

Statistical Rigor in Genomics Data Analysis

Jingyi Jessica Li

Department of Statistics University of California, Los Angeles

http://jsb.ucla.edu

Statistical rigor challenges in genomics data analysis

What is statistical rigor?

- Performance guarantee of statistical methods, e.g.,
 - p-values: uniformly distributed between 0 and 1 under the nulls
 - confidence intervals: coverage probabilities \geq the claimed level (e.g., 95%)
 - false discovery rate (FDR): average (# false discoveries)/(# discoveries) in permutation analysis ≤ the claimed level (e.g., 5%)

Statistical rigor challenges in genomics data analysis

What is statistical rigor?

- Performance guarantee of statistical methods, e.g.,
 - p-values: uniformly distributed between 0 and 1 under the nulls
 - confidence intervals: coverage probabilities \geq the claimed level (e.g., 95%)
 - false discovery rate (FDR): average (# false discoveries)/(# discoveries) in permutation analysis ≤ the claimed level (e.g., 5%)

Why is statistical rigor challenging in genomics data analysis?

- New and complex data types
- Fast method development

- 1. Mis-formulation of a two-sample test as a one-sample test
 - Peak calling from ChIP-seq data

- 1. Mis-formulation of a two-sample test as a one-sample test
 - Peak calling from ChIP-seq data (e.g., MACS and HOMER)

	a region	background count	experimental count
-	random variable (hypothetical)	X	Y
	random observation (data)	x	у

- 1. Mis-formulation of a two-sample test as a one-sample test
 - Peak calling from ChIP-seq data (e.g., MACS and HOMER)

a regionbackground countexperimental count-random variable (hypothetical)XYrandom observation (data)xy-p-value = $\mathbb{P}(Y > y)$ where $Y \sim \text{Poisson}(x)$ — correct?

- 1. Mis-formulation of a two-sample test as a one-sample test
 - Peak calling from ChIP-seq data (e.g., MACS and HOMER)

a regionbackground countexperimental count-random variable (hypothetical)XYrandom observation (data)xy-p-value = $\mathbb{P}(Y \ge y)$ where $Y \sim \text{Poisson}(x)$ — correct?-No, because it assumes $Y \sim \text{Poisson}(\lambda)$ and tests

$$H_0: \lambda = x$$
 vs. $H_1: \lambda > x$,

which treats x as a fixed parameter and ignores its randomness

- 1. Mis-formulation of a two-sample test as a one-sample test
 - How to perform a two-sample test when the sample size is 1 vs. 1?
 - p-value calculation is difficult...

- 1. Mis-formulation of a two-sample test as a one-sample test
 - How to perform a two-sample test when the sample size is 1 vs. 1?
 - p-value calculation is difficult...
 - but, p-values are just intermediates for FDR control in high-throughput data analysis

Our solution: Clipper

- 1. Mis-formulation of a two-sample test as a one-sample test
 - How to perform a two-sample test when the sample size is 1 vs. 1?
 - p-value calculation is difficult...
 - but, p-values are just intermediates for FDR control in high-throughput data analysis

Clipper: p-value-free FDR control on high-throughput data from two conditions

Di Xinzhou Ge,
Yiling Elaine Chen,
Dongyuan Song, MeiLu McDermott, Kyla Woyshner,
Antigoni Manousopoulou,
Ning Wang,
Wei Li,
Leo D.Wang,
Jingyi Jessica Li
doi: https://doi.org/10.1101/2020.11.19.390773

— accepted by Genome Biology

Our solution: Clipper

• Does not

- require high-resolution p-values
- assume parametric distributions
- require many replicates
- Two components
 - contrast scores
 - cutoff
- Applications

– Hi-C

- ChIP-seq
- mass spectrometry
- bulk and single-cell RNA-seq

A CELES

Our solution: Clipper

- Peak calling from ChIP-seq data
 - as an add-on, Clipper improves the FDR control of MACS2 and HOMER

- 2. Mis-specification of a parametric model that does not fit data well
 - Identification of differentially expressed (DE) genes from RNA-seq data

data from Riaz et al. Cell 2017

- 2. Mis-specification of a parametric model that does not fit data well
 - Identification of differentially expressed genes (DEGs) from RNA-seq data
 - FDR Check: permute samples between conditions (no true DEGs)

Our recommendation: Mann-Whitney-Wilcoxon rank-sum test

- 2. Mis-specification of a parametric model that does not fit data well
 - Recommendation: consider non-parametric methods when sample size is large: (sample size)/(# number of parameters) ≥ 20

A large-sample crisis? Exaggerated false positives by popular differential expression methods

Wimei Li, Xinzhou Ge, Fanglue Peng, Wei Li, Jingyi Jessica Li doi: https://doi.org/10.1101/2021.08.25.457733

- collaboration with Dr. Yumei Li in Dr. Wei Li's lab (UC Irvine)

- 3. Mis-treatment of inferred covariates as observed
 - Identification of DEGs along cell pseudotime from scRNA-seq data
 - Pseudotime: a latent "temporal" variable that reflects a cell's relative transcriptome status among all cells
 - Pseudotime inference (trajectory inference): estimate the pseudotime of cells, i.e., order cells along a trajectory based on transcriptome similarities
 - Popular methods:

Monocle3 (Trapnell *et al.* 2014) TSCAN (Ji *et al.* 2016)

Slingshot (Street *et al.* 2018)

- 3. Mis-treatment of inferred covariates as observed
 - Identification of DEGs along cell pseudotime from scRNA-seq data

- 3. Mis-treatment of inferred covariates as observed
 - Identification of DEGs along cell pseudotime from scRNA-seq data
 - Cell pseudotime is random

- 3. Mis-treatment of inferred covariates as observed
 - Identification of DEGs along cell pseudotime from scRNA-seq data
 - Existing methods treat cell pseudotime as a observed covariate

Our solution: PseudotimeDE

- 3. Mis-treatment of inferred covariates as observed
 - Identification of DEGs along cell pseudotime from scRNA-seq data
 - PseudotimeDE considers the uncertainty of pseudotime inference

Our solution: PseudotimeDE

- 3. Mis-treatment of inferred covariates as observed
 - Identification of DEGs along cell pseudotime from scRNA-seq data
 - PseudotimeDE generates well-calibrated p-values for FDR control & uses a generalized additive model for good power

Method | Open Access | Published: 29 April 2021

PseudotimeDE: inference of differential gene expression along cell pseudotime with well-calibrated *p*-values from single-cell RNA sequencing data

Dongyuan Song & Jingyi Jessica Li 🖂

<u>Genome Biology</u> 22, Article number: 124 (2021) Cite this article

3221 Accesses | 1 Citations | 32 Altmetric | Metrics

Summary

Three common causes of invalid p-values in genomics data analysis

- 1. Mis-formulation of a two-sample test as a one-sample test
- 2. Mis-specification of a parametric model that does not fit data well
- 3. Mis-treatment of inferred covariates as observed

Three common causes of invalid p-values in genomics data analysis

- 1. Mis-formulation of a two-sample test as a one-sample test
- 2. Mis-specification of a parametric model that does not fit data well
- 3. Mis-treatment of inferred covariates as observed

Our proposals

- 1. Clipper: a p-value-free FDR control framework
- 2. Renaissance of classical non-parametric methods (e.g.,

Mann-Whitney-Wilcoxon rank-sum test) when sample sizes are large

3. PseudotimeDE: a method that identifies DEGs along cell pseudotime by considering pseudotime inference uncertainty

Patterns

Perspective Statistical Hypothesis Testing versus Machine Learning Binary Classification: Distinctions and Guidelines

Jingyi Jessica Li^{1,*} and Xin Tong² ¹Department of Statistics, University of California, Los Angeles, CA 90095-1554, USA ²Department of Data Sciences and Operations, Marshall School of Business, University of Southern California, Los Angeles, CA 90089, USA ^{*}Correspondence: jil@stat.ucla.edu https://doi.org/10.1016/j.patter.2020.100115

Acknowledgements

Dr. Xinzhou Ge (Postdoc, former Ph.D. student) Clipper large-sample DE

Dr. Yiling Elaine Chen (Former Ph.D. student) Clipper

Dr. Yumei Li (Collaborator postdoc @ UCI) large-sample DE large-sample DE

Dr. Wei Li (Collaborator PI @ UCI) Clipper

Dongyuan Song (Ph.D. student) **PseudotimeDE**

