Applications of generalized additive models and copulas to single-cell RNA-seq computational method development

Jingyi Jessica Li

Department of Statistics University of California, Los Angeles

http://jsb.ucla.edu

Our recent work

- 1. **PseudotimeDE**: inference of differential gene expression along cell pseudotime with valid p-values from single-cell RNA-seq data
 - by Dongyuan Song (宋东源; 2nd-year Bioinformatics PhD student)
 - Genome Biology

Method | Open Access | Published: 29 April 2021

PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated *p*-values from single-cell RNA sequencing data

```
Dongyuan Song & Jingyi Jessica Li 🖂
```

```
Genome Biology 22, Article number: 124 (2021) Cite this article
```

826 Accesses | 24 Altmetric | Metrics

- 2. scDesign2: a transparent simulator that generates realistic single-cell gene expression count data with gene correlations captured
 - by Tianyi Sun (孙天毅; 4th-year Statistics PhD student) et al.
 - accepted by RECOMB and in press at Genome Biology
 - bioRxiv: https://doi.org/10.1101/2020.11.17.387795

PseudotimeDE

Pseudotime inference

- Pseudotime: a latent "temporal" variable that reflects a cell's relative transcriptome status among all cells
- Pseudotime inference (trajectory inference): estimate the pseudotime of cells, i.e., order cells along a trajectory (lineage) based on transcriptome similarities
- Popular methods:
 - Monocle3 (Trapnell et al. 2014)
 - TSCAN (Ji et al. 2016)
 - Slingshot (Street et al. 2018)

Differential gene expression along cell pseudotime

- Differentially expressed (DE) gene: a gene whose expected expression changes along cell pseudotime
- Question: how to identify DE genes?

Limitations of existing methods

- tradeSeq (Van den Berge *et al.* 2020)
 - Test if a gene is DE based on a generalized additive model (GAM) (Hastie and Tibshirani, 1986, 1990)
- Monocle3 (Trapnell *et al.* 2014)
 - Test if a gene is DE based on a generalized linear model (GLM) (McCullagh, 1983)
- Both methods are regression-based:
 - response: a gene's expression level in a cell
 - predictor/covariate: a cell's pseudotime
- Limitation: cell pseudotime is treated as fixed with uncertainty ignored
- Why is cell pseudotime random?
 - pseudotime is not observed but inferred; inference involves uncertainty
- This ignorance of pseudotime uncertainty may result in invalid *p*-values

Pseudotime inference uncertainty

Our proposal: PseudotimeDE

• $\mathbf{Y} = (Y_{ij})$: an $n \times m$ gene expression count matrix (n cells and m genes)

- $\mathbf{T} = (T_1, \ldots, T_i, \ldots, T_n)^{\mathsf{T}}$: cell pseudotime inferred from \mathbf{Y}
- To capture the uncertainty of pseudotime T, we subsample 80% cells in Y for B times (default B = 1000); in the *b*-th subsample:
 - $\mathbf{Y}^{b} = (Y_{ij}^{b})$, an $n' \times m$ matrix where $n' = \lfloor .8n \rfloor$
 - $T^b = (T_1^b, \ldots, T_{n'}^b)^{\mathsf{T}}$: cell pseudotime inferred from Y^b
 - $\boldsymbol{T}^{*b} = (T_1^{*b}, \dots, T_{n'}^{*b})^{\mathsf{T}}$: permuted cell pseudotime

PseudotimeDE: GAM

• Negative-Binomial Generalized Additive Model (NB-GAM)

 $\left\{ egin{array}{l} Y_{ij} \sim \mathsf{NB}(\overline{\mu_{ij}},\phi_j) \ \log(\mu_{ij}) = eta_{j0} + f_j(\mathcal{T}_i) \end{array}
ight.$

• Zero-Inflated Negative-Binomial Generalized Additive Model (ZINB-GAM)

$$egin{aligned} Z_{ij} \sim \mathsf{Ber}(p_{ij}) \ Y_{ij}|Z_{ij} \sim Z_{ij} \cdot \mathsf{NB}(\mu_{ij},\phi_j) + (1-Z_{ij}) \cdot \mathbf{0} \ \log(\mu_{ij}) &= eta_{j0} + f_j(\mathcal{T}_i) \ \log(\mu_{ij}) &= lpha_{j0} + lpha_{j1}\log(\mu_{ij}) \end{aligned}$$

where $f_j(T_i) = \sum_{k=1}^{K} b_k(T_i) \beta_{jk}$ is a cubic spline function

NB-GAM (blue) v.s. ZINB-GAM (red)

PseudotimeDE: statistical test

• Null and alternative hypotheses for gene *j*:

 $H_0: f_j(\cdot) = 0$ vs. $H_1: f_j(\cdot) \neq 0$

- Fit GAM to \boldsymbol{Y} and \boldsymbol{T} . Denote the estimate of $(f_j(T_1), \ldots, f_j(T_n))^T$ by \hat{f}_j and estimated covariance matrix of \hat{f}_j by $\hat{\nabla}_{f_j}$
- Test statistic:

$$S_j = \hat{f}_j^{\mathsf{T}} \widehat{\nabla}_{f_j}^{r-} \hat{f}_j$$

where $\widehat{V}_{f_i}^{r-}$ is the rank-*r* pseudo-inverse of \widehat{V}_{f_i}

- Observed value of S_j denoted by s_j
- For b = 1, ..., B, fit GAM to \boldsymbol{Y}^{b} and \boldsymbol{T}^{*b} ; calculate the test statistic s_{i}^{b}
- $\{s_i^1, \ldots, s_i^B\}$: null values of the test statistic S_j
- Gene j's *p*-value $p_j \iff s_j, \{s_j^1, \ldots, s_j^B\}$

Real data example: dendritic cells stimulated with LPS

Real data example: dendritic cells stimulated with LPS

d

PseudotimeDE vs tradeSeq

ID	description	р
GO:0043410	positive regulation of MAPK cascade	0.00331
GO:0050729	positive regulation of inflammatory response	0.00424
GO:0071222	cellular response to lipopolysaccharide	0.00609

PseudotimeDE vs Monocle3-DE

ID	description	р
GO:0006954	inflammatory response	0.00032
GO:0043410	positive regulation of MAPK cascade	0.00079
GO:0042742	defense response to bacterium	0.00573

h

PseudotimeDE vs tradeSeq

ID	description	р
GO:0002250	adaptive immune response	0.00812
GO:0002673	regulation of acute inflammatory response	0.00955
GO:0017001	antibiotic catabolic process	0.00955

PseudotimeDE vs Monocle3-DE

ID	description		
GO:0045087	innate immune response	0.00016	
GO:0009617	response to bacterium	0.00039	
GO:0050829	defense response to Gram-negative bacterium	0.00418	

• Book: Generalized Additive Models: an introduction with R by Dr. Simon Woods

• R package mgcv by Dr. Simon Woods

scDesign2

Motivation

• Experimental design:

- How to choose among existing experimental protocols?
- Given a chosen protocol, how to determine the optimal parameters for the experiment (cell number and seq. depth)?

- Computational benchmarking:
 - How to choose among available computational methods for data analysis?

• Use a realistic simulator to answer these questions!

Existing scRNA-seq simulators

Property Simulator	protocol adaptive	genes preserved	gene cor. captured	cell num. seq. depth flexible	easy to interpret	comp. & sample efficient
dyngen	\checkmark	×	×	\checkmark	\checkmark	\checkmark
Lun2	×	\checkmark	\times	\checkmark	\checkmark	\checkmark
powsimR	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark
PROSST	×	\checkmark	×	\checkmark	\checkmark	\checkmark
scDD	\checkmark	×	×	\checkmark	\checkmark	\checkmark
scDesign	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
scGAN	\checkmark	\checkmark	×	\checkmark	×	×
splat simple	\checkmark	\times	\times	\times	\checkmark	\checkmark
splat	\checkmark	\times	\times	×	\checkmark	\checkmark
kersplat	\checkmark	×	\checkmark	\times	\checkmark	\checkmark
SPARSim	\checkmark	\checkmark	×	×	\checkmark	\checkmark
SymSim	\checkmark	\times	\times	\times	\checkmark	\checkmark
ZINB-WaVE	\checkmark	\checkmark	×	\times	\checkmark	\checkmark
SPsimSeq	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Our proposal: scDesign2

scDesign2: notations

- Denote the scRNA-seq count matrix as $\boldsymbol{X} \in \mathbb{N}^{p imes n}$, with p genes and n cells
- Assume that **X** contains *K* cell types and the cell memberships are known in advance
- Suppose there are n^(k) cells in cell type k, k = 1, ..., K, and denote the count matrix for cell type k as X^(k)
- Our goal is to fit a parametric, probabilistic model of all genes' expression in each cell type *k*
- For simplicity of notation, we drop the subscript k in the following discussion

scDesign2: marginal distribution of each gene *i*

- Model counts directly
- Denote $X_{ij} = (X_{1j}, \ldots, X_{pj}) \in \mathbb{N}^p$ as the gene expression vector for cell j, $j = 1, \ldots n$. We assume that the X_{ij} 's are i.i.d. p variables; n observations
- x_{ij} : observed count of gene *i* in cell *j*
- Select a marginal count distribution for gene *i*'s count X_{ij} from Poisson, zero-inflated Poisson, negative binomial, and zero-inflated negative binomial

scDesign2: joint distribution of all genes

- Use the copula framework
- Denote F : N^p → [0, 1] as the joint cumulative distribution function (CDF) of X_{ij} ∈ N^p and F_i : N → [0, 1] as the marginal CDF of X_{ij}
- By Sklar's theorem [Sklar 1959], there exists a copula function $C:[0,1]^p \to [0,1]$ such that

$$F(x_{1j},\ldots,x_{pj})=C(F_1(x_{1j}),\ldots,F_p(x_{pj}))$$

 The copula function C(·) is unique for continuous distributions, but not for discrete distributions (unidentifiable) [Genest et al 2007]

scDesign2: distributional transform and the Gaussian copula

- Distributional transform: necessary for discrete variable [Rüschendorf 2013].
 - Sample v_{ij} from Uniform[0, 1] independently for i = 1, ..., p and j = 1, ..., n
 - Calculate *u_{ij}* as

$$u_{ij} = v_{ij} F_i(x_{ij} - 1) + (1 - v_{ij}) F_i(x_{ij})$$

 Gaussian copula: Denote Φ as the CDF of a standard Gaussian random variable, we can express the joint distribution of X_j as

$$F(x_{1j},\ldots,x_{pj})=\Phi_p(\Phi^{-1}(u_{1j}),\ldots,\Phi^{-1}(u_{pj})|\mathbf{R})$$

where $\Phi_p(\cdot|\mathbf{R})$ is a joint Gaussian CDF with a zero mean vector and a covariance matrix that is equal to the correlation matrix \mathbf{R}

scDesign2: joint distribution fitting

- Denote \hat{F}_i as the estimated marginal distribution of gene i
- Sample v_{ij} from Uniform[0, 1] independently for i = 1, ..., p and j = 1, ..., n
- Calculate u_{ij} as

$$u_{ij}=\mathsf{v}_{ij}\hat{\mathcal{F}}_i(x_{ij}-1)+(1-\mathsf{v}_{ij})\hat{\mathcal{F}}_i(x_{ij})$$

• Calculate \hat{R} as the sample correlation matrix of $(\Phi^{-1}(u_{1j}), \dots, \Phi^{-1}(u_{pj}))^T$, $j = 1, \dots, n$

scDesign2: data simulation

• Input from previous step:

- fitted joint gene distributions (one per cell type)
- cell type proportions
- User-specified input:
 - number of cells to simulate
 - total sequencing depth
- Output:
 - a synthetic gene-by-cell count matrix with K cell types
 - fitted model parameters (optional)

scDesign2 vs. existing scRNA-seq simulators

Data: mouse small intestinal goblet cells by 10x Genomics [Haber et al., Nature (2017)]

scDesign2 vs. existing scRNA-seq simulators

Data: dendrocytes subtype 1 of human blood by Smart-Seq2 [Villani et al., Science (2017)]

scDesign2 vs. existing scRNA-seq simulators

Data: mouse small intestinal epithelium cells by 10x Genomics [Haber et al., Nature (2017)]

Application 1: simulation for other single-cell technologies

Data: mouse hypothalamic preoptic region by MERFISH [Moffitt et al., Science (2018)]

Application 2: benchmarking cell clustering methods

Data: mouse small intestinal epithelium cells by 10x Genomics [Haber et al., Nature (2017)]

Application 3: benchmarking rare cell type detection methods

Data: mouse small intestinal epithelium cells by 10x Genomics [Haber et al., Nature (2017)]

• Book: Introduction to copulas by Dr. Roger B Nelson

Summary

- PseudotimeDE: finding DE genes along cell pseudotime
 - Well-calibrated *p*-values (essential for FDR control and GSEA)
 - Powerful (thanks to GAM)
 - R package: https://github.com/SONGDONGYUAN1994/PseudotimeDE
- scDesign2: generating realistic synthetic single-cell gene expression data
 - Gene correlations preserved (thanks to copula)
 - Probabilistic, transparent, interpretable
 - R package: https://github.com/JSB-UCLA/scDesign2

Acknowledgements

Tianyi Sun 孙天毅 (Ph.D. student, UCLA)

Dr. Wei Vivian Li 李维 (former Ph.D. student; assistant professor, Rutgers)

