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Statistical rigor challenges in genomics data analysis

What is statistical rigor?

e Performance guarantee of statistical methods, e.g.,
— p-values: uniformly distributed between 0 and 1 under the nulls
— confidence intervals: coverage probabilities > the claimed level (e.g., 95%)
— false discovery rate (FDR): average (# false discoveries)/(# discoveries) in

permutation analysis < the claimed level (e.g., 5%)
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Why is statistical rigor challenging in genomics data analysis?

e New and complex data types

e [Fast method development
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Common causes of invalid p-values

1. Mis-formulation of a two-sample test as a one-sample test

e Peak calling from ChlIP-seq data (e.g., MACS and HOMER)

a region background count experimental count
random variable (hypothetical) X Y
random observation (data) X y

— p-value = IP(Y > y) where Y ~ Poisson(x) — correct?

— No, because it assumes Y ~ Poisson(\) and tests
Ho: A=x wvs. Hi:\>x,

which treats x as a fixed parameter and ignores its randomness
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Our solution: Clipper

1. Mis-formulation of a as a one-sample test

e How to perform a two-sample test when the sample size is 1 vs. 17
— p-value calculation is difficult...
— but, p-values are just intermediates for FDR control in high-throughput data
analysis

Clipper: p-value-free FDR control on high-throughput data from two conditions

Xinzhou Ge, (& Yiling Elaine Chen, (=) Dongyuan Song, MeiLu McDermott, Kyla Woyshner,
Antigoni Manousopoulou, (2 Ning Wang, () Wei Li, {2 Leo D.Wang, (& Jingyi Jessica Li

doi: https://doi.org/10.1101/2020.11.19.390773

— accepted by Genome Biology



Our solution: Clipper

— require high-resolution p-values
— assume parametric distributions
— require many replicates

e Two components

e Applications
— ChlP-seq
— mass spectrometry
— bulk and single-cell RNA-seq
— Hi-C

sample size m vs. n
d features
FDR threshold g

Contrast scores Contrast score cutoff (m = n):
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Our solution: Clipper

e Peak calling from ChlIP-seq data

— as an add-on, improves the FDR control of MACS2 and HOMER
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Common causes of invalid p-values

2. Mis-specification of a that does not fit data well

e |dentification of differentially expressed (DE) genes from RNA-seq data

edgeR (CCNL1)
Pre-therapy On-therapy
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Common causes of invalid p-values

2. Mis-specification of a that does not fit data well

e |dentification of differentially expressed genes (DEGs) from RNA-seq data
= : permute samples between conditions (no true DEGs)
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from permuted data

# of identified DEGs

1 201 401 601 1 201 401 601 1 201 401 1
(0.1%) (30%) (60%) (90%) (0.1%) (30%) (60%) (90%)(0.1%) (30%) (60%) (90%)

+ # of identified DEGs from the original data
# of permuted datasets where a gene is wrongly identified as a DEG




Our recommendation: Mann-Whitney-Wilcoxon rank-sum test

2. Mis-specification of a that does not fit data well

- : consider non-parametric methods when sample size is
large: (sample size)/(# number of parameters) > 20

A large-sample crisis? Exaggerated false positives by popular differential
expression methods

Yumei Li, 2 Xinzhou Ge, (2 Fanglue Peng, 2 Wei Li, ' Jingyi Jessica Li
doi: https://doi.org/10.1101/2021.08.25.457733

— collaboration with Dr. Yumei Li in Dr. Wei Li's lab (UC Irvine)
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Common causes of invalid p-values

3. Mis-treatment of inferred covariates as observed

e Identification of DEGs along cell pseudotime from scRNA-seq data
— Pseudotime: a latent “temporal” variable that reflects a cell’s relative
transcriptome status among all cells
— Pseudotime inference (trajectory inference): estimate the pseudotime of
cells, i.e., order cells along a trajectory based on transcriptome similarities
— Popular methods:
Monocle3 (Trapnell et al. 2014)
TSCAN (Ji et al. 2016)
Slingshot (Street et al. 2018)
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Common causes of invalid p-values

3. Mis-treatment of inferred covariates as observed

e Identification of DEGs along cell pseudotime from scRNA-seq data
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Common causes of invalid p-values

3. Mis-treatment of inferred covariates as observed

e Identification of DEGs along cell pseudotime from scRNA-seq data
e Cell pseudotime is

000 025 050 075  1.00
pseudotimes of subsamples
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Common causes of invalid p-values

3. Mis-treatment of inferred covariates as observed

Identification of DEGs along cell pseudotime from scRNA-seq data
e Existing methods treat cell pseudotime as a observed covariate

p-value under the null
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Our solution: PseudotimeDE

3. Mis-treatment of inferred covariates as observed

e Identification of DEGs along cell pseudotime from scRNA-seq data
° considers the uncertainty of pseudotime inference

Pseudotime £ Permutation # NB/ZINB-GAM
inference o on cells o fitted to gene j

Subsampling Null distribution

cells of S

Pseudotime NB/ZINB-GAM
inference fitted to gene j
.. Test statistic S p-value of gene j
®
K
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Our solution: PseudotimeDE

3. Mis-treatment of inferred covariates as observed

e Identification of DEGs along cell pseudotime from scRNA-seq data
. generates well-calibrated p-values for FDR control
& uses a generalized additive model for good power

Method | Open Access | Published: 29 April 2021

PseudotimeDE: inference of differential gene
expression along cell pseudotime with well-calibrated

p-values from single-cell RNA sequencing data
Dongyuan Song & Jingyi Jessica Li

Genome Biology 22, Article number: 124 (2021) | Cite this article

3221 Accesses \ 1 Citations \ 32 Altmetric \ Metrics
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Summary

Three common causes of invalid p-values in genomics data analysis

1. Mis-formulation of a two-sample test as a one-sample test
2. Mis-specification of a parametric model that does not fit data well
3. Mis-treatment of inferred covariates as observed
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Summary

Three common causes of invalid p-values in genomics data analysis

1. Mis-formulation of a two-sample test as a one-sample test
2. Mis-specification of a parametric model that does not fit data well
3. Mis-treatment of inferred covariates as observed

Our proposals

1. Clipper: a p-value-free FDR control framework

2. Renaissance of classical non-parametric methods (e.g.,
Mann-Whitney-Wilcoxon rank-sum test) when sample sizes are large

3. PseudotimeDE: a method that identifies DEGs along cell pseudotime by
considering pseudotime inference uncertainty
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Hypothesis testing vs. binary classication

Patterns o CelPress
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Statistical Hypothesis Testing
versus Machine Learning Binary
Classification: Distinctions and Guidelines

Jingyi Jessica Li'-* and Xin Tong?
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