{var}(Y|Z)} \right] = \sum_{k=1}^{K} p_{k(\mathcal{S})} \cdot \rho_{k(\mathcal{S})}^{2}$$

K-line Interpretation the Supervised Scenario

• Denote by $\boldsymbol{\beta} = (a, b, c)^{\mathsf{T}}$ a line

 $\left\{(x, y)^{\mathsf{T}} : ax + by + c = 0, \text{ where } a, b, c \in \mathbb{R} \text{ with } a \neq 0 \text{ or } b \neq 0 \right\} \subset \mathbb{R}^{2}$

K-line Interpretation the Supervised Scenario

• Denote by
$$\beta = (a, b, c)^{\mathsf{T}}$$
 a line

 $\left\{(x,y)^{\mathsf{T}}: ax + by + c = 0, \text{ where } a, b, c \in {\rm I\!R} \text{ with } a \neq 0 \text{ or } b \neq 0\right\} \subset {\rm I\!R}^2$

Perpendicular distance between (x, y)^T and β is
 d_⊥ : ℝ² × ℝ³ → ℝ:

$$d_{\perp}\left((x,y)^{\mathsf{T}},\boldsymbol{\beta}\right) = rac{|ax+by+c|}{\sqrt{a^2+b^2}}$$

Symmetric between x and y

K-line Interpretation the Supervised Scenario

• Denote by
$$\beta = (a, b, c)^{\mathsf{T}}$$
 a line

 $\left\{(x,y)^{\mathsf{T}}: ax + by + c = 0, \text{ where } a, b, c \in {\rm I\!R} \text{ with } a \neq 0 \text{ or } b \neq 0\right\} \subset {\rm I\!R}^2$

Perpendicular distance between (x, y)^T and β is
 d_⊥ : ℝ² × ℝ³ → ℝ:

$$d_{\perp}\left((x,y)^{\mathsf{T}},\boldsymbol{\beta}\right) = rac{|ax+by+c|}{\sqrt{a^2+b^2}}$$

Symmetric between x and y

Definition: Supervised Population k-th Line Center

$$\beta_{k(S)} = \operatorname*{arg\,min}_{\beta} \mathbb{E}\left[d_{\perp}^{2} \left((X, Y)^{\mathsf{T}}, \beta \right) \middle| Z = k \right]$$

Definition: Supervised Population k-th Line Center

$$\beta_{k(S)} = \arg\min_{\beta} \mathbb{E}\left[d_{\perp}^{2} \left((X, Y)^{\mathsf{T}}, \beta \right) \middle| Z = k \right]$$

corresponds to the first principal component of

$$\boldsymbol{\Sigma}_{k(\mathcal{S})} := \begin{bmatrix} \operatorname{var}(X|Z=k) & \operatorname{cov}(X,Y|Z=k) \\ \operatorname{cov}(X,Y|Z=k) & \operatorname{var}(Y|Z=k) \end{bmatrix}$$

(Jolliffe, 2011)

 $B_{\mathcal{K}(\mathcal{S})} = \{\beta_{1(\mathcal{S})}, \dots, \beta_{\mathcal{K}(\mathcal{S})}\}$: supervised population line centers

Supervised Sample Generalized R^2 : $R^2_{\mathcal{G}(S)}$

Consider a sample $(X_1, Y_1, Z_1), \ldots, (X_n, Y_n, Z_n)$

Definition: $R^2_{\mathcal{G}(\mathcal{S})}$

The supervised sample generalized R^2 is defined as

$$R^{2}_{\mathcal{G}(\mathcal{S})} := \sum_{k=1}^{K} \widehat{p}_{k(\mathcal{S})} \cdot \widehat{\rho}^{2}_{k(\mathcal{S})}$$

where

$$\widehat{p}_{k(\mathcal{S})} := \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(Z_i = k)$$

$$\widehat{\rho}_{k(S)}^{2} := \frac{\left[\sum_{i=1}^{n} (X_{i} - \bar{X}_{k(S)})(Y_{i} - \bar{Y}_{k(S)})\mathbb{I}(Z_{i} = k)\right]^{2}}{\left[\sum_{i=1}^{n} (X_{i} - \bar{X}_{k(S)})^{2}\mathbb{I}(Z_{i} = k)\right]\left[\sum_{i=1}^{n} (Y_{i} - \bar{Y}_{k(S)})^{2}\mathbb{I}(Z_{i} = k)\right]}$$

with

•
$$\bar{X}_{k(S)} = \frac{1}{n_{k(S)}} \sum_{i=1}^{n} X_i \mathbb{I}(Z_i = k); \ \bar{Y}_{k(S)} = \frac{1}{n_{k(S)}} \sum_{i=1}^{n} Y_i \mathbb{I}(Z_i = k)$$

•
$$n_{k(\mathcal{S})} = \sum_{i=1}^{n} \mathbb{I}(Z_i = k)$$

Given the joint distribution of (X, Y)

Definition: $B_{\mathcal{K}(\mathcal{U})}$ The unsupervised population line centers $B_{\mathcal{K}(\mathcal{U})} = \{\beta_{1(\mathcal{U})}, \dots, \beta_{\mathcal{K}(\mathcal{U})}\}$ $B_{\mathcal{K}(\mathcal{U})} \in \operatorname*{arg\,min}_{B_{\mathcal{K}}} \mathbb{E}\left[\min_{\beta \in B_{\mathcal{K}}} d_{\perp}^{2}\left((X, Y)^{\mathsf{T}}, \beta\right)\right]$ $\beta_{k(\mathcal{U})} = \left(a_{k(\mathcal{U})}, b_{k(\mathcal{U})}, c_{k(\mathcal{U})}\right)^{\mathsf{T}}$: *k*-th unsupervised population line center

Remark: $B_{K(\mathcal{U})}$ is not unique in general

Random Surrogate Index $\widetilde{Z} \in \{1, \ldots, K\}$

Given the joint distribution of (X, Y)

Definition: \widetilde{Z}

Suppose

- unique $B_{\mathcal{K}(\mathcal{U})} = \{\beta_{1(\mathcal{U})}, \dots, \beta_{\mathcal{K}(\mathcal{U})}\}$
- zero probability that (X, Y) is equally close to more than one $\beta_{k(\mathcal{U})}$

We define a random surrogate index \widetilde{Z} as

$$\widetilde{Z} := \operatorname*{arg\,min}_{k \in \{1,...,K\}} d_{\perp} \left((X, Y)^{\mathsf{T}}, \beta_{k(\mathcal{U})} \right)$$

which is uniquely determined by (X, Y) except in a measure zero set

If $d_{\perp}\left((X,Y)^{\mathsf{T}}, \beta_{k(\mathcal{U})}\right) < \min_{r \neq k} d_{\perp}\left((X,Y)^{\mathsf{T}}, \beta_{r(\mathcal{U})}\right)$, then $\widetilde{Z} = k$

Unsupervised Population Generalized R^2 : $\rho_{\mathcal{G}(\mathcal{U})}^2$

Given the joint distribution of (X, Y)

Definition: $\rho_{\mathcal{G}(\mathcal{U})}^2$

The unsupervised population R^2 is defined as

$$\rho_{\mathcal{G}(\mathcal{U})}^{2} := \sum_{k=1}^{K} \mathbf{p}_{k(\mathcal{U})} \cdot \rho_{k(\mathcal{U})}^{2}$$

where

$$p_{k(\mathcal{U})} := \mathbb{P}(\widetilde{Z} = k)$$

$$\rho_{k(\mathcal{U})}^{2} := \frac{\operatorname{cov}^{2}(X, Y | \widetilde{Z} = k)}{\operatorname{var}(X | \widetilde{Z} = k) \operatorname{var}(Y | \widetilde{Z} = k)}$$

Remark:
$$\rho_{\mathcal{G}(\mathcal{U})}^2 \ge \rho_{\mathcal{G}(\mathcal{S})}^2$$

Consider a sample $(X_1, Y_1), \ldots, (X_n, Y_n)$

Definition: $\widehat{B}_{K(\mathcal{U})}$ The unsupervised sample line centers $\widehat{B}_{K(\mathcal{U})} = \left\{ \widehat{\beta}_{1(\mathcal{U})}, \dots, \widehat{\beta}_{K(\mathcal{U})} \right\}$ $\widehat{B}_{K(\mathcal{U})} \in \arg\min_{B_{K}} \frac{1}{n} \sum_{i=1}^{n} \min_{\beta \in B_{K}} d_{\perp}^{2} \left((X_{i}, Y_{i})^{\mathsf{T}}, \beta \right)$ $\widehat{\beta}_{k(\mathcal{U})} = \left(\widehat{a}_{k(\mathcal{U})}, \widehat{b}_{k(\mathcal{U})}, \widehat{c}_{k(\mathcal{U})} \right)^{\mathsf{T}}$: *k*-th unsupervised sample line center

Remark: $\widehat{B}_{\mathcal{K}(\mathcal{U})}$ is not unique in general

K-lines Clustering Algorithm

Algorithm 1 K-lines clustering algorithm

1: input:

Sample: $\{(X_i, Y_i)\}_{i=1}^n$

K: number of line centers

2: procedure
$$K$$
-LINES $(\{(X_i, Y_i)\}_{i=1}^n, K)$

3: Initial cluster assignment: $C_1^{(0)}, \ldots, C_K^{(0)}$, such that $\cup_{k=1}^K C_k^{(0)} = \{1, \ldots, n\}$

4: Given the initial cluster assignment, the algorithm proceeds by alternating between two steps in each iteration. In the t-th iteration, t = 1, 2, ...

Recentering step: Calculate the cluster line centers $\widehat{\beta}_{1(\mathcal{U})}^{(t)}, \ldots, \widehat{\beta}_{K(\mathcal{U})}^{(t)}$ based on the cluster assignment $\mathcal{C}_1^{(t-1)}, \ldots, \mathcal{C}_K^{(t-1)}$

Assignment step: Update the cluster assignment as

$$\mathcal{C}_k^{(t)} = \left\{ i: d_{\perp} \left((X_i, Y_i)^{\mathsf{T}}, \widehat{\boldsymbol{\beta}}_{k(\mathcal{U})}^{(t)} \right) \leq d_{\perp} \left((X_i, Y_i)^{\mathsf{T}}, \widehat{\boldsymbol{\beta}}_{s(\mathcal{U})}^{(t)} \right), \forall s = 1, \dots, K \right\} \,.$$

5: Stop the iteration when the cluster assignment no longer changes.

6: output:

Cluster assignment C_1, \ldots, C_K

K unsupervised sample line centers $\widehat{\boldsymbol{\beta}}_{1(\mathcal{U})},\ldots,\widehat{\boldsymbol{\beta}}_{K(\mathcal{U})}$

Sample Surrogate Index $\widehat{\widetilde{Z}}_1, \dots, \widehat{\widetilde{Z}}_n$

Consider a sample $(X_1, Y_1), \ldots, (X_n, Y_n)$

Definition: $\widehat{\widetilde{Z}}_i$

Suppose

• unique
$$\widehat{B}_{\mathcal{K}(\mathcal{U})} = \left\{ \widehat{\beta}_{1(\mathcal{U})}, \dots, \widehat{\beta}_{\mathcal{K}(\mathcal{U})} \right\}$$

For each (X_i, Y_i) , we define its sample surrogate index

$$\widehat{\widetilde{Z}}_i := \operatorname*{arg\,min}_{k \in \{1, \dots, K\}} d_{\perp} \left((X_i, Y_i)^{\mathsf{T}}, \widehat{\beta}_{k(\mathcal{U})} \right) , \ i = 1, \dots, n$$

which is uniquely determined by the sample

$$\widehat{\widetilde{Z}}_i = k \iff i \in \mathcal{C}_k \,,$$

 \mathcal{C}_k : the k-th cluster output by the K-lines clustering algorithm, assuming the global minimum is achieved

Unsupervised Sample Generalized R^2 : $R^2_{\mathcal{G}(\mathcal{U})}$

Consider a sample $(X_1, Y_1), \ldots, (X_n, Y_n)$

Definition: $R^2_{\mathcal{G}(\mathcal{U})}$

The unsupervised sample generalized R^2 is defined as

$$\mathcal{R}^2_{\mathcal{G}(\mathcal{U})} := \sum_{k=1}^{\mathcal{K}} \widehat{\rho}_{k(\mathcal{U})} \cdot \widehat{
ho}^2_{k(\mathcal{U})}$$

where

$$\widehat{p}_{k(\mathcal{U})} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(\widehat{\widetilde{Z}}_{i} = k\right)$$

$$\widehat{p}_{k(\mathcal{U})}^{2} = \frac{\left[\sum_{i=1}^{n} \left(X_{i} - \bar{X}_{k(\mathcal{U})}\right) \left(Y_{i} - \bar{Y}_{k(\mathcal{U})}\right) \mathbb{I}\left(\widehat{\widetilde{Z}}_{i} = k\right)\right]^{2}}{\left[\sum_{i=1}^{n} \left(X_{i} - \bar{X}_{k(\mathcal{U})}\right)^{2} \mathbb{I}\left(\widehat{\widetilde{Z}}_{i} = k\right)\right] \left[\sum_{i=1}^{n} \left(Y_{i} - \bar{Y}_{k(\mathcal{U})}\right)^{2} \mathbb{I}\left(\widehat{\widetilde{Z}}_{i} = k\right)\right]}$$

with

•
$$\bar{X}_{k(\mathcal{U})} = \frac{1}{n_{k(\mathcal{U})}} \sum_{i=1}^{n} X_i \mathbb{I}\left(\hat{\tilde{Z}}_i = k\right); \ \bar{Y}_{k(\mathcal{U})} = \frac{1}{n_{k(\mathcal{U})}} \sum_{i=1}^{n} Y_i \mathbb{I}\left(\hat{\tilde{Z}}_i = k\right)$$

• $n_{k(\mathcal{U})} = \sum_{i=1}^{n} \mathbb{I}\left(\hat{\tilde{Z}}_i = k\right)$

Criteria

1. Average within-cluster sum of perpendicular distances

Definition: $W(B_K, P_n)$

$$\mathcal{W}(B_{\mathcal{K}}, P_n) := rac{1}{n} \sum_{i=1}^n \min_{eta \in B_{\mathcal{K}}} d_{\perp}^2 \left((X_i, Y_i)^{\mathsf{T}}, eta
ight)$$

 $= \int \min_{eta \in B_{\mathcal{K}}} d_{\perp}^2 \left((x, y)^{\mathsf{T}}, eta
ight) P_n \left((dx, dy)^{\mathsf{T}}
ight) ,$

 P_n : the empirical measure by placing mass n^{-1} at each (X_i, Y_i)

Choose K in the Unsupervised Scenario

Criteria

2. Akaike information criterion (AIC)

Definition: AIC(K)

$$\mathsf{AIC}(\mathcal{K}) := 12\mathcal{K} - 2\sum_{i=1}^{n} \log p\left(X_i, Y_i \mid \left\{\widehat{p}_{k(\mathcal{U})}, \widehat{\mu}_{k(\mathcal{U})}, \widehat{\Sigma}_{k(\mathcal{U})}\right\}_{k=1}^{\mathcal{K}}\right)$$

where

$$p\left(X_{i}, Y_{i} \mid \left\{ \widehat{p}_{k(\mathcal{U})}, \widehat{\mu}_{k(\mathcal{U})}, \widehat{\Sigma}_{k(\mathcal{U})} \right\}_{k=1}^{K} \right)$$

= $\sum_{k=1}^{K} \widehat{p}_{k(\mathcal{U})} \frac{\exp\left\{-\frac{1}{2}\left((X_{i}, Y_{i})^{\mathsf{T}} - \widehat{\mu}_{k(\mathcal{U})}\right)^{\mathsf{T}} \widehat{\Sigma}_{k(\mathcal{U})}^{-1} \left((X_{i}, Y_{i})^{\mathsf{T}} - \widehat{\mu}_{k(\mathcal{U})}\right)\right\}}{2\pi \sqrt{\left|\widehat{\Sigma}_{k(\mathcal{U})}\right|}}$

Asymptotic Distribution of $\rho^2_{\mathcal{G}(S)}$ — General

Define

$$\mu_{X^{c}Y^{d},k(\mathcal{S})} = \mathbb{E}\left[\left(\frac{X - \mathbb{E}[X|Z=k]}{\sqrt{\operatorname{var}(X|Z=k)}}\right)^{c} \left(\frac{Y - \mathbb{E}[Y|Z=k]}{\sqrt{\operatorname{var}(Y|Z=k)}}\right)^{d} \middle| Z = k\right], \ c, d \in \mathbb{N}$$

Theorem:

Assume $\mu_{X^4,k(\mathcal{S})} < \infty$ and $\mu_{Y^4,k(\mathcal{S})} < \infty$ for all $k = 1, \dots, K$. Then

$$\sqrt{n}\left(R_{\mathcal{G}(\mathcal{S})}^{2}-\rho_{\mathcal{G}(\mathcal{S})}^{2}\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0,\gamma_{(\mathcal{S})}^{2}\right)$$

where

$$\gamma_{(S)}^2 = \sum_{k=1}^{K} \left(A_{k(S)} + B_{k(S)} \right) + 2 \sum_{1 \le k < r \le K} C_{kr(S)}$$

$$\begin{split} A_{k(S)} &= p_{k(S)} \left[\rho_{k(S)}^{4} \left(\mu_{X^{4},k(S)} + 2\mu_{X^{2}Y^{2},k(S)} + \mu_{Y^{4},k(S)} \right) - 4\rho_{k(S)}^{3} \left(\mu_{X^{3}Y,k(S)} + \mu_{XY^{3},k(S)} \right) \right. \\ &+ 4\rho_{k(S)}^{2} \mu_{X^{2}Y^{2},k(S)} \right] \\ B_{k(S)} &= p_{k(S)} \left(1 - p_{k(S)} \right) \rho_{k(S)}^{4} \\ C_{kr(S)} &= -p_{k(S)} p_{r(S)} \rho_{k(S)}^{2} \rho_{r(S)}^{2} \end{split}$$

Corollary:

In the special case where (X, Y)|(Z = k) follows a bivariate Gaussian distribution for all k = 1, ..., K, $\gamma^2_{(S)}$ becomes

$$\gamma_{(S)}^{2} = \sum_{k=1}^{K} \left[4 \, p_{k(S)} \, \rho_{k(S)}^{2} \left(1 - \rho_{k(S)}^{2} \right)^{2} + p_{k(S)} \left(1 - p_{k(S)} \right) \, \rho_{k(S)}^{4} \right] \\ - 2 \sum_{1 \le k < r \le K} p_{k(S)} \, p_{r(S)} \, \rho_{k(S)}^{2} \, \rho_{r(S)}^{2}$$

which only depends on $p_{k(\mathcal{S})}$ and $\rho_{k(\mathcal{S})}^2$, $k = 1, \ldots, K$

Theorem:

Suppose

•
$$\int \left\| (x,y)^{\mathsf{T}} \right\|^2 P\left((dx,dy)^{\mathsf{T}} \right) < \infty$$

• for each k = 1, ..., K, there is unique $B_{k(U)} = \arg \min_{B_k} W(B_k, P)$

As the sample size $n
ightarrow \infty$,

$$\widehat{B}_{\mathcal{K}(\mathcal{U})} o B_{\mathcal{K}(\mathcal{U})}$$
 almost surely

and

$$W(\widehat{B}_{\mathcal{K}(\mathcal{U})}, P_n) \to W(B_{\mathcal{K}(\mathcal{U})}, P)$$
 almost surely

Asymptotic Distribution of $\rho^2_{\mathcal{G}(\mathcal{U})}$ — General

Define

$$\mu_{X^{c}Y^{d},k(\mathcal{U})} = \mathbb{E}\left[\left(\frac{X - \mathbb{E}[X|\widetilde{Z}=k]}{\sqrt{\operatorname{var}(X|\widetilde{Z}=k)}}\right)^{c} \left(\frac{Y - \mathbb{E}[Y|\widetilde{Z}=k]}{\sqrt{\operatorname{var}(Y|\widetilde{Z}=k)}}\right)^{d} \middle| \widetilde{Z} = k\right], \ c, d \in \mathbb{N}$$

Theorem:

Assume $\mu_{X^4,k(\mathcal{U})} < \infty$ and $\mu_{Y^4,k(\mathcal{U})} < \infty$ for all $k = 1, \dots, K$. Then

$$\sqrt{n}\left(R_{\mathcal{G}(\mathcal{U})}^{2}-\rho_{\mathcal{G}(\mathcal{U})}^{2}\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0,\gamma_{(\mathcal{U})}^{2}\right)$$

where

$$\gamma_{(\mathcal{U})}^2 = \sum_{k=1}^{K} \left(A_{k(\mathcal{U})} + B_{k(\mathcal{U})} \right) + 2 \sum_{1 \le k < r \le K} C_{kr(\mathcal{U})}$$

$$\begin{split} A_{k(\mathcal{U})} &= p_{k(\mathcal{U})} \left[\rho_{k(\mathcal{U})}^{4} \left(\mu_{X^{4},k(\mathcal{U})} + 2\mu_{X^{2}Y^{2},k(\mathcal{U})} + \mu_{Y^{4},k(\mathcal{U})} \right) - 4\rho_{k(\mathcal{U})}^{3} \left(\mu_{X^{3}Y,k(\mathcal{U})} + \mu_{XY^{3},k(\mathcal{U})} \right) \right. \\ &\left. + 4\rho_{k(\mathcal{U})}^{2} \mu_{X^{2}Y^{2},k(\mathcal{U})} \right] \\ B_{k(\mathcal{U})} &= p_{k(\mathcal{U})} \left(1 - p_{k(\mathcal{U})} \right) \rho_{k(\mathcal{U})}^{4} \\ C_{kr(\mathcal{U})} &= - p_{k(\mathcal{U})} p_{r(\mathcal{U})} \rho_{k(\mathcal{U})}^{2} \rho_{r(\mathcal{U})}^{2} \end{split}$$

Corollary:

In the special case where $(X, Y)|(\widetilde{Z} = k)$ follows a bivariate Gaussian distribution for all k = 1, ..., K, $\gamma^2_{(U)}$ becomes

$$\gamma_{(\mathcal{U})}^{2} = \sum_{k=1}^{K} \left[4 p_{k(\mathcal{U})} \rho_{k(\mathcal{U})}^{2} \left(1 - \rho_{k(\mathcal{U})}^{2} \right)^{2} + p_{k(\mathcal{U})} \left(1 - p_{k(\mathcal{U})} \right) \rho_{k(\mathcal{U})}^{4} \right] \\ - 2 \sum_{1 \le k < r \le K} p_{k(\mathcal{U})} p_{r(\mathcal{U})} \rho_{k(\mathcal{U})}^{2} \rho_{r(\mathcal{U})}^{2}$$

which only depends on $p_{k(\mathcal{U})}$ and $\rho_{k(\mathcal{U})}^2$, $k = 1, \ldots, K$

Simulation: Numerical Verification of Asymptotic Distributions

Simulation: Numerical Verification of Asymptotic Distributions

Simulation: Numerical Verification of Confidence Intervals

Simulation: Numerical Verification of Confidence Intervals

Simulation: Choose K

Simulation: Choose K

Simulation: Power Analysis

Simulation: Power Analysis

Real Data Application 1

Real Data Application 2

• Cdc25b-Lats2 receive the highest $R^2_{G(U)}$ value (Mukai et al., 2015)

Lats2 appears in the top 25% pairs that have the highest R²_{G(U)} values (Yabuta et al., 2007)

Summary

- A mixture of linear dependences
- Generalized (population and sample) R^2 measures
 - Supervised scenario
 - Unsupervised scenario
- Statistical inference of the generalized population R^2 measures
- K-lines algorithm

Future Directions

- A sequential test for $K = 1, 2, \ldots, K_{max}$
- Rank-based generalized R^2 measures

Generalized R^2 Measures for a Mixture of Bivariate Linear Dependences

by Jingyi Jessica Li, Xin Tong, and Peter J. Bickel

arXiv:1811.09965

R package gR2

https://github.com/lijy03/gR2

Acknowledgements

Xin Tong (USC) Peter J. Bickel (UC Berkeley)

