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Statistical rigor challenges in genomics data analysis

What is statistical rigor?

• Performance guarantee of statistical methods, e.g.,

– p-values: uniformly distributed between 0 and 1 under the nulls

– confidence intervals: coverage probabilities ≥ the claimed level (e.g., 95%)

– false discovery rate (FDR): average (# false discoveries)/(# discoveries) in

permutation analysis ≤ the claimed level (e.g., 5%)

Why is statistical rigor challenging in genomics data analysis?

• New and complex data types

• Fast method development
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Common causes of invalid p-values

1. Mis-formulation of a two-sample test as a one-sample test

• Peak calling from ChIP-seq data

Experimental

Background
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Common causes of invalid p-values

1. Mis-formulation of a two-sample test as a one-sample test

• Peak calling from ChIP-seq data (e.g., MACS and HOMER)

–

a region background count experimental count

random variable (hypothetical) X Y

random observation (data) x y

– p-value = IP(Y ≥ y) where Y ∼ Poisson(x) — correct?

– No, because it assumes Y ∼ Poisson(λ) and tests

H0 : λ = x vs. H1 : λ > x ,

which treats x as a fixed parameter and ignores its randomness
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Common causes of invalid p-values

1. Mis-formulation of a two-sample test as a one-sample test

• How to perform a two-sample test when the sample size is 1 vs. 1?

– p-value calculation is difficult...

– but, p-values are just intermediates for FDR control in high-throughput data

analysis
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Our solution: Clipper

1. Mis-formulation of a two-sample test as a one-sample test

• How to perform a two-sample test when the sample size is 1 vs. 1?

– p-value calculation is difficult...

– but, p-values are just intermediates for FDR control in high-throughput data

analysis

— accepted by Genome Biology
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Our solution: Clipper

• Does not

– require high-resolution p-values

– assume parametric distributions

– require many replicates

• Two components

– contrast scores

– cutoff

• Applications

– ChIP-seq

– mass spectrometry

– bulk and single-cell RNA-seq

– Hi-C
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Our solution: Clipper

• Peak calling from ChIP-seq data

– as an add-on, Clipper improves the FDR control of MACS2 and HOMER
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Common causes of invalid p-values

2. Mis-specification of a parametric model that does not fit data well

• Identification of differentially expressed (DE) genes from RNA-seq data
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data from Riaz et al. Cell 2017
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Common causes of invalid p-values

2. Mis-specification of a parametric model that does not fit data well

• Identification of differentially expressed genes (DEGs) from RNA-seq data

– FDR Check: permute samples between conditions (no true DEGs)
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Our recommendation: Mann-Whitney-Wilcoxon rank-sum test

2. Mis-specification of a parametric model that does not fit data well

– Recommendation: consider non-parametric methods when sample size is

large: (sample size)/(# number of parameters) ≥ 20

— collaboration with Dr. Yumei Li in Dr. Wei Li’s lab (UC Irvine)
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Common causes of invalid p-values

3. Mis-treatment of inferred covariates as observed

• Identification of DEGs along cell pseudotime from scRNA-seq data

– Pseudotime: a latent “temporal” variable that reflects a cell’s relative

transcriptome status among all cells

– Pseudotime inference (trajectory inference): estimate the pseudotime of

cells, i.e., order cells along a trajectory based on transcriptome similarities
– Popular methods:

Monocle3 (Trapnell et al. 2014)

TSCAN (Ji et al. 2016)

Slingshot (Street et al. 2018)
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Common causes of invalid p-values

3. Mis-treatment of inferred covariates as observed

• Identification of DEGs along cell pseudotime from scRNA-seq data
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Common causes of invalid p-values

3. Mis-treatment of inferred covariates as observed

• Identification of DEGs along cell pseudotime from scRNA-seq data

• Cell pseudotime is random
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Common causes of invalid p-values

3. Mis-treatment of inferred covariates as observed

• Identification of DEGs along cell pseudotime from scRNA-seq data

• Existing methods treat cell pseudotime as a observed covariate
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Our solution: PseudotimeDE

3. Mis-treatment of inferred covariates as observed

• Identification of DEGs along cell pseudotime from scRNA-seq data

• PseudotimeDE considers the uncertainty of pseudotime inference

Subsampling  
cells 

Pseudotime 
inference 

Pseudotime 
inference 

NB/ZINB-GAM 
fitted to  gene  j 

NB/ZINB-GAM 
fitted to gene  j 

Test statistic  S j 

Null distribution 
of  S j 

p  - value of gene  j 

Permutation 
on cells 

15



Our solution: PseudotimeDE

3. Mis-treatment of inferred covariates as observed

• Identification of DEGs along cell pseudotime from scRNA-seq data

• PseudotimeDE generates well-calibrated p-values for FDR control

& uses a generalized additive model for good power
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Summary

Three common causes of invalid p-values in genomics data analysis

1. Mis-formulation of a two-sample test as a one-sample test

2. Mis-specification of a parametric model that does not fit data well

3. Mis-treatment of inferred covariates as observed

Our proposals

1. Clipper: a p-value-free FDR control framework

2. Renaissance of classical non-parametric methods (e.g.,

Mann-Whitney-Wilcoxon rank-sum test) when sample sizes are large

3. PseudotimeDE: a method that identifies DEGs along cell pseudotime by

considering pseudotime inference uncertainty
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Hypothesis testing vs. binary classication
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