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Highly Variable Genes (HVGs) vs. Spatially Variable Genes (SVGs)

Informative features to screen for before linear dimension reduction and Euclidean

distance calculation

• HVG detection

• Used in single-cell transcriptomics data analysis

• Identifies genes with high expression variability across single cells

• Helps in clustering cells and identifying subpopulations

• SVG detection

• Used in spatial transcriptomics data analysis

• Identifies genes with high expression variability across spatial locations

• Helps in identifying spatial patterns and regions with distinct molecular signatures
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31 SVG Detection Methods

There is no consensus in SVG definitions



Existing Review and Benchmark Studies

Review

• Adhikari et al., Computational and Structural Biotechnology Journal, 2024

(19 methods)

Benchmark studies

• Charitakis et al., Genome Biology, 2023 (6 methods)

• Chen et al., Genome Biology, 2024 (7 methods)

• Li et al., bioRxiv, 2023 (14 methods)

Categorization of SVG definitions is not the focus



Proposal: Three Categories of SVGs

1. Overall SVGs:

• Informative genes for downstream analysis (e.g., spatial domain identification)

2. Cell-type-specific SVGs:

• Revealing spatial variation within a cell type =⇒ cell subpopulations or states

3. Spatial-domain-marker SVGs:

• Marker genes to annotate and interpret spatial domains already detected

Relationships among the three categories depends on

• Detection methods’ null and alternative hypotheses



SVG Categories: Overall, Cell-type-specific, and Spatial-domain-marker SVGs
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Categorization of 31 SVG Detection Methods



Hierarchy of 31 SVG Detection Methods (Part 1: Three Categories)
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Hierarchy of 31 SVG Detection Methods (Part 2: Overall SVGs)
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Hierarchy of 31 SVG Detection Methods (Part 3: Kernel-free Methods)
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Hierarchy of 31 SVG Detection Methods (Part 4: Kernel-based Methods)
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Hierarchy of 31 SVG Detection Methods (Part 5: Kernel-based Methods)
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Hierarchy of 31 SVG Detection Methods (Part 6: Graph-based Methods)
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Notations for SVG Detection (Per Gene)

For a given gene with expression levels measured at n spatial spots

Observed variables at spot i = 1, . . . , n

• Gene expression level
• yi ∈ R
• Yi ∈ R: random variable notation

• 2D spatial location
• si = (si1, si2)> ∈ R2

• s = [s1, . . . , sn]> ∈ Rn×2: spatial location matrix

Inferred variables at spot i = 1, . . . , n

• Spatial-domain indicator vector
• di = (di1, . . . , diL)> ∈ {0, 1}L, with

∑L
l=1 dil = 1

• Cell-type proportion vector
• ci = (ci1, . . . , ciK )> ∈ [0, 1]K , with

∑K
k=1 cik = 1



Hypothesis Tests Used for SVG Detection

Among the 31 SVG detection methods, 21 use frequentist inference to detect SVGs:

• Define a test statistic

• Derive the test statistic’s null distribution

• Convert the test statistic value to a p-value

Types of null hypotheses:

• Dependence tests: a gene’s expression level is independent of spatial location

• Regression-based tests: spatial location has no “effect” on a gene’s expression level

• Fixed-effect tests

• Random-effect tests (variance component tests)



Dependence Tests

Null hypothesis:

H0 : Y ⊥ S

Assume that (y1, s1), . . . , (yn, sn) are independently sampled from the distribution of (Y ,S)

If H0 is rejected, the gene is detected as an overall SVG

Nine methods adopt the dependence test formulation:

• Conventional test statistics (with theoretical null distribution):

SPARK-X, Hotspot, MERINGUE, BinSpect, scGCO

• Unconventional test statistics (with permutation-based null distribution):

Trendsceek, singlecellHaystack, RayleighSelection, SpaGene



SPARK-X (Zhu et al., Genome Biology, 2021)

SPARK-X: a non-parametric test that compares two n × n spot similarity matrices:

• Matrix 1 based on the gene’s expression levels at the n spots

• Matrix 2 based on the kernel-transformed spatial locations of the n spots

To detect diverse spatial patterns, SPARK-X transforms the spatial locations si = (si1, si2),

i = 1, . . . , n, using two kernel-based functions:

• Gaussian transformation s ′il = exp
(
−s2il
2σ2

l

)
, l = 1, 2, to detect clustered or focal patterns

• Cosine transformation s ′il = cos
(
2πsil
φl

)
, l = 1, 2, to detect periodic patterns

where σ1, σ2, φ1, and φ2 are tuning parameters

Test statistic: Pearson correlation of the two matrices

Theoretical null: mixture chi-square distribution
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singlecellHaystack (Vandenbon and Diez, Nature Communications, 2020)

singlecellHaystack: a unconventional test involves two pre-processing steps:

• Binarize the gene’s expression levels at spots into two states: detected and undetected

• Divide the 2D Euclidean space into grid points as coarse spatial coordinates

singlecellHaystack uses a 2D independent Gaussian kernel, assuming independence of the

two dimensions of the Euclidean space, to define three distributions of grid points:

• A reference distribution based on all grid points

• A conditional distribution based on grid points in the detected state

• Another conditional distribution based on grid points in the undetected state

Test statistic: sum of Kullback-Leibler divergences of the two conditional distributions

from the reference distribution

Permutation null
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Regression-based Tests

Two types: fixed-effect tests and random-effect tests

Linear mixed-effect model (LMM) for a given gene:

Yi = β0 + x>i β + z>i γ + εi

• Yi : a gene’s expression level at spot i (response variable)

• β0: (fixed) intercept

• xi ∈ Rp: fixed-effect covariates of spot i

• β ∈ Rp: fixed effects

• zi ∈ Rq: random-effect covariates of spot i

• γ ∈ Rq: random effects with zero means IE[γ] = 0 and covariance matrix

Cov(γ) ∈ Rq×q

• εi : independent random error at spot i with IE[εi ] = 0

• γ ⊥ ε = (ε1, . . . , εn)>
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Fixed-effect Tests

Yi = β0 + x>i β + z>i γ + εi

Fixed-effect tests examine whether xi contribute to IE[Yi ]

If xi makes no contribution, then IE[Yi |xi ] = IE[Yi ]

Null hypothesis

H0 : β = 0

implies IE[Yi |xi ] = IE[Yi ], i = 1, . . . , n
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Random-effect Tests

Yi = β0 + x>i β + z>i γ + εi

Random-effect tests examine whether zi contribute to Var(Yi ):

Var(Yi ) = Var(IE[Yi |zi ]) + IE[Var(Yi |zi )] = z>i Cov(γ)zi + Var(εi )

If zi makes no contribution, then Var(IE[Yi |zi ]) = 0

Null hypothesis

H0 : Cov(γ) = 0

implies Var(IE[Yi |zi ]) = 0, i = 1, . . . , n
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Generalization of LMM

Assume εi
iid∼ N(0, σ2) and γ ⊥ ε = (ε1, . . . , εn)>

Yi = β0 + x>i β + z>i γ + εi ⇐⇒

{
Yi | µi

ind∼ N(µi , σ
2)

µi = β0 + x>i β + z>i γ

Generalized LMM (GLMM): The distribution of Yi can be non-Gaussian

e.g.,

{
Yi | µi

ind∼ Poisson(µi )

log(µi ) = β0 + x>i β + z>i γ

Generalized non-parametric mixed-effect model:

The effects of xi is modeled as non-parametric:

e.g., log(µi ) = β0 + f (xi ) + z>i γ

Q: Is spatial location si modeled as xi or zi?
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Fixed-effect Tests for SVG Detection

Six methods use regression fixed-effect tests, covering all three SVG categories:

• Overall SVGs: SPADE

• xi includes si

• Cell-type-specific SVGs: C-SIDE, CTSV, and spCV

• xi includes si and ci (cell-type proportion vector)

• Spatial-domain-marker SVGs: SpaGCN and DESpace

• xi includes si and di (spatial-domain indicator vector)



SPADE (Bae et al., Nucleic Acids Research, 2021)

SPADE: linear-model fixed-effect test that detects overall SVGs:

µi = β0 + xi (s)>β

• xi (s): principal components of 512 features from a pre-trained convolutional neural

network applied to the n spots’ spatial locations s in an H&E image

Null hypothesis:

H0 : β = 0

If H0 is rejected, the gene is detected as an overall SVG

Test: R package limma

(Smyth, G. K., 2005 ⇒ Ritchie et al., Nucleic Acids Research, 2015)
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spVC (Yu and Li, Genome Biology, 2024)

spVC: fixed-effect test that detects cell-type-specific SVGs

Assume

Yi | µi
ind∼ Poisson(µi )

Two-step procedure:

1. A reduced model without interactive effects between ci and si :

log(µi ) = β0 +
K∑

k=1

cikβk + f0(si )

It tests two null hypotheses:

• H0 : β = (β1, . . . , βK )> = 0 using the likelihood ratio test

• H0 : f0(·) = 0 using the Wald test

If both null hypotheses are rejected, it proceeds to the second step



spVC (Yu and Li, Genome Biology, 2024)

2. A full model with interactive effects between ci and si :

log(µi ) = β0 +
K∑

k=1

cikβk + f0(si ) +
K∑

k=1

cik fk(si )

It tests if any of the interactive effects f1(·), . . . , fK (·) are zero using the likelihood ratio test

If

H0 : fk(·) = 0

is rejected, the gene is detected as a SVG specific to cell type k
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DESpace (Cai et al., Bioinformatics, 2024)

DESpace: fixed-effect test that detects spatial-domain-marker SVGs

Assume

Yi | µi
ind∼ NegativeBinomial(µi , φ)

log(µi ) = β0 +
L∑

l=1

dilβl

where βl indicates the effect of spatial domain l

If

H0 : βl = 0

is rejected, the gene is detected as a marker SVG of spatial domain l
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Random-effect Tests for SVG Detection

Six methods use regression random-effect tests to detect overall SVGs:

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts

Yi = β0 + x>i β + z>i γ(s) + εi

With n spots, zi = (zi1, . . . , zin)> ∈ {0, 1}n is a binary indicator vector for spot i s.t.

zii = 1 ; zij = 0 if j 6= i

Random-effect vector γ(s) = (γ1(s1), . . . , γn(sn))> ∈ Rn has

γi (si ) indicating the random effect of si

Cov(γ(s)) is assumed to depend on the spatial proximity of s1, . . . , sn via a kernel

If
H0 : Cov(γ(s)) = 0

is rejected, the gene is detected as an overall SVG
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SpatialDE (Svensson et al., Nature Methods, 2018)

SpatialDE: a linear random-effect model:

Yi = β0 + z>i γ(s) + εi

• The random errors ε1, . . . , εn
iid∼ N(0, δ)

• The random effects γ(s) ∼ MVN(0, σ2s ·K(s))

The kernel matrix K(s) = [K (si , sj)]n×n is specified by a kernel function K (·, ·)

This model is essentially a Gaussian process

If

H0 : σ2s = 0

is rejected, the gene is detected as an overall SVG



Discussion: Power vs. Specificity Trade-off

26 methods for detecting overall SVGs:

9 kernel-based methods vs. 17 other methods (kernel-free or graph-based)

Kernel-based methods have

• Higher specificity for targeted patterns

• Lower overall power for other patterns



Discussion: Challenges in Detecting Non-Global Expression Patterns

1. Small regions of interests (ROIs)

• Spatial-domain-marker SVGs by first identifying ROIs as spatial domains (e.g., SpaGCN)

2. Spatial-Domain-Specific SVGs

• Genes with spatial patterns in small ROIs but not marker genes

• No existing methods

3. Cell-Type-Specific SVGs

• Easily missed if cell types have small proportions

• Existing methods’ model goodness-of-fit

4. Sharp Expression Changes

• Genes with sharp changes at tissue layer boundaries (e.g., Belayer)

• Adding H&E image can help refine tissue boundaries

Future direction: Incorporate knowledge on “interesting genes” to improve specificity
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Discussion: Scalability

1. Calculate a summary statistic for each gene.

2. Convert the summary statistic to a p-value (frequentist methods only)

Summary Statistic Calulation (n: number of spatial spots)

• Gaussian process: O(n3) in SpatialDE and SPARK

• Nearest-neighbor Gaussian process approximation: O(n) in nnSVG

p-value Conversion

• Fast if closed-form null distribution is available (conventional statistics)

• Computationally intensive if by permutation (unconventional statistics)

Improving Scalability

• Use approximation algorithms to speed up summary statistic calculation

• Reduce number of permutations in the p-value conversion step



Future Direction 1: Accommodating Technological Differences

Two Key Differences:

• Spatial Resolution

• Imaging-based Technologies: Single-cell or subcellular resolution

• Sequencing-based Technologies: Multicellular level, coarser resolution

• Positional Randomness

• Structured grids (e.g., Spatial Transcriptomics, 10x Visium)

• Unstructured spots (e.g., Slide-seq, MERFISH, SeqFISH)

Current Limitations:

• Most SVG detection methods lack consideration of these technological differences

• Lack of consensus on pre-processing and modeling SRT data
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Future Direction 2: Enhancing Statistical Rigor and Method Benchmarking

Challenges:

• Double-dipping: Same data analyzed more than once, leading to confirmation bias

• Example: Spatial-domain-marker SVG detection

Strategies:

• Use in silico negative control data to remove spurious discoveries (e.g., ClusterDE)

• Develop fast visualization tools for interpreting top-detected SVGs

Method Benchmarking:

• Benchmarking requires well-annotated datasets with SVG ground truths

• Synthetic datasets and realistic simulators (e.g., SRTsim, scDesign3)

• No method is optimal in every aspect; benchmarking should be specific to data

characteristics and align with biological questions



Preprint

Yan, G., Hua, S. H., & Li, J. J. (2024). Categorization of 31 computational methods

to detect spatially variable genes from spatially resolved transcriptomics data. arXiv.

https://arxiv.org/abs/2405.18779

https://arxiv.org/abs/2405.18779

	Regression tests
	Regression tests

