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Motivation: Maximal Information Coefficient
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Motivation: Maximal Information Coefficient

These maximal correlation values < 1 were due to lack of convergence
2



Motivation: Maximal Information Coefficient

Are these “non-functional” patterns important? 3



Motivation: Gene Expression Analysis
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Five functionally related genes in A. thaliana (Kim et al., 2012)

Red: root tissues; Blue: shoot tissues
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Motivation: Simpson’s Paradox
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Motivation: Simpson’s Paradox
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Review: Scalar-valued Association Measures

Measure: IR× IR→ IR

Relationship Type Measure

Functional

Linear Pearson correlation

Monotone
Spearman’s rank correlation

Kendall’s τ

General

maximal correlation (Rényi, 1959)

correlation curves (Bjerve and Doksum, 1993)

(1-to-1) principal curves (Delicado and Smrekar, 2009)

generalized measures of correlation (Zheng et al., 2012)

count statistics (Wang et al., 2014)

G 2 statistic (Wang et al., 2017)

Dependent

Hoeffding’s D

mutual information

HSIC (Gretton et al., 2005)

distance correlation (Székely et al., 2007)

maximal information coefficient (Reshef et al., 2011)

HHG association test statistic (Heller et al., 2012)
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Review: Scalar-valued Association Measures

Measure: IR× IR→ IR

Measures for Relationship Type Interpretability Flexibility
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Mixture of linear dependences

• Widespread

• Easy to interpret

• Calling for a new powerful measure
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Review: Mixture of Linear Dependences

Over 40 years

• Statistics

• Economics

• Social sciences

• Machine

learning

Model parameter estimation & inference:

• (Quandt and Ramsey, 1978; De Veaux, 1989)

• (Jacobs et al., 1991; Jones and McLachlan,

1992)

• (Wedel and DeSarbo, 1994; Turner, 2000)

• (Hawkins et al., 2001; Hurn et al., 2003)

• (Leisch, 2008; Benaglia et al., 2009)

• (Scharl et al., 2009)

Algorithm:

• (Murtaph and Raftery, 1984)

Association measure: question of interest
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Formulation: Supervised and Unsupervised Scenarios

• X ,Y ∈ IR — random variables whose relationship is of interest

• observed

• Z ∈ {1, . . . ,K} — indicator of linear relationship

• observed (supervised scenario)

• hidden (unsupervised scenario)

• When K = 1, only the supervised scenario exists
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Supervised Population Generalized R2: ρ2
G(S)

Given the joint distribution of (X ,Y ,Z ), denote

pk(S) := IP(Z = k) , k = 1, . . . ,K , with
K∑

k=1

pk(S) = 1 .

and

ρk(S) :=
cov(X ,Y |Z = k)√

var(X |Z = k)
√

var(Y |Z = k)

as the population Pearson correlation of (X ,Y )|Z = k.

Definition: ρ2
G(S)

The supervised population generalized R2 is defined as

ρ2
G(S) := IEZ

[
ρ2
Z(S)

]
= IEZ

[
cov2(X ,Y |Z )

var(X |Z )var(Y |Z )

]
=

K∑
k=1

pk(S) · ρ2
k(S)
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K -line Interpretation the Supervised Scenario

• Denote by β = (a, b, c)T a line{
(x , y)T : ax + by + c = 0, where a, b, c ∈ IR with a 6= 0 or b 6= 0

}
⊂ IR2

• Perpendicular distance between (x , y)T and β is

d⊥ : IR2 × IR3 7→ IR:

d⊥
(
(x , y)T,β

)
=
|ax + by + c |√

a2 + b2

Symmetric between x and y

Definition: Supervised Population k-th Line Center

βk(S) = arg min
β

IE
[
d2
⊥
(
(X ,Y )T,β

)∣∣Z = k
]
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K -line Interpretation the Supervised Scenario

Definition: Supervised Population k-th Line Center

βk(S) = arg min
β

IE
[
d2
⊥
(
(X ,Y )T,β

)∣∣Z = k
]

corresponds to the first principal component of

Σk(S) :=

[
var(X |Z = k) cov(X ,Y |Z = k)

cov(X ,Y |Z = k) var(Y |Z = k)

]

(Jolliffe, 2011)

BK(S) = {β1(S), . . . ,βK(S)}: supervised population line centers
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Supervised Sample Generalized R2: R2
G(S)

Consider a sample (X1,Y1,Z1), . . . , (Xn,Yn,Zn)

Definition: R2
G(S)

The supervised sample generalized R2 is defined as

R2
G(S) :=

K∑
k=1

p̂k(S) · ρ̂2
k(S)

where

p̂k(S) :=
1

n

n∑
i=1

1I(Zi = k)

ρ̂2
k(S) :=

[∑n
i=1(Xi − X̄k(S))(Yi − Ȳk(S))1I(Zi = k)

]2[∑n
i=1(Xi − X̄k(S))21I(Zi = k)

] [∑n
i=1(Yi − Ȳk(S))21I(Zi = k)

]
with

• X̄k(S) = 1
nk(S)

∑n
i=1 Xi1I(Zi = k); Ȳk(S) = 1

nk(S)

∑n
i=1 Yi1I(Zi = k)

• nk(S) =
∑n

i=1 1I(Zi = k)
13



Unsupervised Population Line Centers

Given the joint distribution of (X ,Y )

Definition: BK(U)

The unsupervised population line centers BK(U) = {β1(U), . . . ,βK(U)}

BK(U) ∈ arg min
BK

IE

[
min
β∈BK

d2
⊥
(
(X ,Y )T,β

)]
βk(U) =

(
ak(U), bk(U), ck(U)

)T
: k-th unsupervised population line center

Remark: BK(U) is not unique in general
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BK(U) 6= BK(S)

−6

−3

0

3

−5.0 −2.5 0.0 2.5
X

Y Z
●

●

1

2

Supervised

−6

−3

0

3

−5.0 −2.5 0.0 2.5
X

Y

Unsupervised

X - Y + 1 = 0, ρ1(S)
2 = 0.49

X - Y - 1 = 0, ρ2(S)
2 = 0.49

1.35X - Y + 1.15 = 0, ρ1(U)
2 = 0.65

1.35X - Y - 1.15 = 0, ρ2(U)
2 = 0.65
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Random Surrogate Index Z̃ ∈ {1, . . . ,K}

Given the joint distribution of (X ,Y )

Definition: Z̃

Suppose

• unique BK(U) = {β1(U), . . . ,βK(U)}
• zero probability that (X ,Y ) is equally close to more than one βk(U)

We define a random surrogate index Z̃ as

Z̃ := arg min
k∈{1,...,K}

d⊥
(
(X ,Y )T,βk(U)

)
which is uniquely determined by (X ,Y ) except in a measure zero set

If d⊥
(
(X ,Y )T,βk(U)

)
< minr 6=k d⊥

(
(X ,Y )T,βr(U)

)
, then Z̃ = k

16



Unsupervised Population Generalized R2: ρ2
G(U)

Given the joint distribution of (X ,Y )

Definition: ρ2
G(U)

The unsupervised population R2 is defined as

ρ2
G(U) :=

K∑
k=1

pk(U) · ρ2
k(U)

where

pk(U) := IP(Z̃ = k)

ρ2
k(U) :=

cov2(X ,Y |Z̃ = k)

var(X |Z̃ = k) var(Y |Z̃ = k)

Remark: ρ2
G(U) ≥ ρ

2
G(S)
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Unsupervised Sample Line Centers

Consider a sample (X1,Y1), . . . , (Xn,Yn)

Definition: B̂K(U)

The unsupervised sample line centers B̂K(U) =
{
β̂1(U), . . . , β̂K(U)

}
B̂K(U) ∈ arg min

BK

1

n

n∑
i=1

min
β∈BK

d2
⊥
(
(Xi ,Yi )

T,β
)

β̂k(U) =
(
âk(U), b̂k(U), ĉk(U)

)T

: k-th unsupervised sample line center

Remark: B̂K(U) is not unique in general
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K -lines Clustering Algorithm

19



Sample Surrogate Index
̂̃
Z 1, . . . ,

̂̃
Z n

Consider a sample (X1,Y1), . . . , (Xn,Yn)

Definition:
̂̃
Z i

Suppose

• unique B̂K(U) =
{
β̂1(U), . . . , β̂K(U)

}
For each (Xi ,Yi ), we define its sample surrogate index

̂̃
Z i := arg min

k∈{1,...,K}
d⊥
(

(Xi ,Yi )
T, β̂k(U)

)
, i = 1, . . . , n

which is uniquely determined by the sample

̂̃
Z i = k ⇐⇒ i ∈ Ck ,

Ck : the k-th cluster output by the K -lines clustering algorithm, assuming

the global minimum is achieved
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Unsupervised Sample Generalized R2: R2
G(U)

Consider a sample (X1,Y1), . . . , (Xn,Yn)

Definition: R2
G(U)

The unsupervised sample generalized R2 is defined as

R2
G(U) :=

K∑
k=1

p̂k(U) · ρ̂2
k(U)

where

p̂k(U) =
1

n

n∑
i=1

1I

(̂̃
Z i = k

)

ρ̂2
k(U) =

[∑n
i=1

(
Xi − X̄k(U)

) (
Yi − Ȳk(U)

)
1I

(̂̃
Z i = k

)]2

[∑n
i=1

(
Xi − X̄k(U)

)2
1I

(̂̃
Z i = k

)][∑n
i=1

(
Yi − Ȳk(U)

)2
1I

(̂̃
Z i = k

)]
with

• X̄k(U) = 1
nk(U)

∑n
i=1 Xi1I

(̂̃
Z i = k

)
; Ȳk(U) = 1

nk(U)

∑n
i=1 Yi1I

(̂̃
Z i = k

)
• nk(U) =

∑n
i=1 1I

(̂̃
Z i = k

)
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Choose K in the Unsupervised Scenario

Criteria

1. Average within-cluster sum of perpendicular distances

Definition: W (BK ,Pn)

W (BK ,Pn) :=
1

n

n∑
i=1

min
β∈BK

d2
⊥
(
(Xi ,Yi )

T,β
)

=

∫
min
β∈BK

d2
⊥
(
(x , y)T,β

)
Pn

(
(dx , dy)T

)
,

Pn: the empirical measure by placing mass n−1 at each (Xi ,Yi )
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Choose K in the Unsupervised Scenario

Criteria

2. Akaike information criterion (AIC)

Definition: AIC(K )

AIC(K ) := 12K − 2
n∑

i=1

log p

(
Xi ,Yi

∣∣∣∣ {p̂k(U), µ̂k(U), Σ̂k(U)

}K

k=1

)
where

p

(
Xi ,Yi

∣∣∣∣ {p̂k(U), µ̂k(U), Σ̂k(U)

}K

k=1

)

=
K∑

k=1

p̂k(U)

exp
{
− 1

2

(
(Xi ,Yi )

T − µ̂k(U)

)T
Σ̂−1

k(U)

(
(Xi ,Yi )

T − µ̂k(U)

)}
2π

√∣∣∣Σ̂k(U)

∣∣∣
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Asymptotic Distribution of ρ2
G(S) — General

Define

µX cY d ,k(S) = IE

(X − IE[X |Z = k]√
var(X |Z = k)

)c (
Y − IE[Y |Z = k]√

var(Y |Z = k)

)d
∣∣∣∣∣∣Z = k

 , c, d ∈ IN

Theorem:

Assume µX 4,k(S) <∞ and µY 4,k(S) <∞ for all k = 1, . . . ,K . Then

√
n
(
R2
G(S) − ρ2

G(S)

)
d−→ N

(
0, γ2

(S)

)
where

γ2
(S) =

K∑
k=1

(
Ak(S) + Bk(S)

)
+ 2

∑∑
1≤k<r≤K

Ckr(S)

Ak(S) = pk(S)

[
ρ

4
k(S)

(
µX4,k(S) + 2µX2Y 2,k(S) + µY 4,k(S)

)
− 4ρ3

k(S)

(
µX3Y ,k(S) + µXY 3,k(S)

)
+4ρ2

k(S)µX2Y 2,k(S)

]
Bk(S) = pk(S)

(
1− pk(S)

)
ρ

4
k(S)

Ckr(S) = − pk(S) pr(S) ρ
2
k(S) ρ

2
r(S)

where pk(S) and ρk(S) are defined in (10) and (10), respectively.
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Asymptotic Distribution of ρ2
G(S) — Bivariate Gaussian Mixture

Corollary:

In the special case where (X ,Y )|(Z = k) follows a bivariate Gaussian

distribution for all k = 1, . . . ,K , γ2
(S) becomes

γ2
(S) =

K∑
k=1

[
4 pk(S) ρ

2
k(S)

(
1− ρ2

k(S)

)2

+ pk(S)

(
1− pk(S)

)
ρ4
k(S)

]
− 2

∑∑
1≤k<r≤K

pk(S) pr(S) ρ
2
k(S) ρ

2
r(S)

which only depends on pk(S) and ρ2
k(S), k = 1, . . . ,K
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Strong Consistency of the K -lines Clustering

Theorem:

Suppose

•
∫ ∥∥(x , y)T

∥∥2
P
(
(dx , dy)T

)
<∞

• for each k = 1, . . . ,K , there is unique Bk(U) = arg minBk
W (Bk ,P)

As the sample size n→∞,

B̂K(U) → BK(U) almost surely

and

W (B̂K(U),Pn)→W (BK(U),P) almost surely
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Asymptotic Distribution of ρ2
G(U) — General

Define

µX cY d ,k(U) = IE

X − IE[X |Z̃ = k]√
var(X |Z̃ = k)

c Y − IE[Y |Z̃ = k]√
var(Y |Z̃ = k)

d ∣∣∣∣∣∣ Z̃ = k

 , c, d ∈ IN

Theorem:

Assume µX 4,k(U) <∞ and µY 4,k(U) <∞ for all k = 1, . . . ,K . Then

√
n
(
R2
G(U) − ρ2

G(U)

)
d−→ N

(
0, γ2

(U)

)
where

γ2
(U) =

K∑
k=1

(
Ak(U) + Bk(U)

)
+ 2

∑∑
1≤k<r≤K

Ckr(U)

Ak(U) = pk(U)

[
ρ

4
k(U)

(
µX4,k(U) + 2µX2Y 2,k(U) + µY 4,k(U)

)
− 4ρ3

k(U)

(
µX3Y ,k(U) + µXY 3,k(U)

)
+4ρ2

k(U)µX2Y 2,k(U)

]
Bk(U) = pk(U)

(
1− pk(U)

)
ρ

4
k(U)

Ckr(U) = − pk(U) pr(U) ρ
2
k(U) ρ

2
r(U)

where pk(S) and ρk(S) are defined in (10) and (10), respectively.
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Asymptotic Distribution of ρ2
G(U) — Bivariate Gaussian Mixture

Corollary:

In the special case where (X ,Y )|(Z̃ = k) follows a bivariate Gaussian

distribution for all k = 1, . . . ,K , γ2
(U) becomes

γ2
(U) =

K∑
k=1

[
4 pk(U) ρ

2
k(U)

(
1− ρ2

k(U)

)2

+ pk(U)

(
1− pk(U)

)
ρ4
k(U)

]
− 2

∑∑
1≤k<r≤K

pk(U) pr(U) ρ
2
k(U) ρ

2
r(U)

which only depends on pk(U) and ρ2
k(U), k = 1, . . . ,K
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Simulation: Numerical Verification of Asymptotic Distributions

(X ,Y )|(Z = k) ∼ N (µk ,Σk)
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Simulation: Numerical Verification of Asymptotic Distributions

(X ,Y )|(Z = k) ∼ tνk (µk ,Σk)
Supervised UnsupervisedSetting
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Simulation: Numerical Verification of Confidence Intervals

(X ,Y )|(Z = k) ∼ N (µk ,Σk)
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Simulation: Numerical Verification of Confidence Intervals

(X ,Y )|(Z = k) ∼ tνk (µk ,Σk)
Supervised UnsupervisedSetting
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Simulation: Choose K

(X ,Y )|(Z = k) ∼ N (µk ,Σk)
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Simulation: Choose K

(X ,Y )|(Z = k) ∼ tνk (µk ,Σk)
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Simulation: Power Analysis
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Simulation: Power Analysis
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Real Data Application 1
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GSL gene pairs in arabidopsis RNA−seq data
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Real Data Application 2

MIC RG(U)
2  (K = 2)
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Cell−cycle gene pairs in single−cell RNA−seq data

• Cdc25b-Lats2 receive the highest R2
G(U) value (Mukai et al., 2015)

• Lats2 appears in the top 25% pairs that have the highest R2
G(U)

values (Yabuta et al., 2007) 38



Summary & Future Directions

Summary

• A mixture of linear dependences

• Generalized (population and sample) R2 measures

• Supervised scenario

• Unsupervised scenario

• Statistical inference of the generalized population R2 measures

• K -lines algorithm

Future Directions

• A sequential test for K = 1, 2, . . . ,Kmax

• Rank-based generalized R2 measures
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Paper and Software

Generalized R2 Measures for a Mixture of Bivariate Linear

Dependences

by Jingyi Jessica Li, Xin Tong, and Peter J. Bickel

arXiv:1811.09965

R package gR2

https://github.com/lijy03/gR2

40

https://github.com/lijy03/gR2


Acknowledgements

Xin Tong

(USC)

Peter J. Bickel

(UC Berkeley)

41


