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Single-cell RNA-sequencing (scRNA-seq)

from Wikipedia
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Our recent work

1. PseudotimeDE: inference of differential gene expression along cell pseudotime
with valid p-values from single-cell RNA-seq data

• by Dongyuan Song (2nd-year Bioinformatics PhD student)

• in press at Genome Biology

• bioRxiv: https://doi.org/10.1101/2020.11.17.387779

2. scDesign2: a transparent simulator that generates realistic single-cell gene
expression count data with gene correlations captured

• by Tianyi Sun (4th-year Statistics PhD student) et al.

• accepted by RECOMB and under revision at Genome Biology

• bioRxiv: https://doi.org/10.1101/2020.11.17.387795
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PseudotimeDE



Pseudotime inference

• Pseudotime: a latent “temporal” variable that reflects a cell’s relative

transcriptome status among all cells

• Pseudotime inference (trajectory inference): estimate the pseudotime of cells, i.e.,

order cells along a trajectory (lineage) based on transcriptome similarities

• Popular methods:

• Monocle3 (Trapnell et al. 2014)

• TSCAN (Ji et al. 2016)

• Slingshot (Street et al. 2018)
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Example: pseudotime inference by Slingshot
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Differential gene expression along cell pseudotime

• Differentially expressed (DE) gene: a gene whose expected expression changes

along cell pseudotime

• Question: how to identify DE genes?
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Limitations of existing methods

• tradeSeq (Van den Berge et al. 2020)

• Test if a gene is DE based on a generalized additive model (GAM) (Hastie and

Tibshirani, 1986, 1990)

• Monocle3 (Trapnell et al. 2014)

• Test if a gene is DE based on a generalized linear model (GLM) (McCullagh, 1983)

• Both methods are regression-based:

• response: a gene’s expression level in a cell

• predictor/covariate: a cell’s pseudotime

• Limitation: cell pseudotime is treated as fixed with uncertainty ignored

• Why is cell pseudotime random?

• pseudotime is not observed but inferred; inference involves uncertainty

• This ignorance of pseudotime uncertainty may result in invalid p-values
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Pseudotime inference uncertainty
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Our proposal: PseudotimeDE
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PseudotimeDE: notations

• Y = (Yij): an n ×m gene expression count matrix (n cells and m genes)

• T = (T1, . . . ,Ti , . . . ,Tn)T: cell pseudotime inferred from Y

• To capture the uncertainty of pseudotime T , we subsample 80% cells in Y for B
times (default B = 1000); in the b-th subsample:

• Y b = (Y b
ij ), an n′ ×m matrix where n′ = b.8nc

• T b = (T b
1 , . . . ,T

b
n′)

T: cell pseudotime inferred from Y b

• T ∗b = (T ∗b1 , . . . ,T ∗bn′ )T: permuted cell pseudotime
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PseudotimeDE: GAM

• Negative-Binomial Generalized Additive Model (NB-GAM)Yij ∼ NB(µij , φj)

log(µij) = βj0 + fj(Ti )

• Zero-Inflated Negative-Binomial Generalized Additive Model (ZINB-GAM)
Zij ∼ Ber(pij)

Yij |Zij ∼ Zij · NB(µij , φj) + (1− Zij) · 0

log(µij) = βj0 + fj(Ti )

logit(pij) = αj0 + αj1 log(µij) .

where fj(Ti ) =
∑K

k=1 bk(Ti )βjk is a cubic spline function
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NB-GAM (blue) v.s. ZINB-GAM (red)

11



PseudotimeDE: statistical test

• Null and alternative hypotheses for gene j :

H0 : fj(·) = 0 vs. H1 : fj(·) 6= 0

• Fit GAM to Y and T . Denote the estimate of (fj(T1), . . . , fj(Tn))T by f̂j and

estimated covariance matrix of f̂j by V̂fj

• Test statistic:

Sj = f̂ T
j V̂r−

fj , f̂j

where V̂r−
fj is the rank-r pseudo-inverse of V̂fj

• Observed value of Sj denoted by sj

• For b = 1, . . . ,B, fit GAM to Y b and T ∗b; calculate the test statistic sbj

• {s1
j , . . . , s

B
j }: null values of the test statistic Sj
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PseudotimeDE: p-value calculation

• Empirical p-value:

pemp
j =

∑B
b=1 I(sbj ≥ sj) + 1

B + 1

The resolution of pemp
j is 1/(B + 1) - not enough for false discovery rate (FDR)

control if B is not too large

• Parametric p-value:
Fit {s1

j , . . . , s
B
j } by

1. a gamma distribution Γ(α, β) with α, β > 0

2. a two-component gamma mixture model γΓ(α1, β1) + (1− γ)Γ(α2, β2) with

0 < γ < 1 and α1, β1, α2, β2 > 0

Choose between the two distributions by the likelihood-ratio test

Parametric null distribution’s cumulative distribution function: F̂j(·)

pparam
j = 1− F̂j(sj)
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Simulation: PseudotimeDE generates well-calibrated p-values
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Simulation: PseudotimeDE leads to the best FDR control
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Simulation: PseudotimeDE achieves the highest power
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Real data example 1: dendritic cells stimulated with LPS
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Real data example 1: dendritic cells stimulated with LPS
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Real data example 2: pancreatic beta cell maturation
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Real data example 2: pancreatic beta cell maturation
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Real data example 3: bone marrow differentiation
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Learning more about GAMs

• Book: Generalized Additive Models: an introduction with R by Dr. Simon Woods

• R package mgcv by Dr. Simon Woods
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scDesign2



Development of scRNA-seq Protocols

Scaling of scRNA-seq experiments. [Svensson et al 2018] 23

https://www.nature.com/articles/nprot.2017.149


Experimental design questions

• How to choose among existing experimental protocols?

• Tag-based vs full-length: more low-resolution cells or fewer high-resolution cells?

• Given a chosen protocol, how to determine the optimal cell number and
sequencing depth for the experiment?

• Under a fixed budget: breadth vs depth trade-off

24



Breadth vs. depth trade-off

A toy example of the breadth vs. depth trade-off under a fixed budget
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Typical scRNA-seq data analysis

dim. reduction (for visualization) → clustering (& rare cell type detection) / trajectory

inference → gene level analysis (e.g. DE gene identification). [Luecken and Theis 2019]
26

https://www.embopress.org/doi/full/10.15252/msb.20188746


Computational benchmarking question

• How to choose among available computational methods?

• Dimensionality reduction: PCA / t-SNE / UMAP / ZIFA / ...

• Cell clustering: K-means / CIDR / SC3 / Seurat / ...

• Rare cell type detection: RaceID / FiRE / GiniClust2 / GiniClust3 / ...

• Trajectory inference: Slingshot / TSCAN / Monocle2 / destiny / ...

• Identification of DE genes between cell types: SCDE / MAST / scDD / D3E / ...
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Motivation

• Experimental design:

• How to choose among existing experimental protocols?

• Given a chosen protocol, how to determine the optimal parameters for the

experiment (cell number and seq. depth)?

• Computational benchmarking:

• How to choose among available computational methods for data analysis?

• Use a realistic simulator to answer these questions!
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Model fitting and data simulation

Model fitting and data simulation. A good model should capture key characteristics of real

data.
29



Existing scRNA-seq simulators

Simulator

Property
protocol gene gene cor. cell num. easy to comp. &

adaptive preserved captured seq. dep. interpret sample

flexible efficient

dyngen X– × × X– X X
Lun2 X– X × X X– X
powsimR X X × X X X
PROSST X– X × X– X X
scDD X × × X– X– X
scDesign X X– × X X X
scGAN X X X– X– × ×
splat simple X × × × X X
splat X × × × X X
kersplat X × X– × X X
SPARSim X X X– × X X
SymSim X × × × X X
ZINB-WaVE X X– X– × X X
scDesign2 X X X X X X 30



Why do gene correlations matter?

Correlation affect the joint distribution of genes.
31



Our proposal: scDesign2

Diagram of scDesign2.

Key Features of scDesign2:

• scDesign2 can reliably capture gene correlations

• scDesign2 can simulate data with varying cell numbers and sequencing

depths, facilitating the design of experiments
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scDesign2: notations

• Denote the scRNA-seq count matrix as X ∈ Np×n, with p genes and n cells

• Assume that X contains K cell types and the cell memberships are known in

advance

• Suppose there are n(k) cells in cell type k, k = 1, ...,K , and denote the count

matrix for cell type k as X (k)

• Our goal is to fit one parametric model of all genes’ expression for each cell

type k

• For simplicity of notation, we drop the subscript k in the following discussion
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scDesign2: cell type/cluster refinement by ROGUE scores

Application of ROGUE scores [Liu et al., Nat Comm (2020)] combined with dimensionality

reduction plots to refine cell types before training scDesign2
34



scDesign2: marginal distribution of each gene i

• Model counts directly

• Denote X·j = (X1j , . . . ,Xpj) ∈ Np as the gene expression vector for cell j ,

j = 1, . . . n. We assume that the X·j ’s are i.i.d.

• We assume that Xij ∼ ZINB(pi , µi , ψi ), for gene i = 1, . . . , p. That is,

Zij ∼ Ber(pi ), and Xij = 0, if Zij = 1; Xij ∼ NB(ψi , µi ), if Zij = 0.

IE(Xij |Zij = 0) = µi

Var(Xij |Zij = 0) = µi +
(µi )

2

ψi

• The Zij ’s are unobserved

• The ZINB distribution is a general model that also includes Poisson, zero-inflated

Poisson and NB
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scDesign2: marginal distribution fitting for gene i

• Denote X ∈ Np×n as the count matrix with p genes and n cells. (k dropped for

simplicity).

• For Xi ·, if mean(Xi ·) ≥ var(Xi ·),

• Fit a Poisson distribution and ZIP distribution by maximum likelihood estimation

(MLE) and perform a χ2
1 likelihood-ratio test to determine if zero-inflation is

significant

• Otherwise

• Fit a NB distribution and ZINB distribution by MLE and perform a χ2
1

likelihood-ratio test to determine if zero-inflation is significant

• The default p-value cutoff for the χ2
1 test is 0.05
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scDesign2: joint distribution of all genes

• Use the copula framework

• Denote F : Np → [0, 1] as the joint cumulative distribution function (CDF) of

X·j ∈ Np and Fi : N→ [0, 1] as the marginal CDF of Xij

• By Sklar’s theorem [Sklar 1959], there exists a function C : [0, 1]p → [0, 1] such

that

F (x1j , . . . , xpj) = C (F1(x1j), . . . ,Fp(xpj))

• The function C (·) is unique for continuous distributions, but not for discrete

distributions (unidentifiable) [Genest et al 2007]

37



scDesign2: distributional transform and the Gaussian copula

• Distributional transform (DT): necessary for discrete variable [Rüschendorf 2013].

• Sample vij from Uniform[0, 1] independently for i = 1, . . . , p and j = 1, . . . , n

• Calculate uij as

uij = vijFi (Xij − 1) + (1− vij)Fi (Xij)

• Gaussian copula: Denote Φ as the CDF of a standard Gaussian random variable,

we can express the joint distribution of X·j as

F (x1j , . . . , xpj |R) = Φp(Φ−1(u1j), . . . ,Φ
−1(upj)|R)

where Φp(·|R) is a joint Gaussian CDF with a zero mean vector and a covariance

matrix that is equal to the correlation matrix R
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Effect of distributional transform
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Gaussian copula correlation and gene Kendall’s tau

• If we denote Rhl as the Gaussian copula correlation between genes h and l , i.e.,

the (h, l)-th entry of R, and τhl as the Kendall’s tau between the same two genes

on the original scale, i.e., τhl = τ(Xhj ,Xlj), then we have the following relationship

Rhl = sin
(π

2
τhl

)
• This relationship links the copula correlation with the Kendall’s tau of the two

original variables, thus providing an interpretation of the copula correlation

• It also suggests that R can be estimated by plugging the sample tau matrix into

the above formula

• However, this estimate of R may not always be positive semidefinite. Therefore,

we use another procedure to estimate R
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scDesign2: joint distribution fitting

• Denote (p̂i , µ̂i , ψ̂i ) as the fitted marginal parameters for gene i , which also

specifies the fitted CDF F̂i

• Sample vij from Uniform[0, 1] independently for i = 1, ..., p and j = 1, ..., n

• Calculate uij as

uij = vij F̂i (Xij − 1) + (1− vij)F̂i (Xij)

• Calculate R̂ as the sample correlation matrix of (Φ−1(u1j), . . . ,Φ
−1(upj))T,

j = 1, . . . , n
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Estimation of R - a high-dimensional problem

The estimation of R is a high-dimensional problem. We partially avoid it by only estimating for

the top highly to moderately expressed genes
42



scDesign2: data simulation

• Input: model parameters (one for each cell type), cell type proportions, number of

cells to simulate, total number of reads in the simulated data

• Simulation:

1. Determine the cell numbers for each cell type

2. Compute a scaling factor r as the proportion of the average number of reads in each

cell in the simulated data to the average number of reads in the original data

3. Scale the mean parameters by r

4. Simulate data for each cell type, and then combine the simulated data together as

one data matrix
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scDesign2 vs. existing scRNA-seq simulators

Data: goblet cells of mouse small intestinal epithelium by 10x Genomics [Haber et al., Nature

(2017)]
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scDesign2 vs. existing scRNA-seq simulators

Data: goblet cells of mouse small intestinal epithelium by 10x Genomics [Haber et al., Nature

(2017)]
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scDesign2 vs. existing scRNA-seq simulators

Data: dendrocytes subtype 1 of human blood by Smart-Seq2 [Villani et al., Science (2017)]
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scDesign2 vs. existing scRNA-seq simulators

Data: six cell types of mouse small intestinal epithelium by 10x Genomics [Haber et al., Nature

(2017)]
47



scDesign2 vs. existing scRNA-seq simulators

Data: six cell types of mouse small intestinal epithelium by 10x Genomics [Haber et al., Nature

(2017)]
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Application 1: simulation for other single-cell technologies

Data: mouse hypothalamic preoptic region by MERFISH [Moffitt et al., Science (2018)]
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Application 1: simulation for other single-cell technologies

Data: mouse hippocampal area CA1 by pciSeq [Qian et al., Nature Methods (2020)]
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Application 2: evaluation of scRNA-seq protocols

Data: five cell types of PBMC by three different protocols [Ding et al., Nature Biotechnology

(2020)]
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Application 3: clustering

Data: six cell types of mouse small intestinal epithelium by 10x Genomics [Haber et al., Nature

(2017)]
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Application 4: rare cell type detection

Data: six cell types of mouse small intestinal epithelium by 10x Genomics [Haber et al., Nature

(2017)]
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scDesign2 summary

• scDesign2: an interpretable simulator that generates realistic single-cell gene
expression count data with gene correlations

• Motivated by our previous work scDesign (Li and Li, Bioinformatics 2019)

• A multi-gene generative model (probabilistic, transparent, interpretable)

• Guidance for scRNA-seq experimental design

• Benchmarking of computational methods

• R package: https://github.com/JSB-UCLA/scDesign2

• Future work

• Extend the current model to accommodate continuous cell trajectories
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Learning more about copulas

• Book: Introduction to copulas by Dr. Roger B Nelson
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