

Categorization of 31 computational methods to detect spatially variable genes (SVGs) from spatial transcriptomics data

Jingyi Jessica Li

Department of Statistics and Data Science University of California, Los Angeles

http://jsb.ucla.edu

joint work with Guan'ao Yan and Shuo Harper Hua

Spatially Transcriptomics Technologies

Lu Wen, Guoqiang Li, Tao Huang, et al., Single-cell technologies: From research to application, The Innovation, Volume 3, Issue 6, 2022, 100342. https://doi.org/10.1016/j.winn.2022.100342

Informative features to screen for before linear dimension reduction and Euclidean distance calculation

- HVG detection
 - Used in single-cell transcriptomics data analysis
 - Identifies genes with high expression variability across single cells
 - Helps in clustering cells and identifying subpopulations

• SVG detection

- Used in spatial transcriptomics data analysis
- Identifies genes with high expression variability across spatial locations
- Helps in identifying spatial patterns and regions with distinct molecular signatures

Highly Variable Genes (HVGs) vs. Spatially Variable Genes (SVGs)

Highly Variable Genes (HVGs) vs. Spatially Variable Genes (SVGs)

https://www.sc-best-practices.org/_images/svg.jpeg

31 SVG Detection Methods

There is no consensus in SVG definitions

Review

• Adhikari et al., *Computational and Structural Biotechnology Journal*, 2024 (19 methods)

Benchmark studies

- Charitakis et al., Genome Biology, 2023 (6 methods)
- Chen et al., Genome Biology, 2024 (7 methods)
- Li et al., *bioRxiv*, 2023 (14 methods)

Categorization of SVG definitions is not the focus

Proposal: Three Categories of SVGs

1. Overall SVGs:

- Informative genes for downstream analysis (e.g., spatial domain identification)
- 2. Cell-type-specific SVGs:
 - Revealing spatial variation within a cell type \implies cell subpopulations or states
- 3. Spatial-domain-marker SVGs:
 - Marker genes to annotate and interpret spatial domains already detected

Relationships among the three categories depends on

• Detection methods' null and alternative hypotheses

SVG Categories: Overall, Cell-type-specific, and Spatial-domain-marker SVGs

Categorization of 31 SVG Detection Methods

Hierarchy of 31 SVG Detection Methods (Part 1: Three Categories)

Hierarchy of 31 SVG Detection Methods (Part 2: Overall SVGs)

Hierarchy of 31 SVG Detection Methods (Part 3: Kernel-free Methods)

Hierarchy of 31 SVG Detection Methods (Part 4: Kernel-based Methods)

Hierarchy of 31 SVG Detection Methods (Part 5: Kernel-based Methods)

Hierarchy of 31 SVG Detection Methods (Part 6: Graph-based Methods)

Notations for SVG Detection (Per Gene)

For a given gene with expression levels measured at n spatial spots

Observed variables at spot $i = 1, \ldots, n$

- Gene expression level
 - $y_i \in \mathbb{R}$
 - $Y_i \in \mathbb{R}$: random variable notation
- 2D spatial location

•
$$\mathbf{s}_i = (s_{i1}, s_{i2})^{ op} \in \mathbb{R}^2$$

• $\mathbf{s} = [\mathbf{s}_1, \dots, \mathbf{s}_n]^\top \in \mathbb{R}^{n \times 2}$: spatial location matrix

Inferred variables at spot $i = 1, \ldots, n$

• Spatial-domain indicator vector

•
$$\mathbf{d}_i = (d_{i1}, \dots, d_{iL})^\top \in \{0, 1\}^L$$
, with $\sum_{l=1}^L d_{il} = 1$

• Cell-type proportion vector

•
$$\mathbf{c}_i = (c_{i1}, \ldots, c_{iK})^{ op} \in [0, 1]^K$$
, with $\sum_{k=1}^K c_{ik} = 1$

Among the 31 SVG detection methods, 21 use frequentist inference to detect SVGs:

- Define a test statistic
- Derive the test statistic's null distribution
- Convert the test statistic value to a p-value

Types of null hypotheses:

- Dependence tests: a gene's expression level is independent of spatial location
- Regression-based tests: spatial location has no "effect" on a gene's expression level
 - Fixed-effect tests
 - Random-effect tests (variance component tests)

Null hypothesis:

$H_0: Y \perp \mathbf{S}$

Assume that $(y_1, \mathbf{s}_1), \ldots, (y_n, \mathbf{s}_n)$ are independently sampled from the distribution of (Y, \mathbf{S})

If H_0 is rejected, the gene is detected as an overall SVG

Nine methods adopt the dependence test formulation:

- **Conventional test statistics** (with theoretical null distribution): SPARK-X, Hotspot, MERINGUE, BinSpect, scGCO
- Unconventional test statistics (with permutation-based null distribution): Trendsceek, singlecellHaystack, RayleighSelection, SpaGene

SPARK-X (Zhu et al., Genome Biology, 2021)

SPARK-X: a non-parametric test that compares two $n \times n$ spot similarity matrices:

- Matrix 1 based on the gene's expression levels at the n spots
- Matrix 2 based on the kernel-transformed spatial locations of the n spots

SPARK-X (Zhu et al., Genome Biology, 2021)

SPARK-X: a non-parametric test that compares two $n \times n$ spot similarity matrices:

- Matrix 1 based on the gene's expression levels at the n spots
- Matrix 2 based on the kernel-transformed spatial locations of the n spots

To detect diverse spatial patterns, SPARK-X transforms the spatial locations $\mathbf{s}_i = (s_{i1}, s_{i2})$, i = 1, ..., n, using two kernel-based functions:

- Gaussian transformation $s'_{il} = \exp\left(\frac{-s^2_{il}}{2\sigma_i^2}\right)$, l = 1, 2, to detect clustered or focal patterns
- Cosine transformation $s'_{il} = \cos\left(rac{2\pi s_{il}}{\phi_l}\right)$, l = 1, 2, to detect periodic patterns

where $\sigma_1,~\sigma_2,~\phi_1,~{\rm and}~\phi_2$ are tuning parameters

SPARK-X (Zhu et al., Genome Biology, 2021)

SPARK-X: a non-parametric test that compares two $n \times n$ spot similarity matrices:

- Matrix 1 based on the gene's expression levels at the n spots
- Matrix 2 based on the kernel-transformed spatial locations of the n spots

To detect diverse spatial patterns, SPARK-X transforms the spatial locations $\mathbf{s}_i = (s_{i1}, s_{i2})$, i = 1, ..., n, using two kernel-based functions:

- Gaussian transformation $s'_{il} = \exp\left(\frac{-s^2_{il}}{2\sigma_i^2}\right)$, l = 1, 2, to detect clustered or focal patterns
- Cosine transformation $s'_{il} = \cos\left(rac{2\pi s_{il}}{\phi_l}\right)$, l = 1, 2, to detect periodic patterns

where $\sigma_1,~\sigma_2,~\phi_1,~{\rm and}~\phi_2$ are tuning parameters

Test statistic: Pearson correlation of the two matrices

Theoretical null: mixture chi-square distribution

singlecellHaystack (Vandenbon and Diez, Nature Communications, 2020)

singlecellHaystack: a unconventional test involves two pre-processing steps:

- Binarize the gene's expression levels at spots into two states: detected and undetected
- Divide the 2D Euclidean space into grid points as coarse spatial coordinates

singlecellHaystack (Vandenbon and Diez, Nature Communications, 2020)

singlecellHaystack: a unconventional test involves two pre-processing steps:

- Binarize the gene's expression levels at spots into two states: detected and undetected
- Divide the 2D Euclidean space into grid points as coarse spatial coordinates

singlecellHaystack uses a 2D independent Gaussian kernel, assuming independence of the two dimensions of the Euclidean space, to define **three distributions** of grid points:

- A reference distribution based on all grid points
- A conditional distribution based on grid points in the detected state
- Another conditional distribution based on grid points in the undetected state

singlecellHaystack (Vandenbon and Diez, Nature Communications, 2020)

singlecellHaystack: a unconventional test involves two pre-processing steps:

- Binarize the gene's expression levels at spots into two states: detected and undetected
- Divide the 2D Euclidean space into grid points as coarse spatial coordinates

singlecellHaystack uses a 2D independent Gaussian kernel, assuming independence of the two dimensions of the Euclidean space, to define **three distributions** of grid points:

- A reference distribution based on all grid points
- A conditional distribution based on grid points in the detected state
- Another conditional distribution based on grid points in the undetected state

Test statistic: sum of Kullback-Leibler divergences of the two conditional distributions from the reference distribution

Permutation null

Regression-based Tests

Two types: fixed-effect tests and random-effect tests

Linear mixed-effect model (LMM) for a given gene:

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} + \epsilon_i$$

- Y_i: a gene's expression level at spot *i* (response variable)
- β_0 : (fixed) intercept
- $\mathbf{x}_i \in \mathbb{R}^p$: fixed-effect covariates of spot i
- $\boldsymbol{\beta} \in \mathbb{R}^{p}$: fixed effects

Two types: fixed-effect tests and random-effect tests

Linear mixed-effect model (LMM) for a given gene:

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} + \epsilon_i$$

- Y_i: a gene's expression level at spot *i* (response variable)
- β_0 : (fixed) intercept
- $\mathbf{x}_i \in \mathbb{R}^p$: fixed-effect covariates of spot *i*
- $\boldsymbol{\beta} \in \mathbb{R}^{p}$: fixed effects
- $\mathbf{z}_i \in \mathbb{R}^q$: random-effect covariates of spot i
- $\gamma \in \mathbb{R}^q$: random effects with zero means $\operatorname{I\!E}[\gamma] = 0$ and covariance matrix

 $\operatorname{Cov}(\boldsymbol{\gamma}) \in \mathbb{R}^{q imes q}$

• ϵ_i : independent random error at spot *i* with $\mathbb{E}[\epsilon_i] = 0$

•
$$\boldsymbol{\gamma} \perp \boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^\top$$

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} + \epsilon_i$$

Fixed-effect tests examine whether \mathbf{x}_i contribute to $\mathbb{E}[Y_i]$

If \mathbf{x}_i makes no contribution, then $\mathbb{E}[Y_i|\mathbf{x}_i] = \mathbb{E}[Y_i]$

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} + \epsilon_i$$

Fixed-effect tests examine whether \mathbf{x}_i contribute to $\mathbb{E}[Y_i]$

If \mathbf{x}_i makes no contribution, then $\mathbb{E}[Y_i | \mathbf{x}_i] = \mathbb{E}[Y_i]$

Null hypothesis

$$H_0: \boldsymbol{\beta} = \boldsymbol{0}$$

implies $\mathbb{E}[Y_i|\mathbf{x}_i] = \mathbb{E}[Y_i], i = 1, \dots, n$

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} + \epsilon_i$$

Random-effect tests examine whether z_i contribute to $Var(Y_i)$:

$$\operatorname{Var}(Y_i) = \operatorname{Var}(\mathbb{E}[Y_i | \mathbf{z}_i]) + \mathbb{E}[\operatorname{Var}(Y_i | \mathbf{z}_i)] = \mathbf{z}_i^{\top} \operatorname{Cov}(\boldsymbol{\gamma}) \mathbf{z}_i + \operatorname{Var}(\epsilon_i)$$

If \mathbf{z}_i makes no contribution, then $\operatorname{Var}(\operatorname{I\!E}[Y_i|\mathbf{z}_i]) = 0$

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} + \epsilon_i$$

Random-effect tests examine whether z_i contribute to $Var(Y_i)$:

$$\operatorname{Var}(Y_i) = \operatorname{Var}(\operatorname{\mathbb{E}}[Y_i|\mathbf{z}_i]) + \operatorname{\mathbb{E}}[\operatorname{Var}(Y_i|\mathbf{z}_i)] = \mathbf{z}_i^{\top} \operatorname{Cov}(\boldsymbol{\gamma})\mathbf{z}_i + \operatorname{Var}(\epsilon_i)$$

If \mathbf{z}_i makes no contribution, then $\operatorname{Var}(\operatorname{I\!E}[Y_i|\mathbf{z}_i]) = 0$

Null hypothesis

$$H_0: \operatorname{Cov}(\boldsymbol{\gamma}) = \mathbf{0}$$

implies $\operatorname{Var}(\mathbb{E}[Y_i|\mathbf{z}_i]) = 0, i = 1, \dots, n$

Assume
$$\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$
 and $\gamma \perp \epsilon = (\epsilon_1, \dots, \epsilon_n)^\top$

$$Y_i = \beta_0 + \mathbf{x}_i^\top \beta + \mathbf{z}_i^\top \gamma + \epsilon_i \quad \Longleftrightarrow \quad \begin{cases} Y_i \mid \mu_i \stackrel{\text{ind}}{\sim} N(\mu_i, \sigma^2) \\ \mu_i = \beta_0 + \mathbf{x}_i^\top \beta + \mathbf{z}_i^\top \gamma \end{cases}$$

Assume
$$\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$
 and $\gamma \perp \epsilon = (\epsilon_1, \dots, \epsilon_n)^\top$
 $Y_i = \beta_0 + \mathbf{x}_i^\top \beta + \mathbf{z}_i^\top \gamma + \epsilon_i \quad \Longleftrightarrow \quad \begin{cases} Y_i \mid \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma^2) \\ \mu_i = \beta_0 + \mathbf{x}_i^\top \beta + \mathbf{z}_i^\top \gamma \end{cases}$

Generalized LMM (GLMM): The distribution of Y_i can be non-Gaussian

e.g.,
$$\begin{cases} Y_i \mid \mu_i \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mu_i) \\ \log(\mu_i) = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} \end{cases}$$

Assume
$$\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$
 and $\gamma \perp \epsilon = (\epsilon_1, \dots, \epsilon_n)^\top$
 $Y_i = \beta_0 + \mathbf{x}_i^\top \beta + \mathbf{z}_i^\top \gamma + \epsilon_i \quad \Longleftrightarrow \quad \begin{cases} Y_i \mid \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma^2) \\ \mu_i = \beta_0 + \mathbf{x}_i^\top \beta + \mathbf{z}_i^\top \gamma \end{cases}$

Generalized LMM (GLMM): The distribution of Y_i can be non-Gaussian

e.g.,
$$\begin{cases} Y_i \mid \mu_i \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mu_i) \\ \log(\mu_i) = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} \end{cases}$$

Generalized non-parametric mixed-effect model:

The effects of x_i is modeled as non-parametric:

e.g.,
$$\log(\mu_i) = \beta_0 + f(\mathbf{x}_i) + \mathbf{z}_i^\top \boldsymbol{\gamma}$$

Assume
$$\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$
 and $\gamma \perp \epsilon = (\epsilon_1, \dots, \epsilon_n)^\top$
 $Y_i = \beta_0 + \mathbf{x}_i^\top \beta + \mathbf{z}_i^\top \gamma + \epsilon_i \quad \Longleftrightarrow \quad \begin{cases} Y_i \mid \mu_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\mu_i, \sigma^2) \\ \mu_i = \beta_0 + \mathbf{x}_i^\top \beta + \mathbf{z}_i^\top \gamma \end{cases}$

Generalized LMM (GLMM): The distribution of Y_i can be non-Gaussian

e.g.,
$$\begin{cases} Y_i \mid \mu_i \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mu_i) \\ \log(\mu_i) = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma} \end{cases}$$

Generalized non-parametric mixed-effect model:

The effects of \mathbf{x}_i is modeled as non-parametric:

e.g.,
$$\log(\mu_i) = \beta_0 + f(\mathbf{x}_i) + \mathbf{z}_i^\top \boldsymbol{\gamma}$$

Q: Is spatial location \mathbf{s}_i modeled as \mathbf{x}_i or \mathbf{z}_i ?

Six methods use regression fixed-effect tests, covering all three SVG categories:

- Overall SVGs: SPADE
 - **x**_i includes **s**_i
- Cell-type-specific SVGs: C-SIDE, CTSV, and spCV
 - **x**_i includes **s**_i and **c**_i (cell-type proportion vector)
- Spatial-domain-marker SVGs: SpaGCN and DESpace
 - **x**_i includes **s**_i and **d**_i (spatial-domain indicator vector)

SPADE (Bae et al., Nucleic Acids Research, 2021)

SPADE: linear-model fixed-effect test that detects overall SVGs:

$$\mu_i = \beta_0 + \mathbf{x}_i(\mathbf{s})^\top \boldsymbol{\beta}$$

• **x**_i(**s**): principal components of 512 features from a pre-trained convolutional neural network applied to the *n* spots' spatial locations **s** in an H&E image

SPADE (Bae et al., Nucleic Acids Research, 2021)

SPADE: linear-model fixed-effect test that detects overall SVGs:

$$\mu_i = \beta_0 + \mathbf{x}_i(\mathbf{s})^\top \boldsymbol{\beta}$$

• **x**_i(**s**): principal components of 512 features from a pre-trained convolutional neural network applied to the *n* spots' spatial locations **s** in an H&E image

Null hypothesis:

$$H_0: \boldsymbol{\beta} = \boldsymbol{0}$$

If H_0 is rejected, the gene is detected as an overall SVG

SPADE (Bae et al., Nucleic Acids Research, 2021)

SPADE: linear-model fixed-effect test that detects overall SVGs:

$$\mu_i = \beta_0 + \mathbf{x}_i(\mathbf{s})^\top \boldsymbol{\beta}$$

• **x**_i(**s**): principal components of 512 features from a pre-trained convolutional neural network applied to the *n* spots' spatial locations **s** in an H&E image

Null hypothesis:

$$H_0: \boldsymbol{\beta} = \boldsymbol{0}$$

If H_0 is rejected, the gene is detected as an overall SVG

Test: R package limma

(Smyth, G. K., 2005 \Rightarrow Ritchie et al., Nucleic Acids Research, 2015)

spVC (Yu and Li, Genome Biology, 2024)

spVC: fixed-effect test that detects cell-type-specific SVGs

Assume

$$Y_i \mid \mu_i \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mu_i)$$

Two-step procedure:

1. A reduced model without interactive effects between c_i and s_i :

$$\log(\mu_i) = \beta_0 + \sum_{k=1}^{K} c_{ik}\beta_k + f_0(\mathbf{s}_i)$$

It tests two null hypotheses:

- $H_0: \boldsymbol{\beta} = (\beta_1, \dots, \beta_K)^\top = \boldsymbol{0}$ using the likelihood ratio test
- $H_0: f_0(\cdot) = 0$ using the Wald test

If both null hypotheses are rejected, it proceeds to the second step

2. A full model with interactive effects between c_i and s_i :

$$\log(\mu_i) = \beta_0 + \sum_{k=1}^{K} c_{ik}\beta_k + f_0(\mathbf{s}_i) + \sum_{k=1}^{K} c_{ik}f_k(\mathbf{s}_i)$$

It tests if any of the interactive effects $f_1(\cdot), \ldots, f_K(\cdot)$ are zero using the likelihood ratio test

2. A full model with interactive effects between c_i and s_i :

$$\log(\mu_i) = \beta_0 + \sum_{k=1}^{K} c_{ik}\beta_k + f_0(\mathbf{s}_i) + \sum_{k=1}^{K} c_{ik}f_k(\mathbf{s}_i)$$

It tests if any of the interactive effects $f_1(\cdot), \ldots, f_K(\cdot)$ are zero using the likelihood ratio test

lf

$$H_0:f_k(\cdot)=0$$

is rejected, the gene is detected as a SVG specific to cell type k

DESpace (Cai et al., Bioinformatics, 2024)

DESpace: fixed-effect test that detects **spatial-domain-marker SVGs** Assume

$$egin{aligned} Y_i \mid \mu_i \stackrel{ ext{ind}}{\sim} \mathsf{NegativeBinomial}(\mu_i, \phi) \ &\log(\mu_i) = eta_0 + \sum_{l=1}^L d_{ll}eta_l \end{aligned}$$

where β_I indicates the effect of spatial domain I

DESpace (Cai et al., Bioinformatics, 2024)

DESpace: fixed-effect test that detects **spatial-domain-marker SVGs** Assume

$$egin{aligned} Y_i \mid \mu_i \stackrel{ ext{ind}}{\sim} \mathsf{NegativeBinomial}(\mu_i, \phi) \ &\log(\mu_i) = eta_0 + \sum_{l=1}^L d_{ll}eta_l \end{aligned}$$

where β_I indicates the effect of spatial domain I

lf

$$H_0:\beta_I=0$$

is rejected, the gene is detected as a marker SVG of spatial domain I

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma}(\mathbf{s}) + \epsilon_i$$

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma}(\mathbf{s}) + \epsilon_i$$

With *n* spots, $\mathbf{z}_i = (z_{i1}, \ldots, z_{in})^\top \in \{0, 1\}^n$ is a binary indicator vector for spot *i* s.t.

$$z_{ii} = 1$$
; $z_{ij} = 0$ if $j \neq i$

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma}(\mathbf{s}) + \epsilon_i$$

With *n* spots, $\mathbf{z}_i = (z_{i1}, \ldots, z_{in})^\top \in \{0, 1\}^n$ is a binary indicator vector for spot *i* s.t.

$$z_{ii} = 1$$
; $z_{ij} = 0$ if $j \neq i$

Random-effect vector $\gamma(\mathbf{s}) = (\gamma_1(\mathbf{s}_1), \dots, \gamma_n(\mathbf{s}_n))^\top \in \mathbb{R}^n$ has

 $\gamma_i(\mathbf{s}_i)$ indicating the random effect of \mathbf{s}_i

 $\operatorname{Cov}(\gamma(\mathbf{s}))$ is assumed to depend on the spatial proximity of $\mathbf{s}_1, \ldots, \mathbf{s}_n$ via a kernel

SpatialDE, nnSVG, SOMDE, SVCA, SPARK, and GPcounts

$$Y_i = \beta_0 + \mathbf{x}_i^\top \boldsymbol{\beta} + \mathbf{z}_i^\top \boldsymbol{\gamma}(\mathbf{s}) + \epsilon_i$$

With *n* spots, $\mathbf{z}_i = (z_{i1}, \ldots, z_{in})^\top \in \{0, 1\}^n$ is a binary indicator vector for spot *i* s.t.

$$z_{ii} = 1$$
; $z_{ij} = 0$ if $j \neq i$

Random-effect vector $\boldsymbol{\gamma}(\mathbf{s}) = (\gamma_1(\mathbf{s}_1), \dots, \gamma_n(\mathbf{s}_n))^\top \in \mathbb{R}^n$ has

 $\gamma_i(\mathbf{s}_i)$ indicating the random effect of \mathbf{s}_i

 $\operatorname{Cov}(\gamma(\mathbf{s}))$ is assumed to depend on the spatial proximity of $\mathbf{s}_1, \ldots, \mathbf{s}_n$ via a kernel If

$$H_0: \operatorname{Cov}(\boldsymbol{\gamma}(\mathbf{s})) = \mathbf{0}$$

is rejected, the gene is detected as an overall SVG

SpatialDE (Svensson et al., Nature Methods, 2018)

SpatialDE: a linear random-effect model:

$$Y_i = \beta_0 + \mathbf{z}_i^\top \boldsymbol{\gamma}(\mathbf{s}) + \epsilon_i$$

- The random errors $\epsilon_1, \ldots, \epsilon_n \stackrel{\text{iid}}{\sim} N(0, \delta)$
- The random effects $\gamma(\mathbf{s}) \sim \mathsf{MVN}(\mathbf{0}, \sigma_s^2 \cdot \mathsf{K}(\mathbf{s}))$ The kernel matrix $\mathsf{K}(\mathbf{s}) = [K(\mathbf{s}_i, \mathbf{s}_j)]_{n \times n}$ is specified by a kernel function $K(\cdot, \cdot)$

This model is essentially a Gaussian process

lf

$$H_0: \sigma_s^2 = 0$$

is rejected, the gene is detected as an overall SVG

26 methods for detecting overall SVGs:

9 kernel-based methods vs. 17 other methods (kernel-free or graph-based)

Kernel-based methods have

- Higher specificity for targeted patterns
- Lower overall power for other patterns

Discussion: Challenges in Detecting Non-Global Expression Patterns

1. Small regions of interests (ROIs)

• Spatial-domain-marker SVGs by first identifying ROIs as spatial domains (e.g., SpaGCN)

2. Spatial-Domain-Specific SVGs

- Genes with spatial patterns in small ROIs but not marker genes
- No existing methods

3. Cell-Type-Specific SVGs

- Easily missed if cell types have small proportions
- Existing methods' model goodness-of-fit

4. Sharp Expression Changes

- Genes with sharp changes at tissue layer boundaries (e.g., Belayer)
- Adding H&E image can help refine tissue boundaries

Discussion: Challenges in Detecting Non-Global Expression Patterns

1. Small regions of interests (ROIs)

• Spatial-domain-marker SVGs by first identifying ROIs as spatial domains (e.g., SpaGCN)

2. Spatial-Domain-Specific SVGs

- Genes with spatial patterns in small ROIs but not marker genes
- No existing methods

3. Cell-Type-Specific SVGs

- Easily missed if cell types have small proportions
- Existing methods' model goodness-of-fit

4. Sharp Expression Changes

- Genes with sharp changes at tissue layer boundaries (e.g., Belayer)
- Adding H&E image can help refine tissue boundaries

Future direction: Incorporate knowledge on "interesting genes" to improve specificity

Discussion: Scalability

- 1. Calculate a summary statistic for each gene.
- 2. Convert the summary statistic to a p-value (frequentist methods only)

Summary Statistic Calulation (n: number of spatial spots)

- Gaussian process: $O(n^3)$ in SpatialDE and SPARK
- Nearest-neighbor Gaussian process approximation: O(n) in nnSVG

p-value Conversion

- Fast if closed-form null distribution is available (conventional statistics)
- Computationally intensive if by permutation (unconventional statistics)

Improving Scalability

- Use approximation algorithms to speed up summary statistic calculation
- $\bullet\,$ Reduce number of permutations in the p-value conversion step

Two Key Differences:

- Spatial Resolution
 - Imaging-based Technologies: Single-cell or subcellular resolution
 - Sequencing-based Technologies: Multicellular level, coarser resolution
- Positional Randomness
 - Structured grids (e.g., Spatial Transcriptomics, 10x Visium)
 - Unstructured spots (e.g., Slide-seq, MERFISH, SeqFISH)

Two Key Differences:

- Spatial Resolution
 - Imaging-based Technologies: Single-cell or subcellular resolution
 - Sequencing-based Technologies: Multicellular level, coarser resolution
- Positional Randomness
 - Structured grids (e.g., Spatial Transcriptomics, 10x Visium)
 - Unstructured spots (e.g., Slide-seq, MERFISH, SeqFISH)

Current Limitations:

- Most SVG detection methods lack consideration of these technological differences
- Lack of consensus on pre-processing and modeling SRT data

Challenges:

- Double-dipping: Same data analyzed more than once, leading to confirmation bias
- Example: Spatial-domain-marker SVG detection

Strategies:

- Use in silico negative control data to remove spurious discoveries (e.g., ClusterDE)
- Develop fast visualization tools for interpreting top-detected SVGs

Method Benchmarking:

- Benchmarking requires well-annotated datasets with SVG ground truths
- Synthetic datasets and realistic simulators (e.g., SRTsim, scDesign3)
- No method is optimal in every aspect; benchmarking should be specific to data characteristics and align with biological questions

Yan, G., Hua, S. H., & Li, J. J. (2024). Categorization of 31 computational methods to detect spatially variable genes from spatially resolved transcriptomics data. *arXiv*. https://arxiv.org/abs/2405.18779