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Negative control in medicine

Source: https://fr.wikipedia.org/wiki/Claude_Bernard

Claude Bernard
(1813 – 1878)

https://fr.wikipedia.org/wiki/Claude_Bernard


Negative control in biological experiments

Source: https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations

concrete

https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations


!Negative control" in genomic data analysis

One hypothesis test per gene: reject null hypothesis → DE gene

Q: Where is the negative control?
A: Null hypotheses



Null hypothesis in statistical hypothesis testing

Source: https://www.awesomefintech.com/term/null_hypothesis/

abstract

https://www.awesomefintech.com/term/null_hypothesis/


Since null hypothesis is abstract, it is often 
misunderstood and misused

Questions I will discuss in this talk

1. What is an appropriate null hypothesis?

• Different null hypotheses → different discoveries/conclusions

2. How to make an abstract null hypothesis concrete?

• Synthetic null data

3. How to use synthetic null data to reduce false discoveries?

• Contrastive strategy



Question 1

What is an appropriate null hypothesis?



Example 1: bulk RNA-seq DE analysis

One hypothesis test per gene: reject null hypothesis → DE gene

Q: What genes are differentially expressed (DE) between two conditions?



Example 1: bulk RNA-seq DE analysis
Popular methods (originally designed for small sample sizes):
• edgeR [Robinson et al., Bioinformatics, 2010]; cited > 31K times
• DESeq2 [Love et al., Genome Biol, 2014]; cited > 52K times



Example 1: bulk RNA-seq DE analysis
Popular methods (originally designed for small sample sizes):
• edgeR [Robinson et al., Bioinformatics, 2010]; cited > 31K times
• DESeq2 [Love et al., Genome Biol, 2014]; cited > 52K times

Both assume a negative binomial (NB) distribution per gene and condition
For each gene, 
• Condition 1:  
• Condition 2:

Xi
ind⇠ NB(µ1si,�1), i = 1, . . . , n

Null hypothesis H0 : µ1 = µ2

which is appropriate only if the NB assumption is reasonable 

Yj
ind⇠ NB(µ2sj ,�2), j = 1, . . . ,m



Example 1: bulk RNA-seq DE analysis
Q: Why are many genes identified as DE genes from permuted data?

51 pre-nivolumab 
vs. 
58 on-nivolumab 
anti-PD-1 therapy patients
[Riaz et al., Cell, 2017]

Xinzhou Ge
(JSB)

Yumei Li
(Wei Li Lab)

[Li*, Ge* et al., 
Genome Biology, 2022]



Example 1: bulk RNA-seq DE analysis
Q: Why are many genes identified as DE genes from permuted data?
A: The NB assumption does not hold on this dataset.



Example 1: bulk RNA-seq DE analysis
Q: Why are many genes identified as DE genes from permuted data?
A: The NB assumption does not hold on this dataset.



Example 1: bulk RNA-seq DE analysis

Chenxin Jiang
(CUHK→JSB)

Q: Why are many genes identified as DE genes from permuted data?
A: The NB assumption does not hold on this dataset.



Example 1: bulk RNA-seq DE analysis
Q: Why does Wilcoxon NOT identify DE genes from permuted data?



Example 1: bulk RNA-seq DE analysis

For each gene, the normalized counts 

Condition 1:  
Condition 2:

Null hypothesis (approximate, ignoring ties):

H0 : P( eXi > eYj) = 0.5, for all i, j

eXi, i = 1, . . . , n
eYj , j = 1, . . . ,m

which does NOT have the NB assumption

Q: Why does Wilcoxon NOT identify DE genes from permuted data?
A: It has a different null hypothesis.



Example 1: bulk RNA-seq DE analysis

Xinzhou Ge
(JSB)

Yumei Li
(Wei Li Lab)

Prof. Wei Li
(UC Irvine)Twitter: @jsb_ucla



Which null hypothesis is more appropriate?

Too abstract a question?

Intuition: DE genes found from permuted data 
are not trustworthy

Then what does permutation provide?

Synthetic null (in silico negative control)



Question 2: 

How to make an abstract null hypothesis concrete?

Synthetic null data



Another example where permutation helps



Example 2: dubious t-SNE/UMAP embeddings?

Source: https://distill.pub/2016/misread-tsne/

• Hyperparameters really matter

• Distances between clusters might not mean anything

• …

https://distill.pub/2016/misread-tsne/


Example 2: dubious t-SNE/UMAP embeddings?
Q: Is a cell’s embedding dubious or trustworthy?

A: Examine the cell’s neighbors before and after embedding

Christy Lee
(JSB)

Lucy Xia
(HKUST)

Tuesday 12:10 pm in Salle Rhone 1
(BioVis COSI)

Under revision at Nat Comms



Example 2: dubious t-SNE/UMAP embeddings?
scDEED intuition

A trustworthy cell embedding



Example 2: dubious t-SNE/UMAP embeddings?
scDEED intuition

A dubious cell embedding



Q: What is the null hypothesis?

A: A cell’s neighbors are random after embedding.

Example 2: dubious t-SNE/UMAP embeddings?



Example 2: dubious t-SNE/UMAP embeddings?
scDEED detects dubious embeddings

Hydra single-cell RNA-seq data [Siebert et al., Science, 2019]
tSNE_1 tSNE_1

Original (perplexity 40)



Example 2: dubious t-SNE/UMAP embeddings?
scDEED optimizes hyperparameters by minimizing # of dubious embeddings

Original
(perplexity 40)

scDEED optimized
(perplexity 230)

tSNE_1 tSNE_1



Synthetic null generation beyond permutation



Example 3: single-cell post-clustering DE analysis

Source: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02116-x

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02116-x


Double dipping: same data used twice
1. Clustering: define cell clusters based on gene expression
2. DE: test if every gene has the same mean expression between cell clusters

Example 3: single-cell post-clustering DE analysis



Q: Why inflated false discoveries?
A: Two different null hypotheses
Expression level of m genes:
Cell type (latent):
Cell cluster (based on                  ): 

Y1, . . . , Ym

Y1, . . . , Ym

The ideal null hypothesis H0 : E[Yj | Z = 0] = E[Yj | Z = 1]

The post-clustering double-dipping (DD) null hypothesis

H0
DD : E[Yj | bZ = 0] = E[Yj | bZ = 1]

Z 2 {0, 1}
bZ 2 {0, 1}

does not hold but      holds → false-positive cell-type marker geneH0
DD

H0

Example 3: single-cell post-clustering DE analysis



Q: What is a meaningful “negative control” for cell type discovery?
A: All cells in one “hypothetical” cell type

→ all genes satisfy the ideal null hypotheses
Q: A model for synthetic null generation? A: scDesign2/3

Dongyuan Song
(JSB)

Example 3: single-cell post-clustering DE analysis

Tianyi Sun
(JSB)

Tuesday 5:20 pm in Salle Rhone 2
(RegSys COSI)



scDesign3 preserves per-gene mean, variance, and gene-gene correlations. 
Example 3: single-cell post-clustering DE analysis



scDesign3 preserves per-gene mean, variance, and gene-gene correlations. 
Example 3: single-cell post-clustering DE analysis

Q: Why not 
permutation?
A: Gene-gene 
correlations 
are crucial for 
clustering.



scDesign3 preserves per-gene mean, variance, and gene-gene correlations. 
Example 3: single-cell post-clustering DE analysis

Q: Why not 
knockoffs? [Barber 
and Candes, Ann 
Stat, 2015]
A: There is no 
outcome variable; 
not a supervised 
learning setting.



Example 3: single-cell post-clustering DE analysis
scDesign3 preserves per-gene mean, variance, and gene-gene correlations. 



Example 3: single-cell post-clustering DE analysis
scDesign3 synthetic null generation (marginal NB + Gaussian copula)



Q: Why NOT use deep learning (e.g., GAN) to generate synthetic data?
A: Unclear how to generate synthetic null data by modifying parameters.

Example 3: single-cell post-clustering DE analysis

scDesign3 vs. scGAN



Question 3:

How to use synthetic null data to reduce 
false discoveries?

Contrastive strategy



Q: How to control false discoveries using synthetic null data? 

ClusterDE

Example 3: single-cell post-clustering DE analysis

e.g., DE score 
= -log(p-value)

Dongyuan Song
(JSB)

Kexin Li
(JSB)



Xinzhou Ge
(JSB)

Example 3: single-cell post-clustering DE analysis
Q: How to control false discoveries using synthetic null data?
A: Clipper — a contrastive strategy for p-value-free FDR control 



Example 3: single-cell post-clustering DE analysis

Knockoffs
[Barber and Candes, Ann Stat, 2015]

m must be large

Q: How to control false discoveries using synthetic null data?
A: Clipper — a contrastive strategy for p-value-free FDR control 



Example 3: single-cell post-clustering DE analysis
Q: How to control false discoveries using synthetic null data?
A: Clipper — a contrastive strategy for p-value-free FDR control 



ClusterDE: a post-clustering DE method robust to double dipping

Example 3: single-cell post-clustering DE analysis



Expectation 1: No cell-type marker genes should be found from a cell line.

Example 3: single-cell post-clustering DE analysis



Example 3: single-cell post-clustering DE analysis
Expectation 2: Cell-type marker genes should be found as top DE genes.



Example 3: single-cell post-clustering DE analysis
Expectation 2: Cell-type marker genes should be found as top DE genes.
Expectation 3: Housekeeping genes should NOT be found as top DE genes.



Expectation 2: Cell-type marker genes should be found as top DE genes.
Expectation 3: Housekeeping genes should NOT be found as top DE genes.

Example 3: single-cell post-clustering DE analysis



Q: Why does ClusterDE NOT identify housekeeping genes as top DE genes?
A: ClusterDE uses contrast scores (= target DE score – null DE score).

Example 3: single-cell post-clustering DE analysis



ClipperQTL (contrastive strategy) vs. FastQTL (p-value-based strategy)

Contrastive strategy is computationally efficient

Heather Zhou
(JSB)Ongoing work



Summary
1. What is an appropriate null hypothesis?

• Different null hypotheses → different discoveries/conclusions
Example 1: bulk RNA-seq DE analysis: NB vs. Wilcoxon? Permutation

2. How to make an abstract null hypothesis concrete? 
• Synthetic null
Example 2: dubious t-SNE/UMAP embeddings? Permutation → scDEED
Example 3: single-cell post-clustering DE analysis: scDesign3

3. How to use synthetic null data to reduce false discoveries?
• Contrastive strategy (Clipper) vs. p-value-based strategy: ClipperQTL
Example 3: single-cell post-clustering DE analysis:

ClusterDE: scDesign3 → clustering + DE → Clipper



Take-home message 1

Synthetic null data can 
make an abstract null hypothesis concrete and 

enable contrastive data analysis
Synthetic null data generation is 

real-data-specific and problem-specific

“Teaching someone to fish is better than 
giving them a fish” — Chinese proverb 



Take-home message/question 2

Less is more (?)

v Occam's razor: the principle of parsimony

v Fewer but more reliable discoveries → science



Trainees @ UCLA
– Xinzhou Ge (bulk DE; Clipper)

will join Oregon State University
– Christy Lee (scDEED)
– Dongyuan Song (ClusterDE; scDesign3)

will be on the job market
– Tianyi Sun (scDesign2)
– Kexin Li (ClusterDE)
– Heather Zhou (ClipperQTL)
Former trainees
– Wei Vivian Li @ UC Riverside
– Nan Miles Li @ Loyola Univ Chicago
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