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Single-cell and spatial omics data: statistical characteristics

Processed data: a cell-by-feature matrix + cell covariates

Cell heterogeneity structures
• discrete cell types (known or latent)
• continuous trajectories (usually latent)
• spatial locations (known for spatial data)

Experimental designs
• batches (unwanted effects)
• conditions (biological signals)

Features
• gene expression (scRNA-seq, spatial transcriptomics, etc.)
• chromatin accessibility (scATAC-seq, SNARE-seq, etc.)
• protein abundance (CITE-seq, etc.)
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Motivations

Computational benchmarking
• > 1000 computational tools at www.scrna-tools.org
• how to choose among competing computational tools?

Inference
Conditional on a cell covariate (type, pseudotime, or spatial location)
• every gene’s distribution
• every gene pair’s correlation

In silico controlled experiments
• negative control: to evaluate a pipeline’s false discoveries
• positive control: to evaluate a pipeline’s discovery power

A realistic simulator with interpretable parameters
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Importance of benchmarking and in silico negative control

Teaser: false discoveries of DESeq2 and edgeR on population RNA-seq samples

— collaboration with Dr. Yumei Li in Dr. Wei Li’s lab (UC Irvine)
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Teaser: identifying differentially expressed genes (DEGs)

• Popular software (originally designed for small sample sizes):
– edgeR [Robinson et al., Bioinformatics, 2014]; cited ∼ 24K times
– DESeq2 [Love et al., Genome Biol, 2014]; cited > 33K times

both assume a negative binomial distribution per gene and condition
& use empirical Bayes to borrow information across genes
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Teaser: in silico negative control by permutation

• 51 pre-nivolumab and 58 on-nivolumab anti-PD-1 therapy patients [Riaz et
al., Cell, 2017]

• Permute samples between conditions (no true DEGs)
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Teaser: model mis-specification

• Poor fit of negative binomial model ←→ false positive DEGs

p=4.35e-261
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Teaser: false positive DEGs mislead scientific discoveries

0

200

400

600

DESeq
2

ed
ge

R

lim
ma-v

oo
m

NOISeq

Wilco
xo

n

# 
of

 id
en

tif
ie

d 
D

EG
s

fro
m

 p
er

m
ut

ed
 d

at
a

# of identified DEGs from the original data

NOISeq Wilcoxon

DESeq2 edgeR limma-voom

0
3

15
63

255
1023
4095

16383

0
3

15
63

255
1023
4095

16383

% of permuted datasets where a gene is wrongly identified as a DEG

# 
of

 id
en

tif
ie

d 
D

EG
s

0

200

400

600

DESeq
2

ed
ge

R

lim
ma-v

oo
m

NOISeq

Wilco
xo

n

# 
of

 D
EG

s 
id

en
tif

ie
d 

fro
m

bo
th

 o
rig

in
al

 a
nd

 p
er

m
ut

ed
 d

at
a

# of identified DEGs from the original data

DESeq2 edgeR

Rank of abs. log2(fold−change)
(from high to low) of DEGs from the original data

%
 o

f p
er

m
ut

ed
 d

at
as

et
s 

w
he

re
 a

 g
en

e 
is

 w
ro

ng
ly

 id
en

tif
ie

d 
as

 a
 D

EG

acute inflammatory response
humoral immune response
steroid metabolic process

cornification
hormone metabolic process

0 5 10 15 20
−log10(p.adjust)

DESeq2

neutrophil activation
neutrophil degranulation

neutrophil activation
involved in immune response

neutrophil mediated immunity
cell chemotaxis

0 5 10 15 20
−log10(p.adjust)

edgeR

0

50

100

150

Other 
genes

Genes wrongly 
identified as DEGs 
from any permuted 

datasets

Po
or

ne
ss

 o
f f

it

DESeq2

p<2.2e−16

0
5

10
15
20
25

Po
or

ne
ss

 o
f f

it

edgeR

A B

C D

E F
p<2.2e−16

10075502501007550250

1007550250

Other 
genes

Genes wrongly 
identified as DEGs 
from any permuted 

datasets

Spearman's rho = −0.7 Spearman's rho = −0.61

1 51 101 1 101 201 301
0

25

50

75

100

125

(8.20) (2.15) (1.29) (7.20) (1.96) (1.34) (0.76)

[Li et al., Genome Biology, 2022]
7



Teaser: popular bioinformatics tools vs. classic statistical methods
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scDesign

scDesign pros:

• interpretable parameters
• variable cell number
• variable sequencing depth

9



Use scDesign to benchmark doublet-detection methods

scDesign cons:

• cannot capture gene correlations
• does not directly model count data
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Exemplar scRNA-seq simulators and properties

Simulator
Property protocol genes gene cor. cell num. easy to comp. &

adaptive preserved captured seq. depth interpret sample
flexible efficient

dyngen ✓– × × ✓– ✓ ✓
Lun2 ✓– ✓ × ✓ ✓– ✓
powsimR ✓ ✓ × ✓ ✓ ✓
PROSST ✓– ✓ × ✓– ✓ ✓
scDD ✓ × × ✓– ✓– ✓
scDesign ✓ ✓– × ✓ ✓ ✓
scGAN ✓ ✓ ✓– ✓– × ×
splat simple ✓ × × × ✓ ✓
splat ✓ × × × ✓ ✓
kersplat ✓ × ✓– × ✓ ✓
SPARSim ✓ ✓ ✓– × ✓ ✓
SymSim ✓ × × × ✓ ✓
ZINB-WaVE ✓ ✓– ✓– × ✓ ✓
SPsimSeq ✓ ✓ ✓ ✓– ✓ ✓ 11



scDesign2

Related work:
SPsimSeq [Assefa et al., Bioinformatics, 2020]; ESCO [Tian et al., Bioinformatics, 2021]
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scDesign2: notations

• Denote the scRNA-seq count matrix as X ∈ Np×n, with p genes and n cells

• Assume that X contains K cell types and the cell memberships are known in
advance

• Suppose there are n(k) cells in cell type k , k = 1, ..., K , and denote the
count matrix for cell type k as X (k)

• Our goal is to fit a parametric, probabilistic model of all genes’ expression in
each cell type k

• For simplicity of notation, we drop the subscript k in the following discussion

13



scDesign2: marginal distribution of each gene i

• Model counts directly

• Denote X·j = (X1j , . . . , Xpj) ∈ Np as the gene expression vector for cell j ,
j = 1, . . . n. We assume that the X·j ’s are i.i.d. — p variables; n observations

• xij : observed count of gene i in cell j

• Select a marginal count distribution for gene i ’s count Xij from Poisson,
zero-inflated Poisson, negative binomial, and zero-inflated negative binomial



scDesign2: joint distribution of highly-expressed genes

• Use the copula framework

• Denote F : Np → [0, 1] as the joint cumulative distribution function (CDF)
of X·j ∈ Np and Fi : N→ [0, 1] as the marginal CDF of Xij

• By Sklar’s theorem [Sklar 1959], there exists a copula function
C : [0, 1]p → [0, 1] such that

F (x1j , . . . , xpj) = C(F1(x1j), . . . , Fp(xpj))

• The copula function C(·) is unique for continuous distributions, but not for
discrete distributions (unidentifiable) [Genest et al 2007]



scDesign2: distributional transform and the Gaussian copula

• Distributional transform: necessary for discrete variable [Rüschendorf
2013].

• Sample vij from Uniform[0, 1] independently for i = 1, . . . , p and
j = 1, . . . , n

• Calculate uij as uij = vijFi(xij − 1) + (1− vij)Fi(xij)
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scDesign2: distributional transform and the Gaussian copula

• Distributional transform: necessary for discrete variable [Rüschendorf
2013].

• Sample vij from Uniform[0, 1] independently for i = 1, . . . , p and
j = 1, . . . , n

• Calculate uij as

uij = vijFi(xij − 1) + (1− vij)Fi(xij)

• Gaussian copula: Denote Φ as the CDF of a standard Gaussian random
variable, we can express the joint distribution of X·j as

F (x1j , . . . , xpj) = Φp(Φ−1(u1j), . . . , Φ−1(upj)|R)
where Φp(·|R) is a joint Gaussian CDF with a zero mean vector and a
covariance matrix that is equal to the correlation matrix R



scDesign2: joint distribution fitting

• Denote F̂i as the estimated marginal distribution of gene i

• Sample vij from Uniform[0, 1] independently for i = 1, ..., p and j = 1, ..., n

• Calculate uij as

uij = vij F̂i(xij − 1) + (1− vij)F̂i(xij)

• Calculate R̂ as the sample correlation matrix of (Φ−1(u1j), . . . , Φ−1(upj))T,
j = 1, . . . , n



scDesign2: data simulation

• Input from previous step:
• fitted joint gene distributions (one per cell type)
• cell type proportions

• User-specified input:
• number of cells to simulate
• total sequencing depth

• Output:
• a synthetic gene-by-cell count matrix with K cell types
• fitted model parameters

18



scDesign2: summary

A multi-gene probabilistic model per cell type

• Each gene ∼ count distribution ∈ {Poisson, negative binomial, ZIP, ZINB}
• Gene correlations estimated via Gaussian copula

[Haber et al., Nature, 2017] 19
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scDesign3 functionalities (simulation)

https://github.com/SONGDONGYUAN1994/scDesign3

https://github.com/SONGDONGYUAN1994/scDesign3


From scDesign2 to scDesign3 (Modeling)

• Y = [Yij ] ∈ Rn×m: the cell-by-feature matrix

• Yij : the measurement of feature j in cell i
• Y is often a count matrix (i.e., Y ∈ Nn×m)

• X = [x1, · · · , xn]T ∈ Rn×p: the cell-by-state-covariate matrix, such as
• Cell type (p = 1 categorical variable)
• Cell pseudotime in p lineage trajectories (p continuous variables)
• 2-dimensional cell spatial coordinates (p = 2 continuous variables)

• Z ∈ Rn×q: the cell-by-design-covariate matrix

• Z = [b, c],
• b = (b1, . . . , bn)T has bi ∈ {1, · · · , B} representing cell i ’s batch
• c = (c1, . . . , cn)T has ci ∈ {1, · · · , C } representing cell i ’s condition



From scDesign2 to scDesign3 (Modeling)

• We first model the distribution of each gene j

• We use the generalized additive model for location, scale, and shape (GAMLSS)

[Stasinopoulos and Rigby, 2008]

• The regression model is:
Yij | xi , zi

ind∼ Fj(· | xi , zi ; µij , σij , pij)

θj(µij) = αj0 + αjbi + αjci + fjci (xi )

log(σij) = βj0 + βjbi + βjci + gjci (xi )

logit(pij) = γj0 + γjbi + γjci + hjci (xi )

,

where θj(·) denotes feature j ’s specific link function µij , depending on Fj

• The fitted distribution is denoted as F̂j(· | xi , zi ), i = 1, . . . , n; j = 1, . . . ,m



scDesign3: an omnibus single-cell & spatial omics simulator

• Cell states: continuous trajectory & discrete cell types
• Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
• Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: continuous trajectory (pancreatic cell differentiation)

[Bastidas-Ponce et al., Development, 2019]
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scDesign3: an omnibus single-cell & spatial omics simulator

• Cell states: continuous trajectory & discrete cell types
• Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
• Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: spot-resolution spatial data (mouse olfactory bulb measured 
by 10X Visium)
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scDesign3: an omnibus single-cell & spatial omics simulator

• Cell states: continuous trajectory & discrete cell types
• Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
• Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: bone marrow single-cell ATAC-seq data (+ scReadSim)

by Guan’ao Yan
21



scDesign3 functionalities (interpretation)

https://github.com/SONGDONGYUAN1994/scDesign3

https://github.com/SONGDONGYUAN1994/scDesign3


scDesign3: model inference



scDesign3: unsupervised trajectory / cluster quality assessment



scDesign3: model alteration



scDesign3�SDSHU



scDesign3 functionalities

Processed data: a cell-by-feature matrix + cell covariates
Cell heterogeneity structures

• discrete cell types (known or latent)
• continuous trajectories (usually latent)
• spatial locations (known for spatial data)
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• conditions (biological signals)
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• gene expression (scRNA-seq, spatial transcriptomics, etc.)
• chromatin accessibility (scATAC-seq, SNARE-seq, etc.)
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scDesign3 usages

Computational benchmarking
• > 1000 computational tools at www.scrna-tools.org
• how to choose among competing computational tools?

Inference
Conditional on a cell covariate (type, pseudotime, or spatial location)
• every gene’s distribution
• every gene pair’s correlation

In silico controlled experiments
• negative control: to evaluate a pipeline’s false discoveries
• positive control: to evaluate a pipeline’s discovery power

23
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Why need in silico controlled experiments?

https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations

Double-dipping challenges in single-cell inference

• Cell pseudotime inference + DEG identification
• Cell clustering + DEG identification

24
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DEGs along inferred pseudotime from single-cell RNA-seq data

• Cell pseudotime: a latent “temporal” variable that reflects a cell’s relative
transcriptome status among all cells

• Pseudotime inference (trajectory inference): estimate the pseudotime of
cells, i.e., order cells along a trajectory based on transcriptome similarities

• Popular software:
– Monocle3 [Trapnell et al., Nat Biotechnol, 2014]; cited > 2.8K times
– Slingshot [Street et al., BMC Bioinform, 2018]; cited 700 times

25



DEGs along inferred pseudotime from single-cell RNA-seq data
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DEGs along inferred pseudotime from single-cell RNA-seq data

• Cell pseudotime is inferred from the same data and thus random

27



DEGs along inferred pseudotime from single-cell RNA-seq data

• However, existing methods treat cell pseudotime as an observed covariate

• Our solution: PseudotimeDE considers the uncertainty of pseudotime

28
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PseudotimeDE

Generalized additive model (GAM): powerful test statistic

Subsampling + pseudotime inference + permutation: p-value calibration

Subsampling  
cells 

Pseudotime 
inference 

Pseudotime 
inference 

NB/ZINB-GAM 
fitted to  gene  j 

NB/ZINB-GAM 
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Permutation 
on cells 
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PseudotimeDE performance

scRNA-seq methods: bulk RNA-seq methods:
tradeSeq [Van den Berge et al., Nat Comms, 2020] NBAMSeq [Ren and Kuan, BMC Bioinfo, 2020]
Monocle3 [Trapnell et al., Nat Biotechnol, 2014] ImpulseDE2 [Fischer et al., NAR, 2018]
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PseudotimeDE limitations

• Complete null: what if cells do not follow a trajectory?

Q: how to generate the in silico negative control under this complete null?
— simulator scDesign3

• Computational time: high-resolution p-values require > 103 rounds of
(subsampling + pseudotime inference + permutation)

Q: how to reduce the number of rounds while still achieving FDR control?
— contrast + FDR control framework Clipper

31
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DEGs between inferred cell clusters from single-cell RNA-seq data

ClusterDE (cell clustering + DEG identification between cell clusters)

Our proposal: scDesign3 + Clipper

– inspired by
gap statistic [Hastie, Tibshirani, and Walther, JRSSB, 2002]
knockoffs [Barber and Candès, Ann Stat, 2015]

32

– existing methods assume Gaussian distributions
TN test [Zhang, Kamath, and Tse, Cell Syst, 2019] 
clusterpval [Gao, Bien, and Witten, JASA, 2022]

– or require count splitting and assume Poisson distribution

countsplit [Neufeld, Gao, Popp, Battle, and Witten, arXiv, 2022]
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scDesign3: in silico negative control

Real data Permutation null scDesign3 null

UMAP1

U
M

A
P

2

Cell type Naive cytotoxic T cell Regulatory T cell Null

[Zheng et al., Nat Commun, 2017]
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Clipper: p-value-free FDR control for genomics feature screening

• NO requirement of
– high-resolution p-values
– parametric distributions
– large sample sizes

• Foundation: knocko�s
• Two components

– contrast scores
– cuto�

Goal: marginal screening for interesting features
d features FDR threshold q

21
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Clipper offers a general p-value-free FDR control solution

Key: contrast score construction

example
target data null data
(experiment) (negative control)

 RNA-seq DEG identification 
PseudotimeDE & ClusterDE

 actual data
actual data

 permuted data 
scDesign3 simulated data

Contrast score of feature j = 1, . . . , d , the

Cj := t(target data)− t(null data) ,

where t(·) is a summary statistic — can be a complex pipeline
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Clipper paper
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ClusterDE: scDesign3 + Clipper (preliminary)

Complete null case: no cell clusters
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ClusterDE: scDesign3 + Clipper (preliminary)

Complete null case: no cell clusters
Null Cases − nDE = 0
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Take-home messages

• Sanity check is essential: popular methods do NOT always work
Benchmarking against classic methods is crucial for method developers
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Benchmarking against classic methods is crucial for method developers

• scDesign3 usages
– Method benchmarking
– Parameter inference
– In silico controlled data generation

• Double dipping is ubiquitous in genomic data science
Statistical inference is often NOT the first step of a pipeline
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Take-home messages

• Sanity check is essential: popular methods do NOT always work
Benchmarking against classic methods is crucial for method developers

• scDesign3 usages
– Method benchmarking
– Parameter inference
– In silico controlled data generation

• Double dipping is ubiquitous in genomic data science
Statistical inference is often NOT the first step of a pipeline

• Our proposal for single-cell inference
– scDesign3: generating data from the specified null
– Clipper: FDR control that only requires null data generation for once 38



Final note

Podcast with Glen Colopy @ YouTube
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