

Jingyi Jessica Li

Department of Statistics University of California, Los Angeles

http://jsb.ucla.edu

Single-cell RNA-sequencing (scRNA-seq)

from Wikipedia

- 1. PseudotimeDE: inference of differential gene expression along cell pseudotime with valid p-values from single-cell RNA-seq data
 - by Dongyuan Song (2nd-year Bioinformatics PhD student)
 - in press at Genome Biology
 - bioRxiv: https://doi.org/10.1101/2020.11.17.387779
- 2. scDesign2: a transparent simulator that generates realistic single-cell gene expression count data with gene correlations captured
 - by Tianyi Sun (4th-year Statistics PhD student) et al.
 - accepted by RECOMB and under revision at Genome Biology
 - bioRxiv: https://doi.org/10.1101/2020.11.17.387795

PseudotimeDE

- Pseudotime: a latent "temporal" variable that reflects a cell's relative transcriptome status among all cells
- Pseudotime inference (trajectory inference): estimate the pseudotime of cells, i.e., order cells along a trajectory (lineage) based on transcriptome similarities
- Popular methods:
 - Monocle3 (Trapnell et al. 2014)
 - TSCAN (Ji et al. 2016)
 - Slingshot (Street et al. 2018)

Example: pseudotime inference by Slingshot

Differential gene expression along cell pseudotime

- Differentially expressed (DE) gene: a gene whose expected expression changes along cell pseudotime
- Question: how to identify DE genes?

Limitations of existing methods

- tradeSeq (Van den Berge *et al.* 2020)
 - Test if a gene is DE based on a generalized additive model (GAM) (Hastie and Tibshirani, 1986, 1990)
- Monocle3 (Trapnell et al. 2014)
 - Test if a gene is DE based on a generalized linear model (GLM) (McCullagh, 1983)
- Both methods are regression-based:
 - response: a gene's expression level in a cell
 - predictor/covariate: a cell's pseudotime
- Limitation: cell pseudotime is treated as fixed with uncertainty ignored
- Why is cell pseudotime random?
 - pseudotime is not observed but inferred; inference involves uncertainty
- This ignorance of pseudotime uncertainty may result in invalid *p*-values

Pseudotime inference uncertainty

Our proposal: PseudotimeDE

- $\mathbf{Y} = (Y_{ij})$: an $n \times m$ gene expression count matrix (n cells and m genes)
- $\boldsymbol{T} = (T_1, \ldots, T_i, \ldots, T_n)^{\mathsf{T}}$: cell pseudotime inferred from \boldsymbol{Y}
- To capture the uncertainty of pseudotime *T*, we subsample 80% cells in *Y* for *B* times (default *B* = 1000); in the *b*-th subsample:
 - $\boldsymbol{Y}^b = (Y^b_{ij})$, an $n' \times m$ matrix where $n' = \lfloor .8n \rfloor$
 - $T^b = (T_1^b, \ldots, T_{n'}^b)^{\mathsf{T}}$: cell pseudotime inferred from Y^b
 - $\boldsymbol{T}^{*b} = (T_1^{*b}, \dots, T_{n'}^{*b})^{\mathsf{T}}$: permuted cell pseudotime

PseudotimeDE: GAM

• Negative-Binomial Generalized Additive Model (NB-GAM)

$$\left\{egin{array}{l} \mathsf{Y}_{ij} \sim \mathsf{NB}(\mu_{ij},\phi_j) \ \mathsf{log}(\mu_{ij}) = eta_{j0} + f_j(\mathcal{T}_i) \end{array}
ight.$$

• Zero-Inflated Negative-Binomial Generalized Additive Model (ZINB-GAM)

$$\begin{cases} Z_{ij} \sim \text{Ber}(p_{ij}) \\ Y_{ij} | Z_{ij} \sim Z_{ij} \cdot \text{NB}(\mu_{ij}, \phi_j) + (1 - Z_{ij}) \cdot 0 \\ \log(\mu_{ij}) = \beta_{j0} + f_j(T_i) \\ \log(\mu_{ij}) = \alpha_{j0} + \alpha_{j1} \log(\mu_{ij}) \,. \end{cases}$$

where $f_j(T_i) = \sum_{k=1}^{K} b_k(T_i)\beta_{jk}$ is a cubic spline function

NB-GAM (blue) v.s. ZINB-GAM (red)

PseudotimeDE: statistical test

• Null and alternative hypotheses for gene *j*:

$$H_0: f_j(\cdot) = 0$$
 vs. $H_1: f_j(\cdot) \neq 0$

- Fit GAM to \boldsymbol{Y} and \boldsymbol{T} . Denote the estimate of $(f_j(T_1), \ldots, f_j(T_n))^T$ by \hat{f}_j and estimated covariance matrix of \hat{f}_j by $\hat{\nabla}_{f_j}$
- Test statistic:

$$S_j = \widehat{f}_j^\mathsf{T} \widehat{\mathsf{V}}_{f_j}^{r-}, \widehat{f}_j$$

where $\widehat{V}_{f_i}^{r-}$ is the rank-*r* pseudo-inverse of \widehat{V}_{f_j}

- Observed value of S_j denoted by s_j
- For b = 1, ..., B, fit GAM to \boldsymbol{Y}^{b} and \boldsymbol{T}^{*b} ; calculate the test statistic s_{i}^{b}
- $\{s_j^1, \ldots, s_j^B\}$: null values of the test statistic S_j

PseudotimeDE: *p*-value calculation

• Empirical *p*-value:

$$p_j^{\mathsf{emp}} = rac{\sum_{b=1}^B \mathbb{I}(s_j^b \geq s_j) + 1}{B+1}$$

The resolution of p_j^{emp} is 1/(B+1) - not enough for false discovery rate (FDR) control if B is not too large

- Parametric *p*-value:
 - Fit $\{s_j^1, \ldots, s_j^B\}$ by
 - 1. a gamma distribution $\Gamma(\alpha,\beta)$ with $\alpha,\beta>0$
 - 2. a two-component gamma mixture model $\gamma \Gamma(\alpha_1, \beta_1) + (1 \gamma) \Gamma(\alpha_2, \beta_2)$ with $0 < \gamma < 1$ and $\alpha_1, \beta_1, \alpha_2, \beta_2 > 0$

Choose between the two distributions by the likelihood-ratio test Parametric null distribution's cumulative distribution function: $\hat{F}_i(\cdot)$

$$p_j^{\mathsf{param}} = 1 - \hat{F}_j(s_j)$$

Simulation: PseudotimeDE generates well-calibrated *p*-values

Simulation: PseudotimeDE leads to the best FDR control

Simulation: PseudotimeDE achieves the highest power

Real data example 1: dendritic cells stimulated with LPS

d

PseudotimeDE vs tradeSeq

ID	description	р
GO:0050729	positive regulation of inflammatory response	0.00424
GO:0071222	cellular responsee to lipopolysaccharide	0.00609

PseudotimeDE vs Monocle3

ID	description	р
GO:0006954	inflammatory responsee	0.00032
GO:0050729	positive regulation of inflammatory response	0.00479
GO:0006955	immune responsee	0.00541
GO:0042742	defense responsee to bacterium	0.00573

h

PseudotimeDE vs tradeSeq

ID	description	р
GO:0002250	adaptive immune response	0.00812
GO:0002673	regulation of acute inflammatory response	0.00955
Pseudotimel	DE vs Monocle3	

ID	description	р
GO:0045087	innate immune response	0.00016
GO:0009617	response to bacterium	0.00039
GO:0032496	response to lipopolysaccharide	0.00049
GO:0006955	immune response	0.00054
GO:0061844	antimicrobial humoral immune response	0.00060
GO:0071222	cellular response to lipopolysaccharide	0.00075
GO:0002250	adaptive immune response	0.00179
GO:0042742	defense response to bacterium	0.00391
GO:0050829	defense response to Gram-negative bacterium	0.00418

Real data example 2: pancreatic beta cell maturation

Real data example 2: pancreatic beta cell maturation

PseudotimeDE vs tradeSeq

d

ID	description	р
GO:0045747	positive regulation of Notch signaling pathway	0.00162
GO:0006486	protein glycosylation	0.00221
GO:0045746	negative regulation of Notch signaling pathway	0.00326
GO:0009791	post-embryonic development	0.00478
GO:0031018	endocrine pancreas development	0.00490
GO:0098609	cell-cell adhesion	0.00975

PseudotimeDE vs Monocle3

ID	description	р
GO:0035773	insulin secretion involved in cellular response	0.0056

PseudotimeDE vs tradeSeq

ID	description	р
GO:0009791	post-embryonic development	0.00082
GO:0098609	cell-cell adhesion	0.00351

PseudotimeDE vs Monocle3

ID	description	р
GO:0046503	glycerolipid catabolic process	0.00076
GO:0006639	acylglycerol metabolic process	0.00489
GO:0001953	negative regulation of cell-matrix adhesion	0.00623

Real data example 3: bone marrow differentiation

• Book: Generalized Additive Models: an introduction with R by Dr. Simon Woods

• R package mgcv by Dr. Simon Woods

scDesign2

Development of scRNA-seq Protocols

- How to choose among existing experimental protocols?
 - Tag-based vs full-length: more low-resolution cells or fewer high-resolution cells?

- Given a chosen protocol, how to determine the optimal cell number and sequencing depth for the experiment?
 - Under a fixed budget: breadth vs depth trade-off

Breadth vs. depth trade-off

Ś

A toy example of the breadth vs. depth trade-off under a $\ensuremath{\textit{fixed budget}}$

Typical scRNA-seq data analysis

Sim. reduction (for visualization) \rightarrow clustering (& rare cell type detection) / trajectory inference \rightarrow gene level analysis (e.g. DE gene identification). [Luecken and Theis 2019]

Computational benchmarking question

- How to choose among available computational methods?
 - Dimensionality reduction: PCA / t-SNE / UMAP / ZIFA / \ldots
 - Cell clustering: K-means / CIDR / SC3 / Seurat / ...
 - Rare cell type detection: RaceID / FiRE / GiniClust2 / GiniClust3 / ...
 - Trajectory inference: Slingshot / TSCAN / Monocle2 / destiny / ...
 - Identification of DE genes between cell types: SCDE / MAST / scDD / D3E / ...

Motivation

- Experimental design:
 - How to choose among existing experimental protocols?
 - Given a chosen protocol, how to determine the optimal parameters for the experiment (cell number and seq. depth)?
- Computational benchmarking:
 - How to choose among available computational methods for data analysis?

• Use a realistic simulator to answer these questions!

Existing scRNA-seq simulators

Property Simulator	protocol adaptive	gene preserved	gene cor. captured	cell num. seq. dep. flexible	easy to interpret	comp. & sample efficient
dyngen	\checkmark	×	×	×	\checkmark	\checkmark
Lun2	×	\checkmark	\times	\checkmark	×	\checkmark
powsimR	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark
PROSST	×	\checkmark	\times	×	\checkmark	\checkmark
scDD	\checkmark	×	×	×	\checkmark	\checkmark
scDesign	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
scGAN	\checkmark	\checkmark	\checkmark	\checkmark	×	×
splat simple	\checkmark	×	×	\times	\checkmark	\checkmark
splat	\checkmark	\times	\times	\times	\checkmark	\checkmark
kersplat	\checkmark	\times	×	\times	\checkmark	\checkmark
SPARSim	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark
SymSim	\checkmark	\times	\times	\times	\checkmark	\checkmark
ZINB-WaVE	\checkmark	×	×	×	\checkmark	\checkmark
scDesign2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Why do gene correlations matter?

Correlation affect the joint distribution of genes.

Our proposal: scDesign2

scDesign2: notations

- Denote the scRNA-seq count matrix as $\boldsymbol{X} \in \mathbb{N}^{p imes n}$, with p genes and n cells
- Assume that **X** contains K cell types and the cell memberships are known in advance
- Suppose there are n^(k) cells in cell type k, k = 1, ..., K, and denote the count matrix for cell type k as X^(k)
- Our goal is to fit one parametric model of all genes' expression for each cell type *k*
- For simplicity of notation, we drop the subscript k in the following discussion

scDesign2: cell type/cluster refinement by ROGUE scores

Sepplication of ROGUE scores [Liu *et al.*, Nat Comm (2020)] combined with dimensionality reduction plots to refine cell types before training scDesign2

scDesign2: marginal distribution of each gene *i*

- Model counts directly
- Denote $X_{.j} = (X_{1j}, \ldots, X_{pj}) \in \mathbb{N}^p$ as the gene expression vector for cell j, $j = 1, \ldots n$. We assume that the $X_{.j}$'s are i.i.d.
- We assume that $X_{ij} \sim \text{ZINB}(p_i, \mu_i, \psi_i)$, for gene $i = 1, \dots, p$. That is, $Z_{ij} \sim \text{Ber}(p_i)$, and $X_{ij} = 0$, if $Z_{ij} = 1$; $X_{ij} \sim \text{NB}(\psi_i, \mu_i)$, if $Z_{ij} = 0$.

$$\mathbb{E}(X_{ij}|Z_{ij}=0) = \mu_i$$
$$\operatorname{Var}(X_{ij}|Z_{ij}=0) = \mu_i + \frac{(\mu_i)^2}{\psi_i}$$

- The Z_{ij} 's are unobserved
- The ZINB distribution is a general model that also includes Poisson, zero-inflated Poisson and NB

scDesign2: marginal distribution fitting for gene *i*

- Denote X ∈ N^{p×n} as the count matrix with p genes and n cells. (k dropped for simplicity).
- For $X_{i\cdot}$, if mean $(X_{i\cdot}) \ge \operatorname{var}(X_{i\cdot})$,
 - Fit a Poisson distribution and ZIP distribution by maximum likelihood estimation (MLE) and perform a χ_1^2 likelihood-ratio test to determine if zero-inflation is significant
- Otherwise
 - Fit a NB distribution and ZINB distribution by MLE and perform a χ_1^2 likelihood-ratio test to determine if zero-inflation is significant
- The default *p*-value cutoff for the χ^2_1 test is 0.05

scDesign2: joint distribution of all genes

- Use the copula framework
- Denote $F : \mathbb{N}^p \to [0, 1]$ as the joint cumulative distribution function (CDF) of $X_{ij} \in \mathbb{N}^p$ and $F_i : \mathbb{N} \to [0, 1]$ as the marginal CDF of X_{ij}
- By Sklar's theorem [Sklar 1959], there exists a function $C:[0,1]^p
 ightarrow [0,1]$ such that

$$F(x_{1j},\ldots,x_{pj})=C(F_1(x_{1j}),\ldots,F_p(x_{pj}))$$

• The function $C(\cdot)$ is unique for continuous distributions, but not for discrete distributions (unidentifiable) [Genest et al 2007]

scDesign2: distributional transform and the Gaussian copula

- Distributional transform (DT): necessary for discrete variable [Rüschendorf 2013].
 - Sample v_{ij} from Uniform[0, 1] independently for i = 1, ..., p and j = 1, ..., n
 - Calculate *u*_{ij} as

$$u_{ij} = v_{ij}F_i(X_{ij}-1) + (1-v_{ij})F_i(X_{ij})$$

 Gaussian copula: Denote Φ as the CDF of a standard Gaussian random variable, we can express the joint distribution of X_j as

$$F(x_{1j},\ldots,x_{pj}|\mathsf{R})=\Phi_p(\Phi^{-1}(u_{1j}),\ldots,\Phi^{-1}(u_{pj})|\boldsymbol{R})$$

where $\Phi_p(\cdot|\mathbf{R})$ is a joint Gaussian CDF with a zero mean vector and a covariance matrix that is equal to the correlation matrix \mathbf{R}

Effect of distributional transform

39

Gaussian copula correlation and gene Kendall's tau

• If we denote R_{hl} as the Gaussian copula correlation between genes h and l, i.e., the (h, l)-th entry of R, and τ_{hl} as the Kendall's tau between the same two genes on the original scale, i.e., $\tau_{hl} = \tau(X_{hj}, X_{lj})$, then we have the following relationship

$$R_{hl} = \sin\left(\frac{\pi}{2}\tau_{hl}\right)$$

- This relationship links the copula correlation with the Kendall's tau of the two original variables, thus providing an interpretation of the copula correlation
- It also suggests that *R* can be estimated by plugging the sample tau matrix into the above formula
- However, this estimate of *R* may not always be positive semidefinite. Therefore, we use another procedure to estimate *R*

scDesign2: joint distribution fitting

- Denote $(\hat{p}_i, \hat{\mu}_i, \hat{\psi}_i)$ as the fitted marginal parameters for gene *i*, which also specifies the fitted CDF \hat{F}_i
- Sample v_{ij} from Uniform[0, 1] independently for i = 1, ..., p and j = 1, ..., n
- Calculate u_{ij} as

$$u_{ij} = v_{ij}\hat{F}_i(X_{ij}-1) + (1-v_{ij})\hat{F}_i(X_{ij})$$

Calculate Â as the sample correlation matrix of (Φ⁻¹(u_{1j}),...,Φ⁻¹(u_{pj}))^T, j = 1,..., n

Estimation of R - a high-dimensional problem

The estimation of R is a high-dimensional problem. We partially avoid it by only estimating for the top highly to moderately expressed genes

- Input: model parameters (one for each cell type), cell type proportions, number of cells to simulate, total number of reads in the simulated data
- Simulation:
 - 1. Determine the cell numbers for each cell type
 - 2. Compute a scaling factor r as the proportion of the average number of reads in each cell in the simulated data to the average number of reads in the original data
 - 3. Scale the mean parameters by r
 - 4. Simulate data for each cell type, and then combine the simulated data together as one data matrix

Data: goblet cells of mouse small intestinal epithelium by 10x Genomics [Haber *et al.*, Nature 2017)]

Data: goblet cells of mouse small intestinal epithelium by 10x Genomics [Haber *et al.*, Nature 2017)]

Data: dendrocytes subtype 1 of human blood by Smart-Seq2 [Villani et al., Science (2017)]

Data: six cell types of mouse small intestinal epithelium by 10x Genomics [Haber *et al.*, Nature 2017)]

Data: six cell types of mouse small intestinal epithelium by 10x Genomics [Haber *et al.*, Nature 2017)]

Application 1: simulation for other single-cell technologies

Data: mouse hypothalamic preoptic region by MERFISH [Moffitt et al., Science (2018)]

Application 1: simulation for other single-cell technologies

Data: mouse hippocampal area CA1 by pciSeq [Qian et al., Nature Methods (2020)]

Application 2: evaluation of scRNA-seq protocols

Data: five cell types of PBMC by three different protocols [Ding *et al.*, Nature Biotechnology 2020)]

Application 3: clustering

Spata: six cell types of mouse small intestinal epithelium by 10x Genomics [Haber *et al.*, Nature (2017)]

Application 4: rare cell type detection

Spata: six cell types of mouse small intestinal epithelium by 10x Genomics [Haber *et al.*, Nature (2017)]

scDesign2 summary

- scDesign2: an interpretable simulator that generates realistic single-cell gene expression count data with gene correlations
 - Motivated by our previous work scDesign (Li and Li, Bioinformatics 2019)
 - A multi-gene generative model (probabilistic, transparent, interpretable)
 - Guidance for scRNA-seq experimental design
 - Benchmarking of computational methods
- R package: https://github.com/JSB-UCLA/scDesign2
- Future work
 - Extend the current model to accommodate continuous cell trajectories

• Book: Introduction to copulas by Dr. Roger B Nelson

Acknowledgements

Dongyuan Song (Ph.D. student, UCLA)

Tianyi Sun (Ph.D. student, UCLA) Dr. Wei Vivian Li (former Ph.D. student; assistant professor, Rutgers)

