Quantitating translational control:

mRNA abundance-dependent and independent contributions and the mRNA sequences that specify them

Jingyi Jessica Li

Assistant Professor of Statistics University of California, Los Angeles

RECOMB 2018

Nucleic Acids Research

Quantitating translational control: mRNA abundance-dependent and independent contributions and the mRNA sequences that specify them 👌

Jingyi Jessica Li 🖾, Guo-Liang Chew, Mark D. Biggin 🐱

Nucleic Acids Research, Volume 45, Issue 20, 16 November 2017, Pages 11821–11836, https://doi.org/10.1093/nar/gkx898

Guo-Liang Chew Fred Hutchinson Cancer Research Center Lawrence Berkeley National Laboratory

Mark Biggin

RECOMB 2018

Which steps are most important in determining protein levels in animals?

RECOMB 2018

Schwanhausser et al. suggest that translation rates are the most important

Schwanhausser et al. (2011) Nature 473, p 337

RECOMB 2018

Jingyi Jessica Li (UCLA)

measured protein vs

The variance in measured translation rates is 11 fold less than Schwanhausser inferred

Li et al. (2014) PeerJ: e270.

RECOMB 2018

Transcription is the dominant step determining protein levels

Schwanhausser et al.

Li et al.

Li et al. (2014) PeerJ: e270; Li and Biggin (2015) Science 347, 1066-1067.

RECOMB 2018

Translation rates impact protein levels in two ways

Csardi et al, 2015

RECOMB 2018

Two separate approaches both imply a shallower slope for protein vs mRNA

Csardi et al.

Li et al. Approach 2

Li et al. (2017) NAR gkx898.

RECOMB 2018

Decomposing TR into two components: TR_{Dpnd} and TR_{Indpnd}

1. Decompose TR

 $\log_{10}(\mathsf{TR}_i) = \log_{10}(\mathsf{TR}_{\mathsf{Dpnd}i}) + \log_{10}(\mathsf{TR}_{\mathsf{Indpnd}i})$

- 2. Determine slope $b_{TR-mRNA}$ $b_{TR-RNA} = sd(log_{10}(TR_{Dpnd})) / sd(log_{10}(RNA))$
- 3. Determine $b_{\text{prot-mRNA}}$ from $b_{\text{TR-mRNA}}$ $b_{\text{prot-RNA}} = 1 + b_{\text{TR-RNA}}$
- 4. Define protein via $b_{prot-mRNA}$ and TR_{Indpnd} $log_{10}(prot_i) = log_{10}(a) + b_{prot-RNA} log_{10}(RNA_i)$ $+ log_{10}(TR_{Indpnd_i}) + log_{10}(PnD_i)$

Li et al. (2017) NAR gkx898.

UCLA

RECOMB 2018

How can we estimate the contribution of translation rates to protein levels?

Li et al. (2017) NAR gkx898.

RECOMB 2018

The Contributions of General Translational Control Sequences

RECOMB 2018

UCLA

Jingyi Jessica Li (UCLA)

RECOMB 2018

Seven mRNA sequence features specify 80% of the variance in translation rates

Seven mRNA sequence features specify 80% of the variance in translation rates

UCLA

RECOMB 2018

A Translation Initiation Control Element (TICE) spans -35 to +28

A Translation Initiation Control Element (TICE) spans -35 to +28

Translation Initiation Control Element (TICE)

mRNA sequence features differentially specify TR_{Dpnd} and TR_{Indpnd}

UCLA

RECOMB 2018

Codon frequency preferentially specifies TR_{Dpnd}

RECOMB 2018

CDS length preferentially specifies TR_{Indpnd}

UCLA

CDS length affects initiation rate

Efficient recapture of released ribosomes

Inefficient recapture of released ribosomes

Christensen et al. 1987; Arava et al, 2003; Thompson and Gilbert, 2016

UCLA

RECOMB 2018

CDS length preferentially specifies TR_{Indpnd}

UCLA

RECOMB 2018

The Contributions of General Translational Control Sequences Across the Eukarya

UCLA

RECOMB 2018

Nucleic Acids Research

Quantitating translational control: mRNA abundance-dependent and independent contributions and the mRNA sequences that specify them 👌

Jingyi Jessica Li 🖾, Guo-Liang Chew, Mark D. Biggin 🐱

Nucleic Acids Research, Volume 45, Issue 20, 16 November 2017, Pages 11821–11836, https://doi.org/10.1093/nar/gkx898

Guo-Liang Chew Fred Hutchinson Cancer Research Center Lawrence Berkeley National Laboratory

Mark Biggin

RECOMB 2018

Nucleic Acids Research

Quantitating translational control: mRNA abundance-dependent and independent contributions and the mRNA sequences that specify them 3

Jingyi Jessica Li 💌, Guo-Liang Chew, Mark D. Biggin 🐱

Nucleic Acids Research, Volume 45, Issue 20, 16 November 2017, Pages 11821–11836, https://doi.org/10.1093/nar/gkx898

Johnson 4 Johnson

WiSTEM²D Scholars Program

