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Background



Single-cell RNA Sequencing (scRNA-seq)

from Wikipedia, Single Cell Sequencing
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scRNA-seq vs. Bulk RNA-seq for Gene Quantification

Tissue

scRNA-seq bulk RNA-seq

genes

cells tissue
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Dropout Events in scRNA-seq

from [Kharchenko et al., 2014] Nature Methods
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Dropout Events in scRNA-seq

• A dropout event occurs when a transcript is expressed in a cell but is

entirely undetected in its mRNA profile

• Dropout events occur due to low amounts of mRNA in individual

cells

• The frequency of dropout events depends on scRNA-seq protocols

• Fluidigm C1 platform: ∼ 100 cells, ∼ 1 million reads per cell

• Droplet microfluidics: ∼ 10, 000 cells, ∼ 100K reads per cell

[Zilionis et al., 2017]

• Trade-off: given the same budget, more cells, more dropouts
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Example Statistical Methods for scRNA-seq Data

• Clustering / cell type identification

• SNN-Cliq [Xu and Su, 2015]: uses the ranking of genes to construct a

graph and learn cell clusters

• CIDR [Lin et al., 2017]: incorporates implicit imputation of dropout

values

• Cell relationship reconstruction

• Seurat [Satija et al., 2015]: infers the spatial origins of cells from their

scRNA-seq data and a spatial reference map of landmark genes,

whose expressions are imputed based on highly variable genes

• Dimension reduction

• ZIFA [Pierson and Yau, 2015]: accounts for dropout events based on an

empirical observation: dropout rate of a gene depends on its mean

expression level in the population
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Genome-wide Explicit Imputation for Dropouts

Why do we need genome-wide explicit imputation methods?

Downstream analyses relying on the accuracy of gene expression

measurements:

• differential gene expression analysis

• identification of cell-type-specific genes

• reconstruction of cell differentiation trajectory

• and more

It is important to adjust the false zero expression values due to dropouts
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Genome-wide Imputation Methods for scRNA-seq

MAGIC [van Dijk et al., 2017]:

• the first method for explicit and genome-wide imputation of

scRNA-seq gene expression data

• imputes missing expression values by sharing information across

similar cells

• creates a Markov transition matrix, which determines the weights of

the cells

SAVER [Huang et al., 2017]:

• borrows information across genes using a Bayesian approach

DrImpute [Kwak et al., 2017]:

• borrows information across cells by averaging multiple imputation

results
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Genome-wide Imputation Methods for scRNA-seq

Our motivations

• It is not ideal to alter all gene expressions

• altering values unlikely affected by dropouts might introduce new bias

• could also eliminate meaningful biological variation

• It is inappropriate to treat all zero expressions as missing values

• some zero expressions may reflect truly biological non-expression

• zero expressions can be resulted from gene expression stochasticity

How to determine which values are affected by the dropout events?

8
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Method: scImpute



Main Ideas

1. For each gene, to determine which expression values are most likely

affected by dropout events

2. For each cell, to impute the highly likely dropout values by borrowing

information from the same genes’ expression in similar cells

cell j selected cells other cells

…

…

gene set A

gene set B
… …

… …

imputation
with selected cells

cell j

zero

high
expression

j

j
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Data Preprocessing

Input: A normalized and log transformed gene expression matrix XI×J

• I genes

• J cells

• Expression of gene i in cell j : Xij ≥ 0
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Three example mouse genes and the distributions of their expressions

across 268 single cells [Deng et al., 2014]
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Data Preprocessing
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Observed expression distribution under three cell conditions in the human

ESC data [Chu et al., 2016].
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Step I: Detection of Cell Subpopulations and Outliers

1. Perform PCA (principal component analysis) on matrix X for

dimension reduction (project every cell to a two-dimensional space)

2. Calculate the Euclidean distance matrix DJ×J between the cells.

3. Detect outlier cells based on the distance matrix

• The outlier cells could be a result of technical error or bias

• The outlier cells may also represent real biological variation as rare

cell types

4. Cluster the cells (excluding outliers) into K groups by spectral

clustering

• The candidate neighbor set of cell j is denoted as Nj
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Step II: Identification of Dropout Values

1. For each gene i , we model its expression in cell population k as a

random variable with density function

f
X

(k)
i

(x) = λ
(k)
i Gamma


x ;α

(k)
i ,β

(k)
i


+

1− λ

(k)
i


Normal


x ;µ

(k)
i ,σ

(k)
i


,

where λ
(k)
i is gene i ’s dropout rate in cell population k .

2. After estimating the parameters with the Expectation-Maximization

(EM) algorithm, the dropout probability of gene i in cell j can be

estimated as

dij =
λ̂
(k)
i Gamma


Xij ; α̂

(k)
i , β̂

(k)
i



λ̂
(k)
i Gamma


Xij ; α̂

(k)
i , β̂

(k)
i


+

1− λ̂

(k)
i


Normal


Xij ; µ̂

(k)
i , σ̂

(k)
i

 .

Remarks:

• The estimated dropout rates λ̂i only depend on genes but not

individual cells

• The estimated dropout probabilities dij depend on both genes and

cells
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Step II: Identification of Dropout Values
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Observed and fitted expression distribution under three cell conditions in

the human ESC data [Chu et al., 2016]
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Step II: Identification of Dropout Values

3. For each cell j , we select a gene set Aj in need of imputation:

Aj = {i : dij ≥ t} ,

where t is a threshold on dropout probabilities. This also results in a

gene set

Bj = {i : dij < t} ,
which have accurate gene expression with high confidence and do

not need imputation.

cell 1 cell 2 cell 3 cell 4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4
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The distribution of dropout probabilities in four randomly selected

cells from the mouse embryo data [Deng et al., 2014]
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Step III: Imputation of Gene Expressions Cell by Cell

1. For each cell j , we learn which cells in the candidate neighbor set Nj

are similar to it based on the gene set Bj by the non-negative least

squares (NNLS) regression:

β̂(j) = argmin
β(j)

||XBj ,j − XBj ,Njβ
(j)||22, subject to β(j) ≥ 0 .

where

• Nj represents the indices of cells that are candidate neighbors of cell j

• XBj ,j is a vector representing the Bj rows in the j-th column of X
• XBj ,Nj is a sub-matrix of X with dimensions |Bj |× |Nj |

2. The estimated coefficients β̂(j) from the set Bj are used to impute

the expression of gene set Aj in cell j :

X̂ij =


Xij , i ∈ Bj ,

Xi,Nj β̂
(j), i ∈ Aj .
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Results



Case Study 1: ERCC Spike-ins

scImpute recovers the true expression of the ERCC spike-in transcripts

[Jiang et al., 2011], especially low abundance transcripts impacted by dropout

events

• 3, 005 cells from the mouse somatosensory cortex region

• 57 ERCC transcripts
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Case Study 2: Cell-cycle Gene Expression

scImpute correctly imputes the missing expressions of cell-cycle genes

• 892 annotated cell-cycle genes

• 182 embryonic stem cells (ESCs) that had been staged for cell-cycle

phases (G1, S and G2M) [Buettner et al., 2015]
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Case Study 3: Differential Gene Expression (Simulation)

Settings

• Three cell types c1, c2, and c3, each with 50 cells

• Among a total of 20, 000 genes, 810 genes are truly differentially

expressed, with 270 having higher expression in each cell type

Procedures

• complete data: simulate gene expression values from normal

distributions and shift the mean expression of DE genes.

• raw data: zero values are randomly introduced into the count

matrix. The dropout rate of gene i is

λi = exp

−0.1× (X̄i·)

2

,

as assumed in [Pierson and Yau, 2015]
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Case Study 3: Differential Gene Expression (Simulation)

• The relationships among the 150 cells are clarified after we apply

scImpute

• The imputed data by scImpute lead to a clearer contrast between

the up-regulated genes in different cell types
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Case Study 4: Differential Gene Expression (Real Data)

Both single-cell and bulk RNA-seq data from human embryonic stem cells

(ESC) and definitive endorderm cells (DEC) [Chu et al., 2016]

• 6 samples of bulk RNA-seq (4 in H1 ESC and 2 in DEC)

• 350 samples (cells) of scRNA-seq (212 in H1 ESC and 138 in DEC)

The percentage of zero gene expression

• 14.8% in bulk data

• 49.1% in single-cell data

Differentially expressed (DE) genes are identified using DESeq2

[Love et al., 2014] and MAST [Finak et al., 2015]
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Case Study 4: Differential Gene Expression (Real Data)

animal organ development
tissue morphogenesis

tube development
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Case Study 5: Cell Clustering Example 1

268 single cells from mouse preimplantation embryos [Deng et al., 2014]

1. zygote (4 cells)

2. early 2-cell stage (8 cells)

3. middle 2-cell stage (12 cells)

4. late 2-cell stage (10 cells)

5. 4-cell stage (14 cells)

6. 8-cell stage (37 cells)

7. 16-cell stage (50 cells)

8. early blastocyst (43 cells)

9. middle blastocyst (60 cells)

10. late blastocyst (30 cells)

70.0% entries in the gene expression matrix are zeros
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Case Study 5: Cell Clustering Example 1
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Case Study 6: Cell Clustering Example 2

4, 500 peripheral blood mononuclear cells (PBMCs) from

high-throughput droplet-based system 10x genomics [Zheng et al., 2017]

Proportion of zero expression is 92.6%
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Case Study 7: Gene Expression Dynamics

Bulk and single-cell time-course RNA-seq data profiled at 0, 12, 24, 36,

72, and 96 h of the differentiation of embryonic stem cells into definitive

endorderm cells [Chu et al., 2016]

time point 00h 12h 24h 36h 72h 96h total

scRNA-seq (cells) 92 102 66 172 138 188 758

bulk RNA-seq (replicates) 0 3 3 3 3 3 15
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Case Study 7: Gene Expression Dynamics

Correlation between gene expression in single-cell and bulk data
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Case Study 7: Gene Expression Dynamics

Imputed read counts reflect more accurate gene expression dynamics

along the time course
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Conclusions

• We propose a statistical method scImpute to address the dropout

issue prevalent in scRNA-seq data

• scImpute focuses on imputing the missing expression values of

dropout genes, while retaining the expression levels of genes that are

largely unaffected by dropout events

• scImpute is compatible with existing pipelines or downstream

analysis of scRNA-seq data, such as normalization, differential

expression analysis, clustering and classification

• scImpute scales up well when the number of cells increases
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Paper and Software

An accurate and robust imputation method scImpute for single-cell

RNA-seq data

by Wei Vivian Li and Jingyi Jessica Li

Nature Communications 9:997

R package scImpute

https://github.com/Vivianstats/scImpute
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