

Clipper: p-value-free FDR control on high-throughput data from two conditions

Jingyi Jessica Li

Joint work with Xinzhou Ge and Yiling Elaine Chen (Ph.D. students)

Department of Statistics University of California, Los Angeles

http://jsb.ucla.edu

Introduction

Background

High-throughput biological data

- Small sample size (number of replicates, often \leq 3)
- Huge number of features (often $\sim 10^4)$
- Two conditions
 - Experimental
 - Background / negative control
- Identification of "interesting" features

Four example high-throughput biological applications

- Peak calling from ChIP-seq data
 - Protein-DNA binding sites
- Peptide identification from mass spectrometry (MS) data
 - Peptide-spectrum matches
- Differential analysis of RNA-seq data
 - Differentially expressed genes
- Differential analysis of Hi-C data
 - Differentially interacting chromatin regions

Peak calling from ChIP-seq data

Features: genomic regions

Peptide identification from MS data

Identification of differentially expressed genes from RNA-seq data

Identification of differentially interacting regions from Hi-C data

Enrichment and differential analyses

- Interesting means "enriched" or "differential"
- Enriched features:

 $\mathbb{E}[\mathsf{experimental}] > \mathbb{E}[\mathsf{background}]$

- Protein binding regions (peaks)
- Peptide-spectrum matches
- Differential features:

 $\mathbb{E}[\mathsf{experimental}] \neq \mathbb{E}[\mathsf{background}]$

- Differentially expressed genes
- Differentially interacting regions

False discovery rate (FDR)

Criterion for controlling false discoveries

Frequentist FDR [Benjamini and Hochberg, JRSSB, 1995]

$$\mathsf{FDR} := \mathbb{E}\left[\frac{\# \mathsf{ false discoveries}}{\# \mathsf{ discoveries } \lor 1}
ight]$$

- Bayesian paradigm:
 - Bayesian false discovery rate [Efron and Tibshirani, Genet Epidemiol, 2002]
 - Local false discovery rate (fdr) [Efron et al., JASA, 2001]
 - Local false sign rate [Stephens, Biostatistics, 2017]

Existing FDR control methods

	Input	Assumptions	Output	R package		0		līt	ICV	
ВН	<i>p</i> -values	exchangeability	adiusted	stats		R Cont	wer	plicabi	nsister	
IHW	 (1) p-values (2) independent & informative covariate 	exchangeability within covariate groups	p-values	ihw	BH		ء 	- Ap	8	
q-value	<i>p</i> -values	exchangeability	q-values	qvalue	IHW	ŏ	$\widetilde{\ominus}$	ŏ	•	
BL	 p-values independent & informative covariate 	exchangeability conditional on covariate(s)	adjusted <i>p</i> -values	swfdr	q-value	•	$\overline{\mathbf{O}}$	•		
AdaPT			q-values	adaptMT	BL - AdaPT -			\square^{\star}		
LFDR		exchangeability within covariate groups	adjusted <i>p</i> -values	none	LFDR -	ŏ	ŏ	ŏ	ŏ	
FDRreg	 (1) z-scores (2) independent & informative covariate 	exchangeability conditional on covariate(s); normal test statistics	Bayesian FDRs	FDRreg	FDRreg-t	Θ		0	Θ	
ASH	 (1) effect sizes (2) standard errors of (1) 	effects are unimodal; test statistics have normal or <i>t</i> mixture components	q-values	ash	ASH -	\bigcirc		\bigcirc	\bigcirc	

"A practical guide to methods controlling false discoveries in computational biology" [Korthauer et al., *Genome Biol*, 2019]

Generic FDR control methods

P-value based methods (exact)

- Benjamini-Hochberg (BH) procedure [Benjamini and Hochberg, JRSSB, 1995]
- Storey's q-value procedure [Storey, JRSSB, 2002]

- Local fdr based method (approximate)
 - Thresholding local fdr to q (e.g., 5%) approximately controls the FDR

► Requirements

- Distributional assumptions (parametric)
- Large number of replicates (nonparametric)
- Approaches
 - "Paired" approach
 - "Pooled" approach

Paired approach

- Used in
 - Peak calling from ChIP-seq data
 - Identification of differentially expressed genes from RNA-seq data
 - Identification of differentially interacting regions from Hi-C data
- One feature at a time, two-sample test

Issues

- Mis-formulation (e.g., two-sample test as one-sample test)
- Mis-specification (e.g., negative binomial as Poisson)

In the control samples, we often observe tag distributions with local fluctuations and biases. For example, at the FoxA1 candidate peak locations, tag counts are well correlated between ChIP and control samples (Figure 1c.d). Many possible sources for these biases include local chromatin structure, DNA amplification and sequencing bias, and genome copy number variation. Therefore, instead of using a uniform λ_{sc} estimated from the whole genome, MACS uses a dynamic parameter, λ_{scd} , defined for each candidate peak as:

$\lambda_{\text{local}} = \max(\lambda_{\text{BG}}, [\lambda_{1k_{f}}] \lambda_{5k_{f}} \lambda_{10k})$

where $\lambda_{n_e} \lambda_{a_e}$ and λ_{ia_e} are λ estimated from the 1 kb, 5 kb or 10 kb window centered at the peak location in the control sample, or the ChIP-Seq sample when a control sample is not available (in which case λ_{ia} is not used). λ_{eac} captures the influence of local biases, and is robust against occasional low tag counts at small local regions. MACS uses λ_{uac} to calculate the *p*-value of each candidate peak and removes potential false positives due to local biases (that is, peaks significantly under λ_{ec} , but not under λ_{uac}). Candidate peaks with *p*-values below a user-defined threshold *p*-value (default 10°) are called, and the ratio between the ChIP-Seq tag count and λ_{uac} is reported as the fold, enrichment.

Cited for more than 8,000 times

Pooled approach

- Used in
 - Peptide identification from MS data
- ▶ Pools all features' background measurements to form a null distribution
 - Assumes a homogeneous background: features are i.i.d. under background

Generic FDR control methods

P-value based methods (exact)

- Benjamini-Hochberg (BH) procedure [Benjamini and Hochberg, JRSSB, 1995]
- Storey's q-value procedure [Storey, JRSSB, 2002]

- Local fdr based method (approximate)
 - Thresholding local fdr to q (e.g., 5%) approximately controls the FDR

Local fdr [Efron et al., JASA, 2001]

Local fdr of feature j

local fdr_j := \mathbb{P} (feature is uninteresting | $Z = z_j$)

vs. Bayesian false discovery rate

 $\operatorname{Fdr}(z) := \mathbb{P}(\operatorname{feature is uninteresting} \mid Z \ge z)$

• It can be shown that (assuming local fdr_j is monotone decreasing in z_j)

 $\operatorname{Fdr}(z^*) \leq q$ if $z^* := \min\{z_j : \operatorname{local} \operatorname{fdr}_j \leq q\}$

• With discoveries := {feature j : local fdr_j $\leq q$ }

 $FDR(discoveries) \approx Fdr(z^*)$

So FDR is approximately controlled

Local fdr [Efron et al., JASA, 2001]

- Requires estimating the null distribution of test statistic by
 - Normal distributional assumption
 - or
 - Swapping replicates between conditions

Our proposal: Clipper

Does not

- use p-values
- assume parametric distributions
- require many replicates
- Two components
 - Contrast scores
 - Cutoff

- Enrichment analysis with equal numbers of replicates: BC procedure [Barber and Candès, Ann Stat, 2015]
- Differential analysis and other enrichment analysis: GZ procedure [Gimenez and Zou, PMLR, 2019]
- Robust to
 - distributions
 - numbers of replicates

outliers

Clipper Method

Notations

► *d*: number of features

►
$$X_j = (X_{j1}, \dots, X_{jm})^\top$$
, $Y_j = (Y_{j1}, \dots, Y_{jn})^\top$: measurements under two conditions
- $X_{j1}, \dots, X_{jm} \ge 0$ are i.i.d.; $\mu_{Xj} = \mathbb{E}[X_{j1}]$
- $Y_{j1}, \dots, Y_{jn} \ge 0$ are i.i.d.; $\mu_{Yj} = \mathbb{E}[Y_{j1}]$
- $j = 1, \dots, d$

Feature *j* is **interesting**

- Enrichment analysis: $\mu_{Xj} > \mu_{Yj}$
- ► Differential analysis: $\mu_{Xj} \neq \mu_{Yj}$

Conditioning on $\{\mu_{Xj}\}_{j=1}^d$ and $\{\mu_{Yj}\}_{j=1}^d$,

► Independence:

 $X_{j1}, \ldots, X_{jm}, Y_{j1}, \ldots, Y_{jn}$ are mutually independent (1) $X_1, \ldots, X_d, Y_1, \ldots, Y_d$ are mutually independent

► For **uninteresting** feature *j*,

 $X_{j1}, \ldots, X_{jm}, Y_{j1}, \ldots, Y_{jn}$ are identically distributed (2)

Calculation of contrast scores depends on analysis tasks:

• Enrichment analysis with m = n

• Enrichment analysis with $m \neq n$

Differential analysis

Two summary statistics:

0

$$t^{\text{diff}}(\boldsymbol{x}, \boldsymbol{y}) := \bar{\boldsymbol{x}} - \bar{\boldsymbol{y}} \tag{3}$$

$$t^{\max}(\boldsymbol{x}, \boldsymbol{y}) := \max\left(\bar{x}, \bar{y}\right) \cdot \operatorname{sign}\left(\bar{x} - \bar{y}\right)$$
(4)

In enrichment analysis with m = n, contrast score of feature *j*:

$$C_j := t^{\text{diff}}(X_j, Y_j)$$
 difference contrast score (5)
r
 $C_j := t^{\max}(X_j, Y_j)$ maximum contrast score (6)

Enrichment analysis with m = n: cutoff

Definition 1 BC procedure [Barber and Candès, Ann Stat, 2015]

- Given contrast scores $\{C_j\}_{j=1}^d$, define $C = \{|C_j| : C_j \neq 0 ; j = 1, ..., d\}$
- ▶ Based on the target FDR threshold $q \in (0, 1)$, contrast-score cutoff T^{BC} :

$${\mathcal T}^{ ext{BC}} := \min\left\{t\in \mathcal C: rac{\mathrm{card}(\{j: \mathit C_j \leq -t\})+1}{\mathrm{card}(\{j: \mathit C_j \geq t\}) ee 1} \leq q
ight\}$$

- **Discoveries**: $\{j : C_j \ge T^{BC}\}$
- ▶ BC vs. BH [Arias-Castro and Chen, *Electronic J Stat*, 2016]

(7)

Define $S_j = \operatorname{sign}(C_j) \in \{-1, 0, 1\}$

 $\mathcal{N}:$ the set of uninteresting features

Then

1. S_1, \ldots, S_d are mutually independent 2. $\mathbb{P}(S_j = 1) = \mathbb{P}(S_j = -1)$ for all $j \in \mathcal{N}$ 3. $\{S_j\}_{j \in \mathcal{N}} \perp C$

When $m \neq n$, 2 and 3 are not guaranteed to hold

Enrichment analysis with $m \neq n$: permutation

Data:

$$\mathbf{W} := \begin{bmatrix} X_{11} & \cdots & X_{1m} & Y_{11} & \cdots & Y_{1n} \\ \vdots & & \vdots & \\ X_{d1} & \cdots & X_{dm} & Y_{d1} & \cdots & Y_{dn} \end{bmatrix}$$

• σ : a permutation function to permute the columns of **W** and output \mathbf{W}^{σ}

$$\mathbf{W}^{\sigma} := \begin{bmatrix} X_{11}^{\sigma} & \cdots & X_{1m}^{\sigma} & Y_{11}^{\sigma} & \cdots & Y_{1n}^{\sigma} \\ \vdots & & \vdots & \\ X_{d1}^{\sigma} & \cdots & X_{dm}^{\sigma} & Y_{d1}^{\sigma} & \cdots & Y_{dn}^{\sigma} \end{bmatrix}$$

• The permuted measurements $\left\{ (\boldsymbol{X}_{j}^{\sigma}, \boldsymbol{Y}_{j}^{\sigma}) \right\}_{j=1}^{d}$

Enrichment analysis with $m \neq n$: permutation

• The identity permutation σ_0

► Sample *h* non-identity permutations $\sigma_1, \ldots, \sigma_h$

$$\blacktriangleright \left\{ (\boldsymbol{X}_{j}^{\sigma_{0}}, \boldsymbol{Y}_{j}^{\sigma_{0}}), (\boldsymbol{X}_{j}^{\sigma_{1}}, \boldsymbol{Y}_{j}^{\sigma_{1}}), \cdots, (\boldsymbol{X}_{j}^{\sigma_{h}}, \boldsymbol{Y}_{j}^{\sigma_{h}}) \right\}_{j=1}^{d}$$

• Degree of "interestingness" of feature j given σ_{ℓ} : $T_j^{\sigma_{\ell}} := t^{\text{diff}}(\boldsymbol{X}_j^{\sigma_{\ell}}, \boldsymbol{Y}_j^{\sigma_{\ell}})$

• Sort
$$\{T_j^{\sigma_\ell}\}_{\ell=0}^h$$
 so that $T_j^{(0)} \ge T_j^{(1)} \ge \cdots \ge T_j^{(h)}$

Contrast score of feature *j*:

$$C_{j} := \begin{cases} T_{j}^{(0)} - T_{j}^{(1)} & \text{if } T_{j}^{(0)} = T_{j}^{\sigma_{0}} \\ T_{j}^{(1)} - T_{j}^{(0)} & \text{otherwise} \end{cases} \qquad \text{difference contrast score}$$
(8)

or

$$C_{j} := \begin{cases} \left| T_{j}^{(0)} \right| & \text{if } T_{j}^{(0)} = T_{j}^{\sigma_{0}} > T_{j}^{(1)} \\ 0 & \text{if } T_{j}^{(0)} = T_{j}^{(1)} \\ - \left| T_{i}^{(0)} \right| & \text{otherwise} \end{cases}$$
maximum contrast score (9)

Definition 2 GZ procedure [Gimenez and Zou, PMLR, 2019]

• Given contrast scores $\{C_j\}_{j=1}^d$, define $C = \{|C_j|: C_j \neq 0 ; j = 1, ..., d\}$

▶ Based on the target FDR threshold $q \in (0, 1)$, contrast-score cutoff T^{GZ} :

$$T^{\text{GZ}} := \min\left\{t \in \mathcal{C} : \frac{\frac{1}{h} + \frac{1}{h} \text{card}\left(\{j : C_j \le -t\}\right)}{\text{card}\left(\{j : C_j \ge t\}\right) \lor 1} \le q\right\}$$
(10)

Discoveries: $\{j : C_j \ge T^{GZ}\}$

Define
$$S_j = sign(C_j) \in \{-1, 0, 1\}$$

 $\mathcal{N}:$ the set of uninteresting features

Then

1.
$$S_1, \ldots, S_d$$
 are mutually independent ;

2. $\mathbb{P}(S_j = 1) \leq \frac{1}{h+1}$ for all $j \in \mathcal{N}$;

3. $\{S_j\}_{j\in\mathcal{N}}\perp \mathcal{C}$.

• Almost the same as enrichment analysis with $m \neq n$

► Only difference: the degree of "interestingness" of feature *j*:

- Differential:

$$\mathcal{T}_{j}^{\sigma_{\ell}} := \left| t^{ ext{diff}}(oldsymbol{X}_{j}^{\sigma_{\ell}},oldsymbol{Y}_{j}^{\sigma_{\ell}})
ight|$$

- Enrichment:

$$\mathcal{T}_j^{\sigma_\ell} := t^{\mathrm{diff}}(\pmb{X}_j^{\sigma_\ell}, \pmb{Y}_j^{\sigma_\ell})$$

Simulation analysis

Analysis task: enrichment or differential

▶ Numbers of replicates *m*vs*n*: 1vs1, 2vs1, 3vs3, or 10vs10

Distribution: Gaussian, Poisson, or negative binomial

Background: homogeneous or heterogeneous

Number of features: d = 1,000 or 10,000

P-value based methods

- p-value calculation approach (paired or pooled)
- p-value thresholding procedure (BH or Storey's qvalue)

BH-pair BH-pool qvalue-pair qvalue-pool

Local fdr based methods

- empirical null (Gaussian)
- swapping

 $\Rightarrow \begin{array}{c} \mathsf{locfdr-emp} \\ \mathsf{locfdr-swap} \end{array}$

Simulation results

39

Simulation results

3vs3 Enrichment

Gaussian No outlier

Heterogeneous

3vs3 Enrichment

Gaussian Outlier Heterogeneous

- Clipper
- O BH-pool
- O BH-pair-correct
- O BH-pair-2as1
- O BH-pair-mis
- + qvalue-pool
- + qvalue-pair-correct
- + qvalue-pair-2as1
- + qvalue-pair-mis
- × locfdr-emp
- ➤ locfdr-swap

Simulation results

2vs1 Enrichment 3vs3 Differential

Negative binomial

Heterogeneous

Poisson

Heterogeneous

- Clipper
- 🗕 BH–pool
- BH-pair-correct
- BH-pair-2as1
- → BH-pair-mis
- -- locfdr-emp
- locfdr-swap

Poisson

Heterogeneous

3vs3 Differential

Negative binomial Heterogeneous

- Clipper
- O BH-pool
- O BH-pair-correct
- O BH-pair-2as1
- BH-pair-mis
- + qvalue-pool
- + qvalue-pair-correct
- + qvalue-pair-2as1
- + qvalue-pair-mis
- × locfdr-emp
- × locfdr-swap

High-throughput biological data applications

High-throughput biological data applications

We compare Clipper with mainstream bioinformatics methods

- Peaking calling from ChIP-seq data:
 - MACS2 [Zhang et al., Genome Biol, 2008]
 - Homer [Heinz et al., Mol Cell, 2010]
- Peptide identification from MS data
 - Mascot [Spivak et al., J Proteome Res, 2009]
- ► Identification of differentially expressed genes from RNA-seq data
 - DESeq2 [Love et al., Genome Biol, 2014]
 - edgeR [Robinson et al., Bioinformatics, 2010]
 - Covariate-based p-value weighting: IHW [Ignatiadis et al., Nat Methods, 2016]
- Identification of differentially interacting regions from Hi-C data
 - diffHic [Lun et al., BMC Bioinformatics, 2015]
 - FIND [Djekidel et al., Genome Res, 2018]

Peaking calling from ChIP-seq data

Peptide identification from MS data

Identification of differentially expressed genes from RNA-seq data

The p-value distributions of 16 non-DEGs most frequently identified by DESeq2

Human monocytes RNA-seq [Williams et al., BMC Bioinformatics, 2017]

Classical (inflammatory) vs. non-classical (chronical) monocytes

Most significant GO term from DESeq2

GO term (ID)	qvalue (DESeq2)	qvalue (edgeR)	qvalue (Clipper)
leukocyte chemotaxis (GO:0030595)	9.930044e-06	9.594885e-09	3.104557e-10
myeloid leukocyte migration (GO:0097529)	1.107612e-05	2.921486e-08	5.740217e-10
granulocyte chemotaxis (GO:0071621)	2.698853e-05	1.008808e-08	1.167108e-09
neutrophil chemotaxis (GO:0030593)	2.698853e-05	2.921486e-08	2.691033e-09

Identification of differentially expressed genes from single-cell RNA-seq data

10x Genomics data generated by scDesign2 https://github.com/JSB-UCLA/scDesign2 "Bias, robustness and scalability in single-cell differential expression analysis" [Soneson and Robinson *Nat Methods*, 2018]

Identification of differentially interacting regions from Hi-C data

Discussion

Discussion

- Clipper avoids the need for
 - valid (finite-sample or asymptotic) null distribution
 - high-resolution p-values
- Broad applications in high-throughput data analysis
 - key: contrast scores
- ► Importance of validating the FDR control
 - FDR control is bluntly assumed but rarely validated in most bioinformatics methods

Discussion

- Clipper avoids the need for
 - valid (finite-sample or asymptotic) null distribution
 - high-resolution p-values
- Broad applications in high-throughput data analysis
 - key: contrast scores
- ► Importance of validating the FDR control
 - FDR control is bluntly assumed but rarely validated in most bioinformatics methods
- ► Future work
 - incorporate feature covariates (e.g., gene variance)
 - choose contrast score & # of permutations: power
 - implement Clipper in bioinformatics tools

PseudotimeDE: Identification of DEGs along Pseudotime with Valid p-values

Dongyuan Song R package: https://github.com/SONGDONGYUAN1994/PseudotimeDE

Acknowledgements

UCLA JSB:

- Dongyuan Song
- ► Elaine Huang
- ► Tianyi Sun
- ► Kexin Li
- Other lab members

City of Hope:

- ▶ Dr. Leo Wang
- MeiLu McDermott
- ► Kyla Woyshner
- Antigoni Manousopoulou

UCI

▶ Dr. Wei Li

Xinzhou Ge

Yiling Elaine Chen

Cancer-driver gene prediction: multiple testing?

Multiple testing vs. binary classification

Hypothesis Testing

Ouestion: Is feature 4 a biomarker?

Observations

SCIENCE ADVANCES | RESEARCH ARTICLE

CANCER

DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features

Jie Lyu¹*, Jingyi Jessica Li²*[†], Jianzhong Su³, Fanglue Peng³, Yiling Flaine Chen², Yinzhou Ge² Wei Li^{1†}

Patterns

CelPress

Perspective

Statistical Hypothesis Testing versus Machine Learning Binary Classification: Distinctions and Guidelines

Jingvi Jessica Li^{1,4} and Xin Tong² Department of Statistica, University of California, Los Angeles, CA 90095-1554, USA Department of Data Sciences and Operations, Marihall School of Business, University of Southern California, Los Angeles, CA 90089, USA Correspondence: 10stat.ucla.edu

