

Jingyi Jessica Li **Professor of Statistics and Data Science** University of California, Los Angeles Helen Putnam Fellow, 2022-23 **Radcliffe Institute for Advanced Study at** Harvard University **United States** 

ISCB OVERTON PRIZE KEYNOTE

# TUESDAY 8:45AM

# **Using Synthetic Null Data** to Enhance Statistical Rigor in Genomics

# Jingyi Jessica Li (李婧翌)

Professor of Statistics and Data Science, Biostatistics, **Computational Medicine**, and Human Genetics University of California, Los Angeles





# **Using Synthetic Null Data** to Enhance Statistical Rigor in Genomics

# Jingyi Jessica Li (李婧翌)

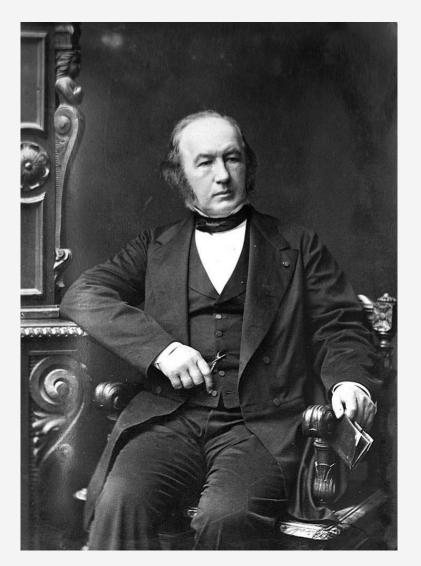
Professor of Statistics and Data Science, Biostatistics, **Computational Medicine**, and Human Genetics University of California, Los Angeles







# **Negative control in medicine**





Claude Bernard (1813 – 1878)



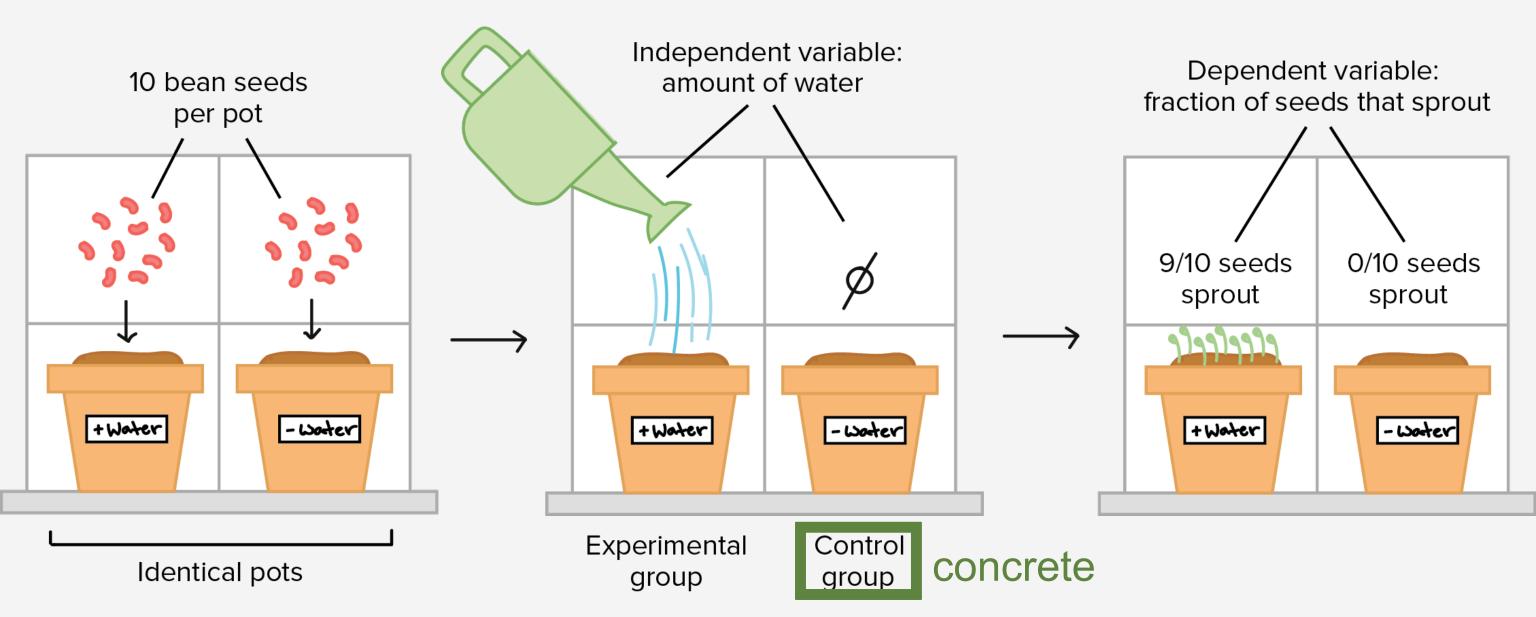
Source: <u>https://fr.wikipedia.org/wiki/Claude\_Bernard</u>







# **Negative control in biological experiments**



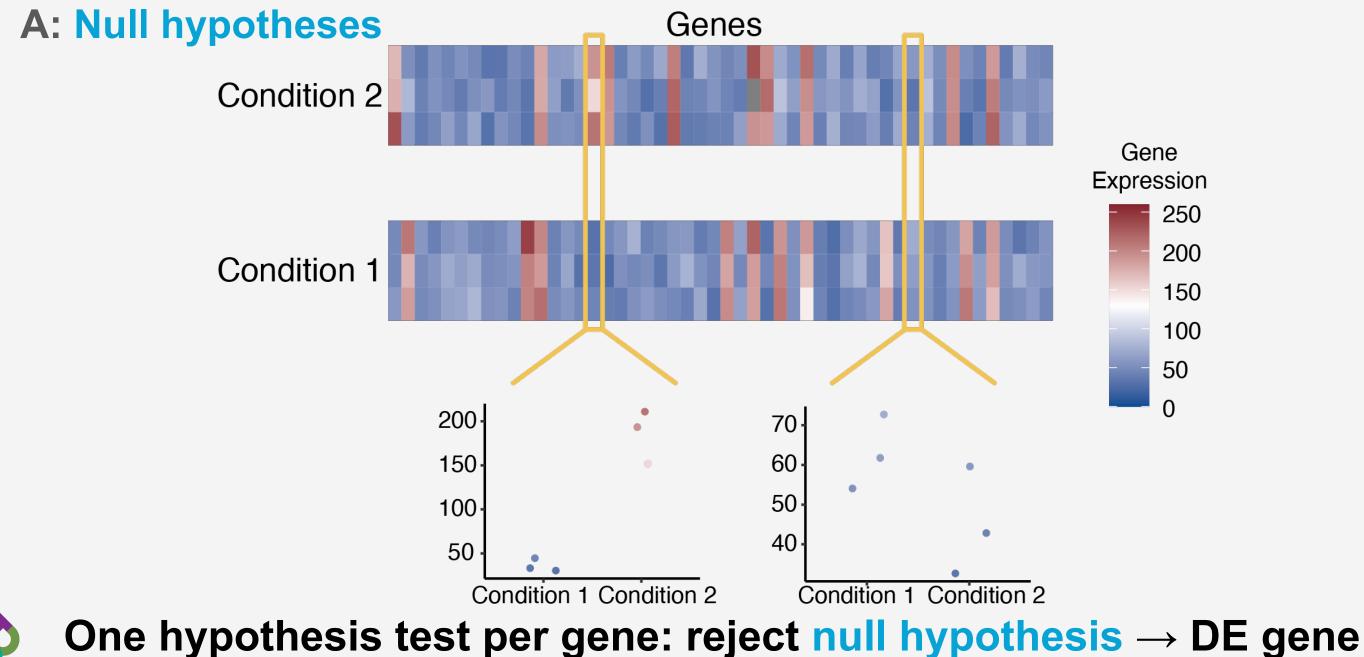


Source: https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations



# "Negative control" in genomic data analysis

**Q: Where is the negative control?** 





# **Null hypothesis** in statistical hypothesis testing

A null hypothesis is a type of conjecture used in statistics that proposes that there is no difference between certain characteristics of a population or data-generating process.



Source: https://www.awesomefintech.com/term/null hypothesis/



# abstract

# Since null hypothesis is abstract, it is often misunderstood and misused

# Questions I will discuss in this talk

- 1. What is an appropriate null hypothesis?
  - Different null hypotheses  $\rightarrow$  different discoveries/conclusions
- 2. How to make an abstract null hypothesis concrete?
  - Synthetic null data
- 3. How to use synthetic null data to reduce false discoveries?
  - Contrastive strategy



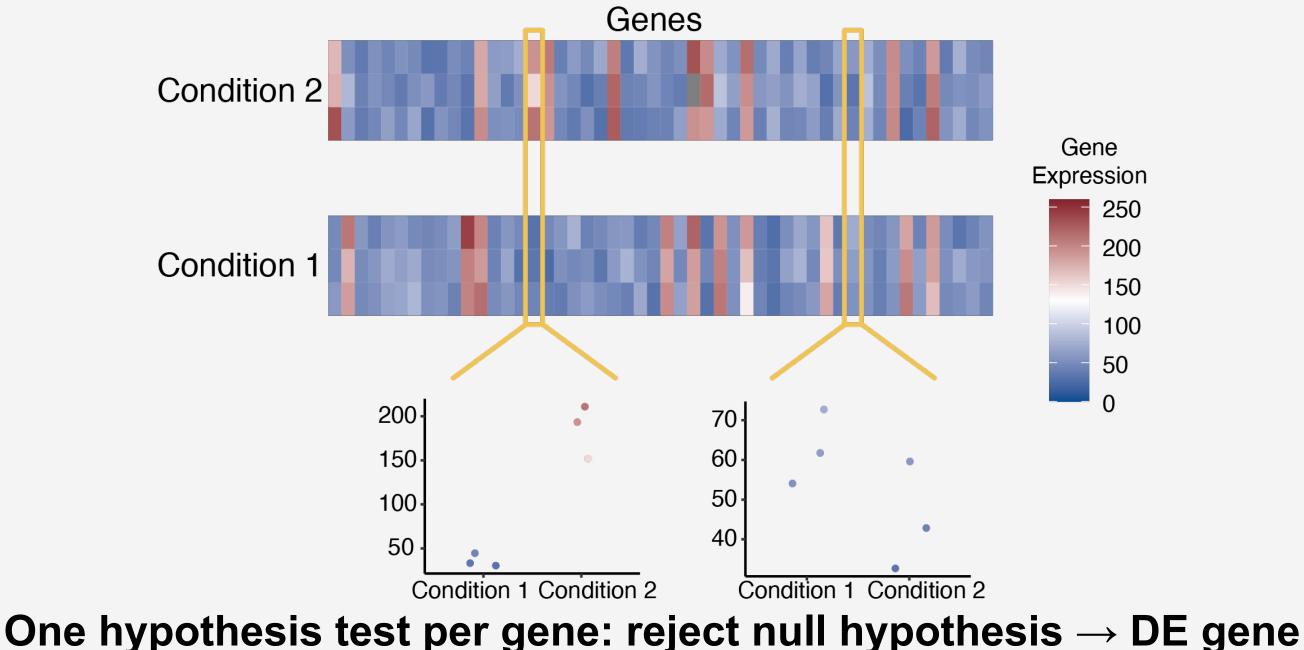


# **Question 1**

# What is an appropriate null hypothesis?



Q: What genes are differentially expressed (DE) between two conditions?



Popular methods (originally designed for **small** sample sizes):

- edgeR [Robinson et al., *Bioinformatics*, 2010]; cited > 31K times
- **DESeq2** [Love et al., *Genome Biol*, 2014]; cited > 52K times





Popular methods (originally designed for **small** sample sizes):

- edgeR [Robinson et al., *Bioinformatics*, 2010]; cited > 31K times
- **DESeq2** [Love et al., *Genome Biol*, 2014]; cited > 52K times

Both assume a negative binomial (NB) distribution per gene and condition For each gene,

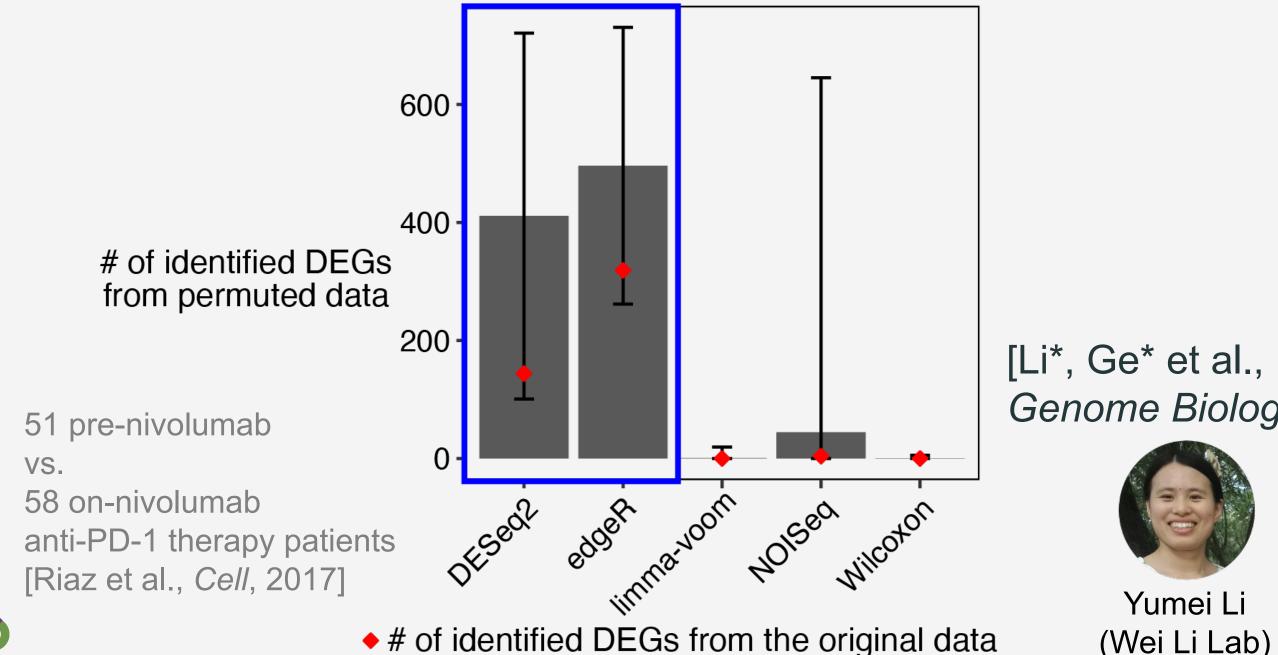
- Condition 1:  $X_i \stackrel{\text{ind}}{\sim} \text{NB}(\mu_1 s_i, \sigma_1), \ i = 1, \dots, n$
- Condition 2:  $Y_i \stackrel{\text{ind}}{\sim} \text{NB}(\mu_2 s_j, \sigma_2), \ j = 1, \dots, m$

Null hypothesis  $H_0: \mu_1 = \mu_2$ 

which is appropriate only if the NB assumption is reasonable



Q: Why are many genes identified as DE genes from permuted data?



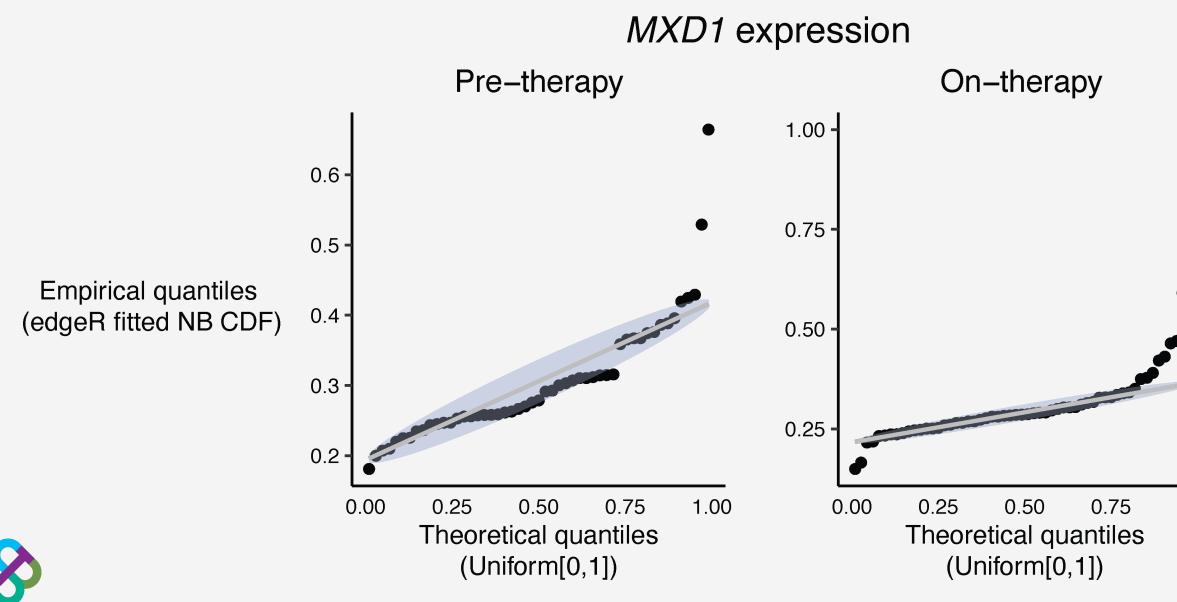
# Genome Biology, 2022]



### Xinzhou Ge (Wei Li Lab) (JSB)

Q: Why are many genes identified as DE genes from permuted data?

A: The NB assumption does not hold on this dataset.



1.00

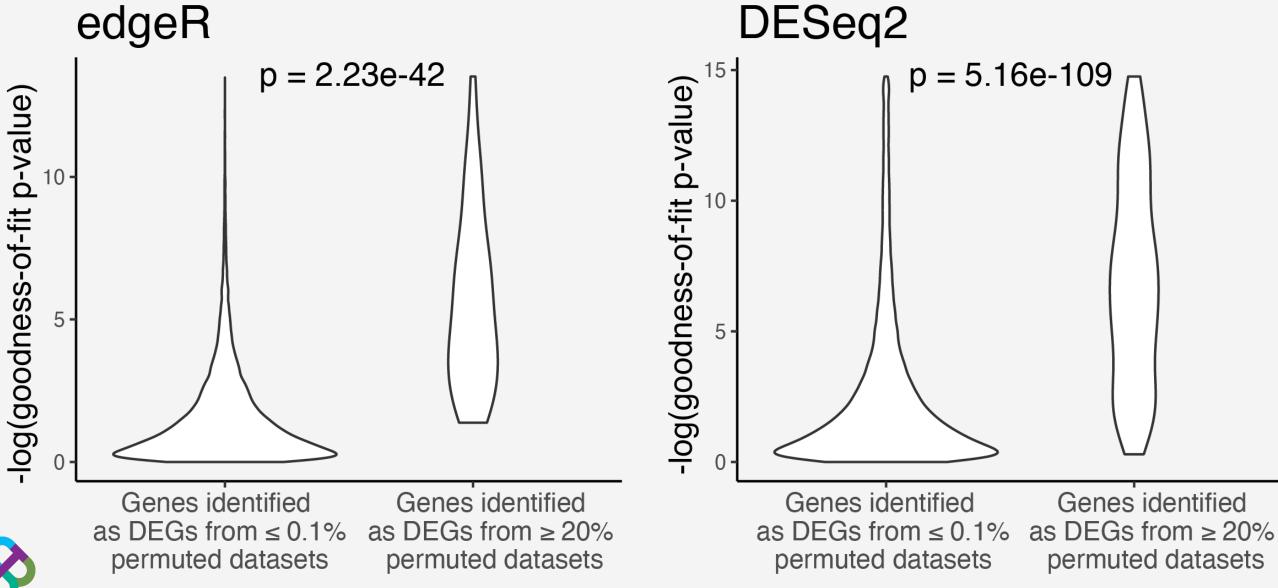
Q: Why are many genes identified as DE genes from permuted data?

A: The NB assumption does not hold on this dataset.



1.00

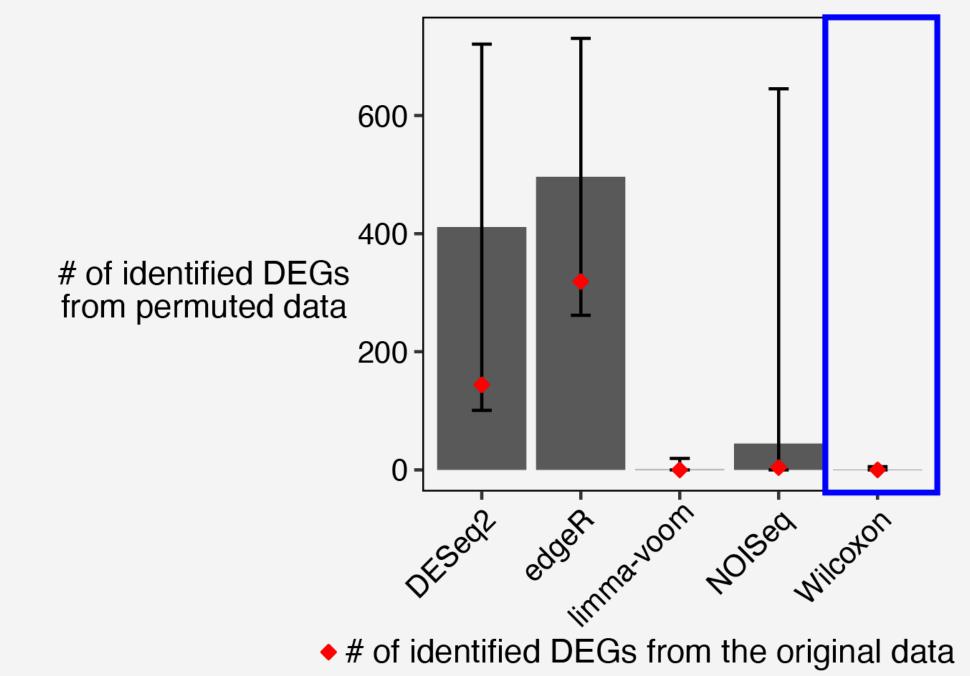
Q: Why are many genes identified as DE genes from permuted data? A: The NB assumption does not hold on this dataset.





### **Chenxin Jiang** $(CUHK \rightarrow JSB)$

**Q: Why does Wilcoxon NOT identify DE genes from permuted data?** 





Q: Why does Wilcoxon NOT identify DE genes from permuted data? A: It has a different null hypothesis.

> For each gene, the normalized counts Condition 1:  $X_i, i = 1, \ldots, n$ Condition 2:  $\widetilde{Y}_j, j = 1, \ldots, m$

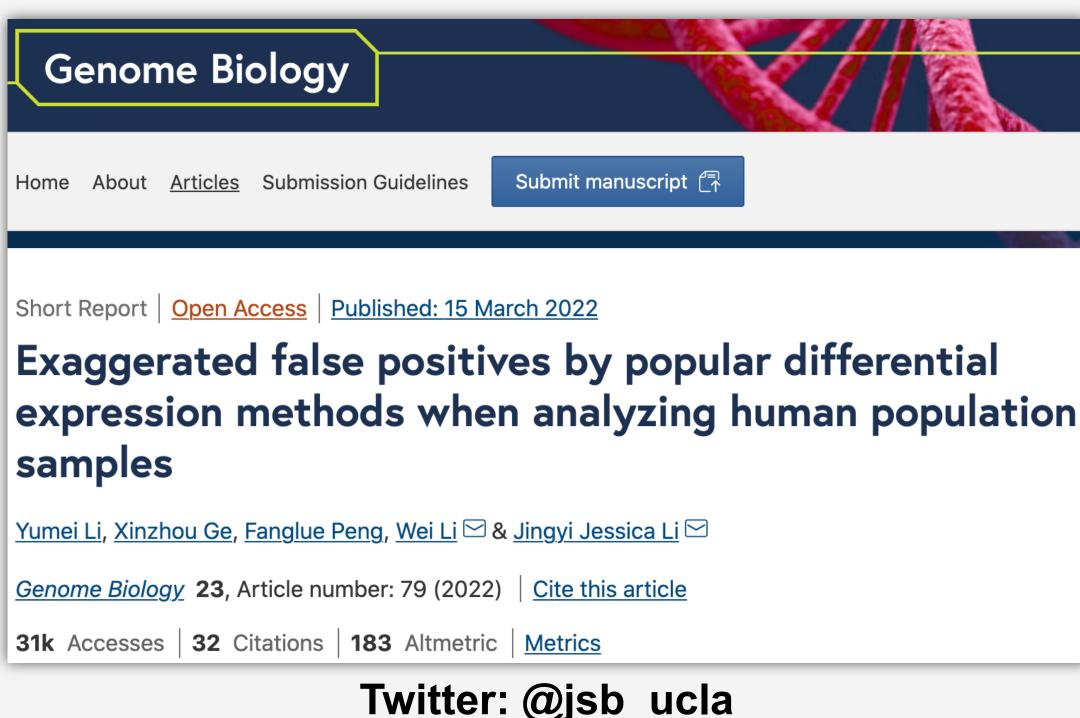
Null hypothesis (approximate, ignoring ties):

 $H_0: \mathbb{P}(\widetilde{X}_i > \widetilde{Y}_j) = 0.5, \text{ for all } i, j$ 

which does NOT have the **NB** assumption









### Yumei Li (Wei Li Lab)



### Xinzhou Ge (JSB)



### Prof. Wei Li (UC Irvine)

# Which null hypothesis is more appropriate? Too abstract a question?

# Intuition: DE genes found from permuted data are not trustworthy

Then what does permutation provide?

Synthetic null (in silico negative control)



# de? ntrol)

# **Question 2:**

# How to make an abstract null hypothesis concrete? Synthetic null data

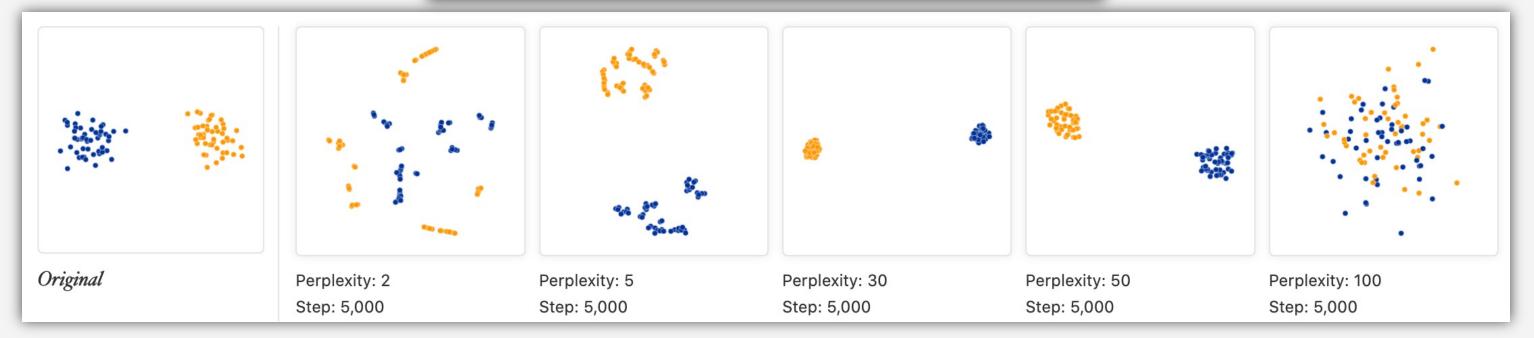




# Another example where permutation helps







- Hyperparameters really matter
- Distances between clusters might not mean anything



. . .

Source: <u>https://distill.pub/2016/misread-tsne/</u>

**Q:** Is a cell's embedding dubious or trustworthy?

A: Examine the cell's neighbors before and after embedding

# scDEED: a statistical method for detecting dubious 2D single-cell embeddings

🕩 Lucy Xia, Christy Lee, 🕩 Jingyi Jessica Li Under revision at *Nat Comms* doi: https://doi.org/10.1101/2023.04.21.537839

> Tuesday 12:10 pm in Salle Rhone 1 (BioVis COSI)





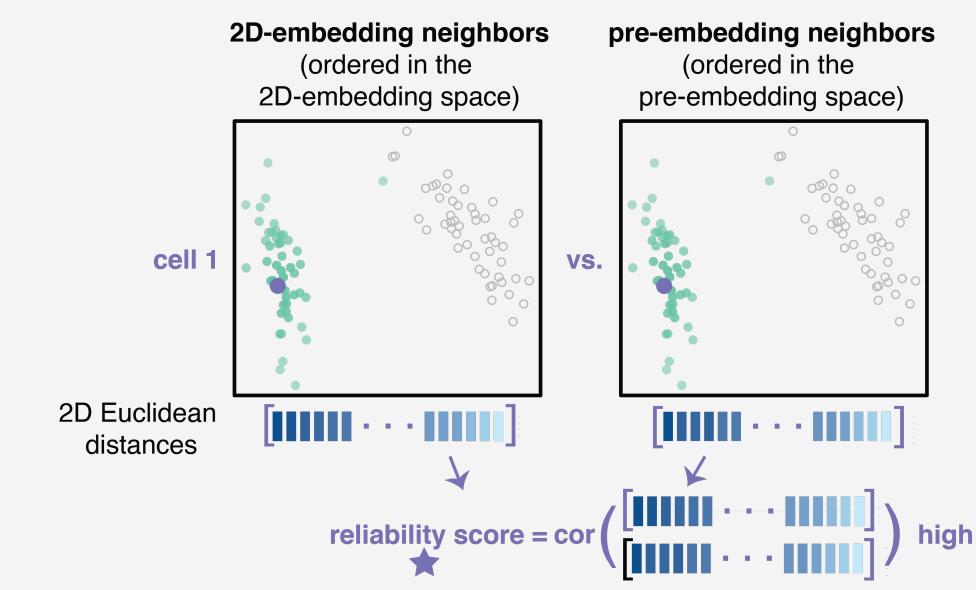
### Lucy Xia (HKUST)



**Christy Lee** (JSB)

# scDEED intuition

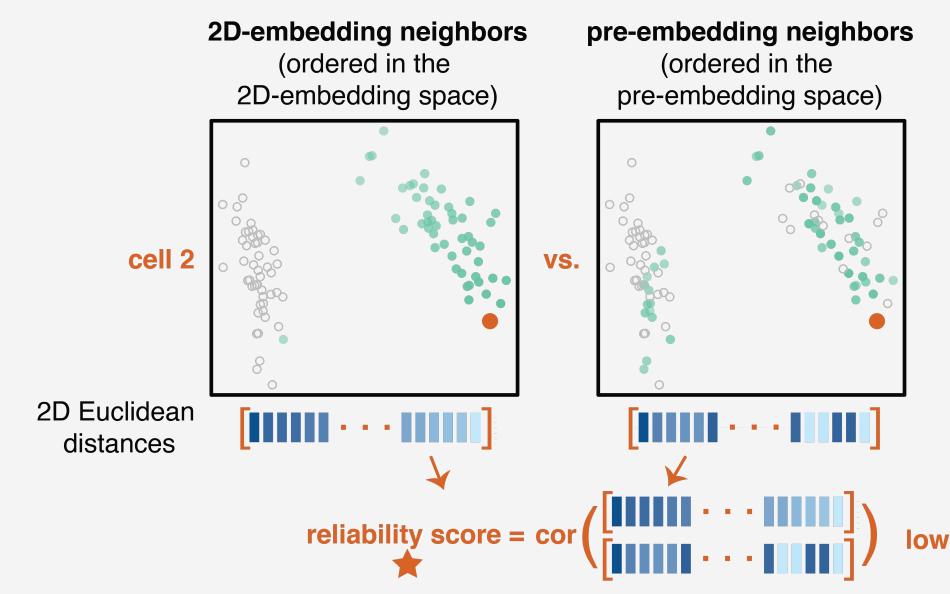
# A trustworthy cell embedding





# scDEED intuition

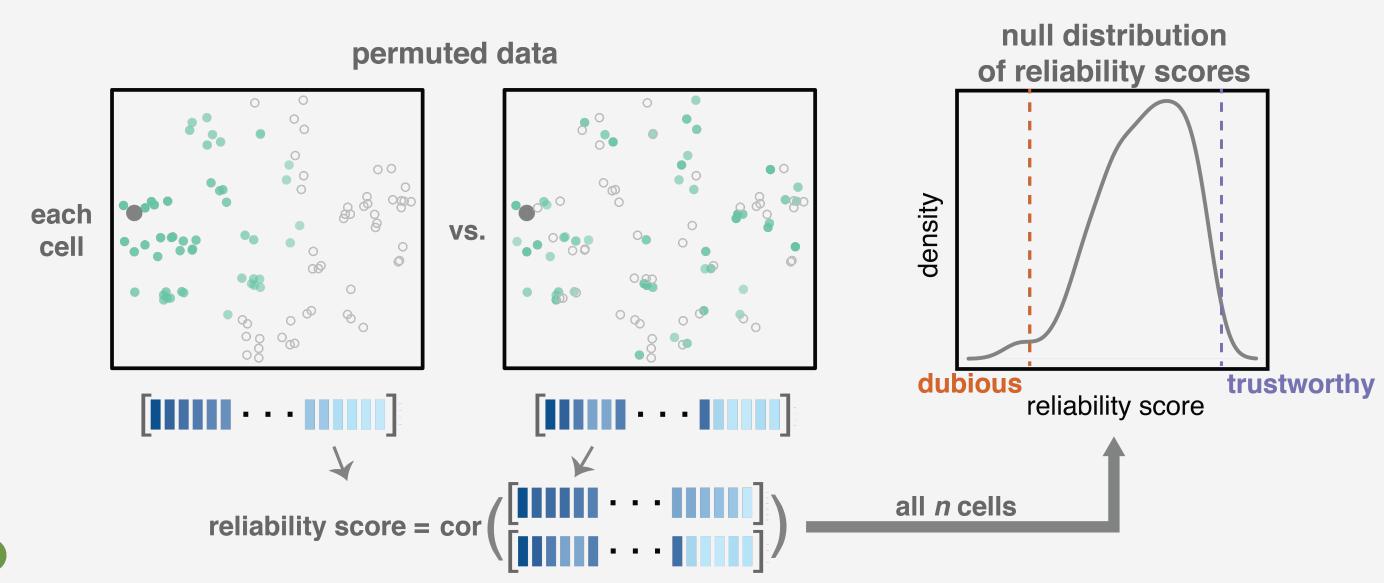
# A dubious cell embedding



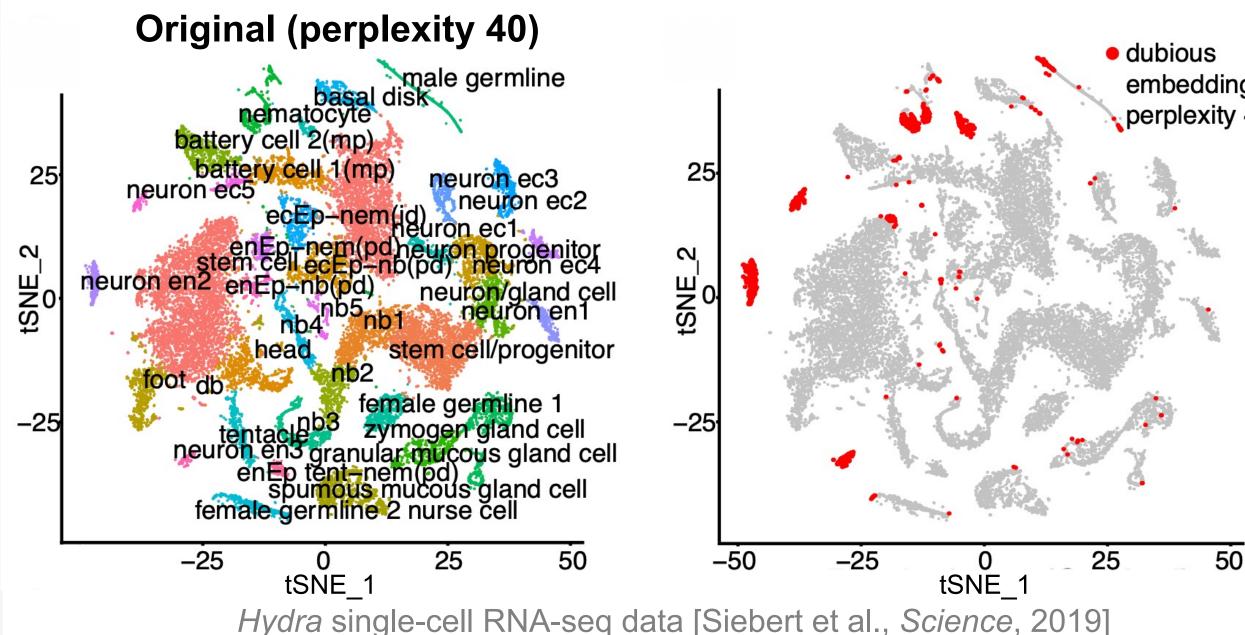


**Q: What is the null hypothesis?** 

A: A cell's neighbors are random after embedding.

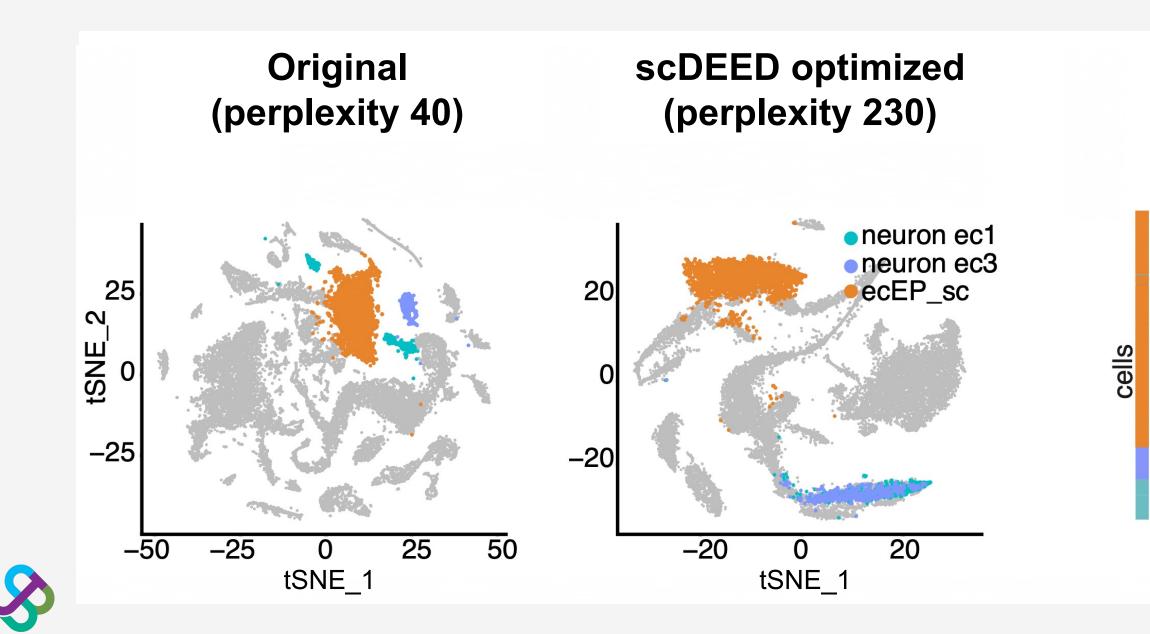


scDEED detects dubious embeddings



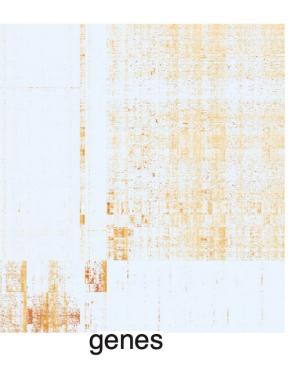
# embeddings at perplexity 40

scDEED optimizes hyperparameters by minimizing # of dubious embeddings



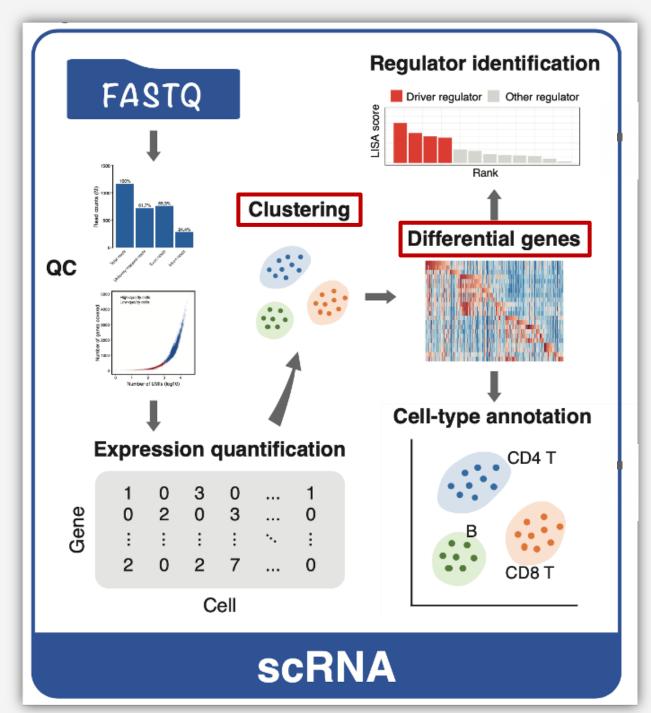


### scaled gene expression



# Synthetic null generation beyond permutation





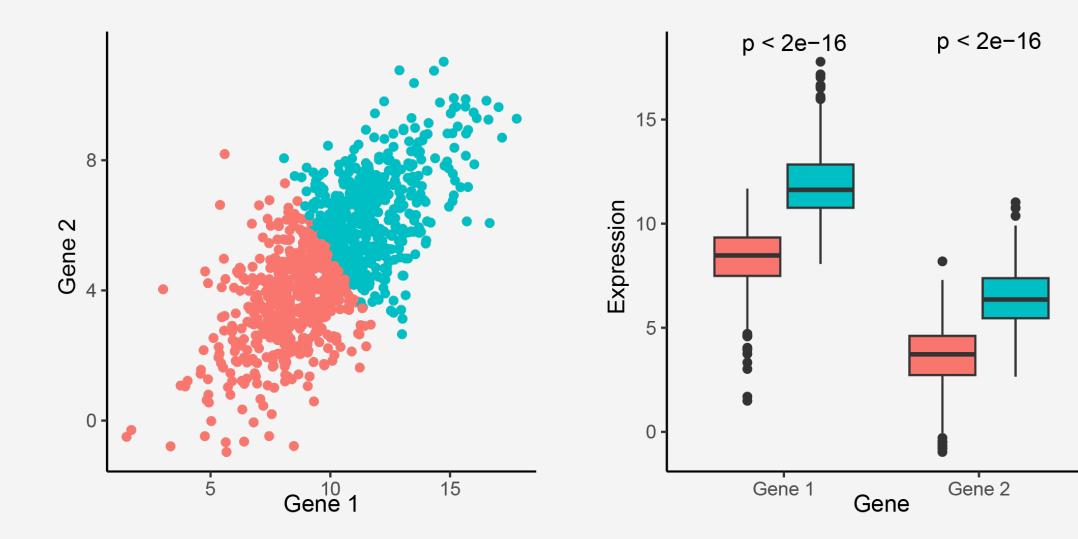


Source: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02116-x



**Double dipping**: same data used twice

- 1. Clustering: define cell clusters based on gene expression
- 2. DE: test if every gene has the same mean expression between cell clusters







Cluster

- 0

- **Q: Why inflated false discoveries?**
- A: Two different null hypotheses
- Expression level of *m* genes:  $Y_1, \ldots, Y_m$
- Cell type (latent):  $Z \in \{0, 1\}$
- Cell cluster (based on  $Y_1, \ldots, Y_m$ ):  $\widehat{Z} \in \{0, 1\}$
- The ideal null hypothesis  $H_0: \mathbb{E}[Y_i \mid Z = 0] = \mathbb{E}[Y_i \mid Z = 1]$

The post-clustering double-dipping (DD) null hypothesis  $\boldsymbol{H_0}^{\mathrm{DD}}: \mathbb{E}[Y_i \mid \widehat{Z}=0] = \mathbb{E}[Y_i \mid \widehat{Z}=1]$ 

 $H_0^{\text{DD}}$  does not hold but  $H_0$  holds  $\rightarrow$  false-positive cell-type marker gene



**Q:** What is a meaningful "negative control" for cell type discovery?

A: All cells in one "hypothetical" cell type

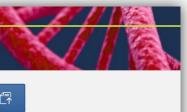
(JSB)

- $\rightarrow$  all genes satisfy the ideal null hypotheses
- Q: A model for synthetic null generation? A: scDesign2/3

|               |                                                                                                                                                                                        | U                           | •                                                                                                              |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------|
|               | nature biotechnolog                                                                                                                                                                    | y                           | Genome Biology                                                                                                 |
|               | Explore content $\checkmark$ About the journal $\checkmark$ Publish with us $\checkmark$                                                                                               |                             |                                                                                                                |
|               | nature > nature biotechnology > brie                                                                                                                                                   | ef communications > article | Home About <u>Articles</u> Submission Guidelines Submit manuscript                                             |
|               | Brief Communication Published: 11 May 2023                                                                                                                                             |                             | Method Open Access Published: 25 May 2021                                                                      |
|               | scDesign3 generates realistic in silico data for<br>multimodal single-cell and spatial omics<br>Dongyuan Song, Qingyang Wang, Guanao Yan, Tianyang Liu, Tianyi Sun & Jingyi Jessica Li |                             | scDesign2: a transparent simulator<br>high-fidelity single-cell gene expres<br>with gene correlations captured |
|               |                                                                                                                                                                                        |                             | <u>Tianyi Sun, Dongyuan Song, Wei Vivian Li</u> ⊠ & <u>Jingyi Jessica Li</u> ⊠                                 |
|               | Nature Biotechnology (2023) Cite this article                                                                                                                                          |                             | Genome Biology 22, Article number: 163 (2021) Cite this article                                                |
|               | 7602 Accesses 1 Citations 146 Altmetric Metrics                                                                                                                                        |                             | 10k Accesses   21 Citations   30 Altmetric   Metrics                                                           |
|               |                                                                                                                                                                                        | Tuesday 5:20 pm ir          | n Salle Rhone 2                                                                                                |
| Dongyuan Song |                                                                                                                                                                                        |                             |                                                                                                                |

(RegSys COSI)

# E analysis overy?

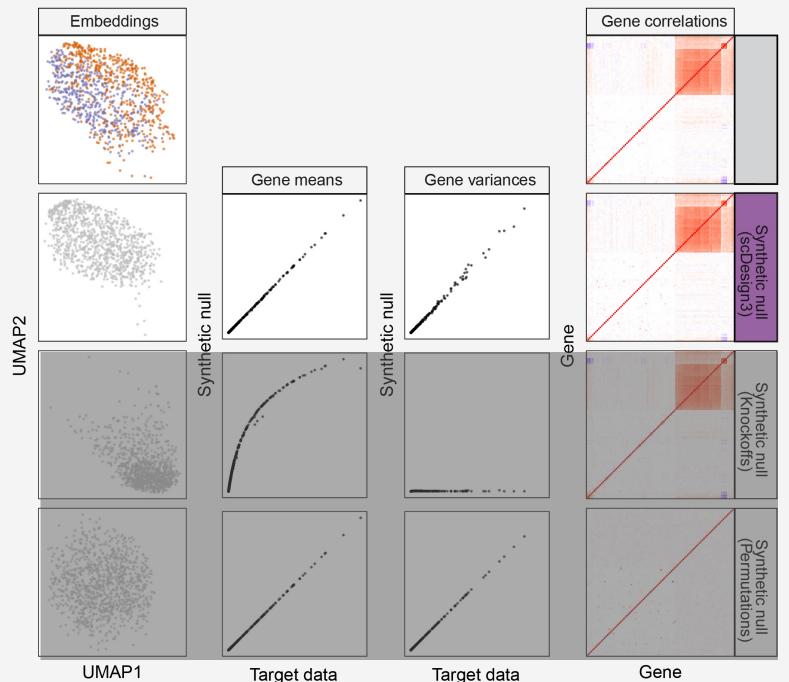


# that generates sion count data



### Tianyi Sun (JSB)

# **Example 3: single-cell post-clustering DE analysis** scDesign3 preserves per-gene mean, variance, and gene-gene correlations.



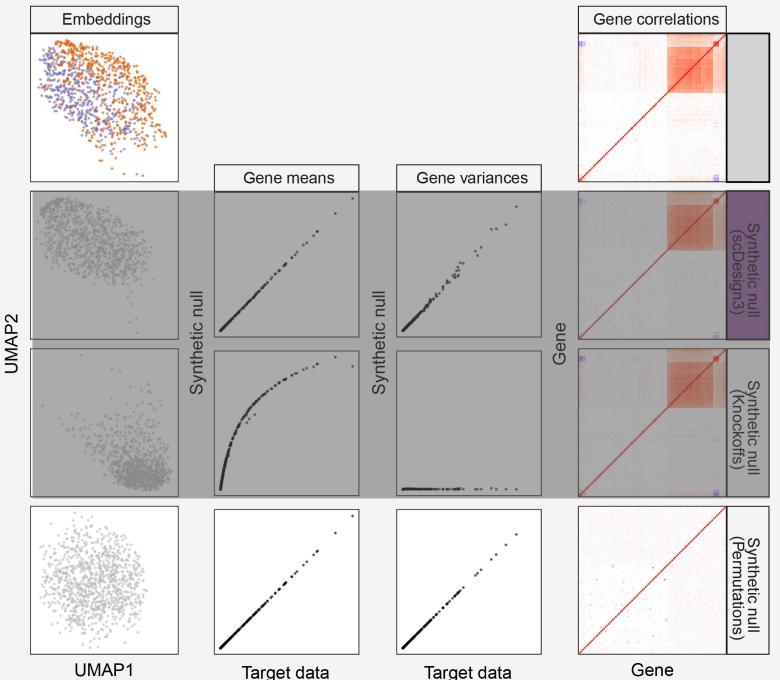


# **Example 3: single-cell post-clustering DE analysis** scDesign3 preserves per-gene mean, variance, and gene-gene correlations.

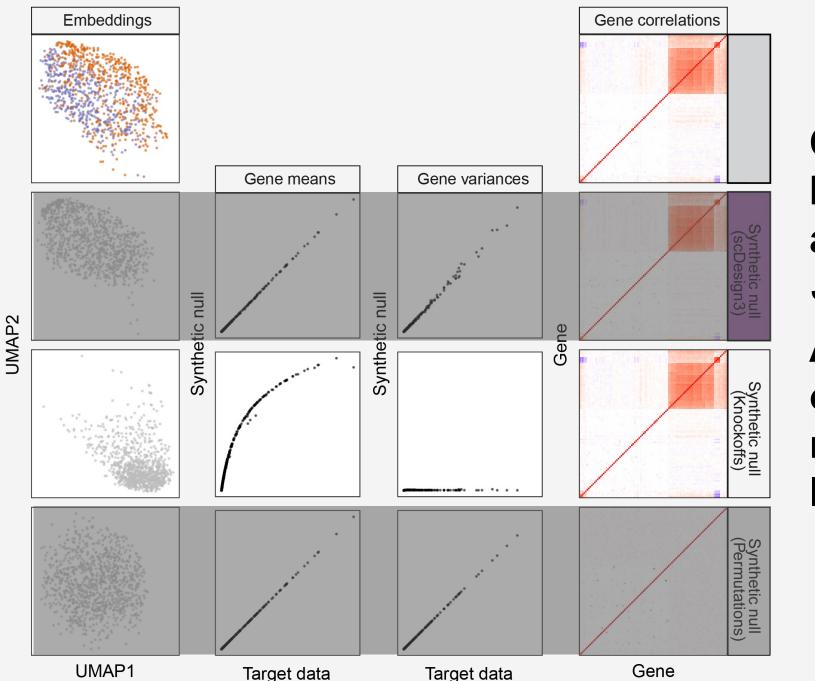
**Q: Why not** permutation?

A: Gene-gene correlations are crucial for clustering.





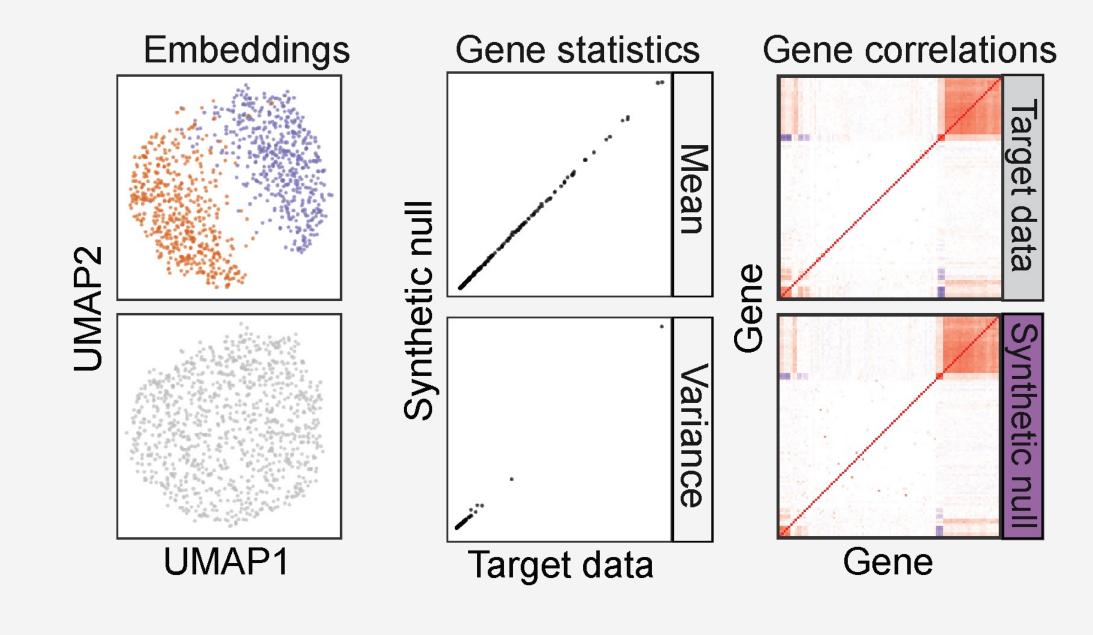
### Example 3: single-cell post-clustering DE analysis scDesign3 preserves per-gene mean, variance, and gene-gene correlations.





### Q: Why not knockoffs? [Barber and Candes, Ann Stat, 2015] A: There is no outcome variable; not a supervised learning setting.

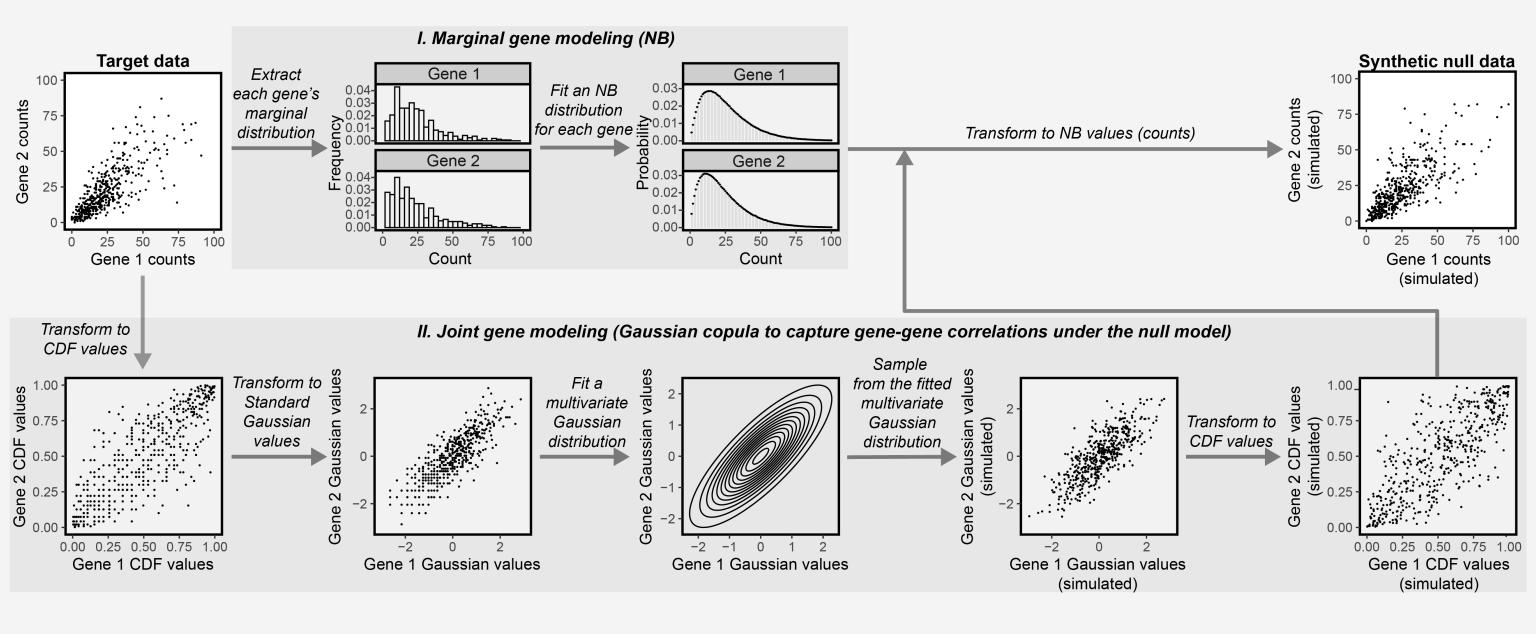
scDesign3 preserves per-gene mean, variance, and gene-gene correlations.





# E analysis

scDesign3 synthetic null generation (marginal NB + Gaussian copula)

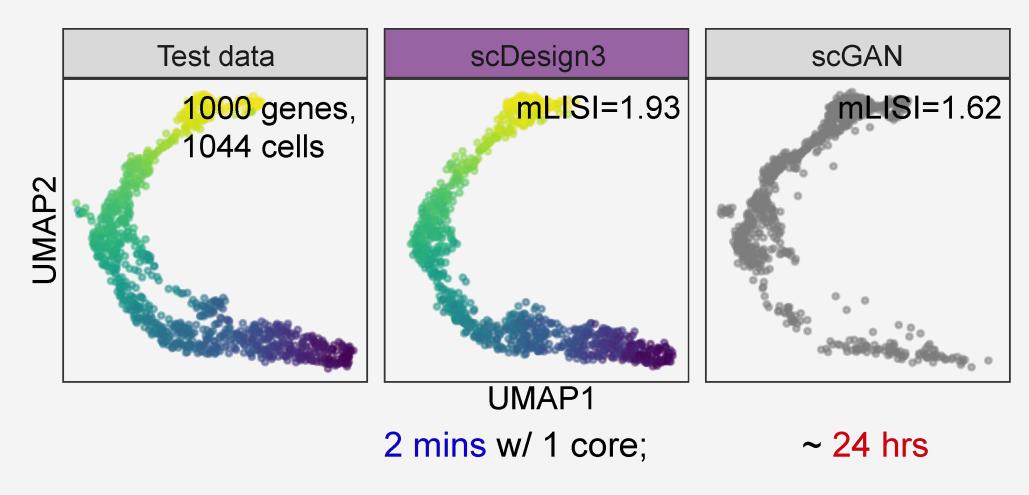


## E analysis n copula)

**Q: Why NOT use deep learning (e.g., GAN) to generate synthetic data?** 

A: Unclear how to generate synthetic null data by modifying parameters.

### scDesign3 vs. scGAN



### E analysis etic data? parameters.

# Pseudotime

- 0.75
- 0.50
- 0.25
- 0.00

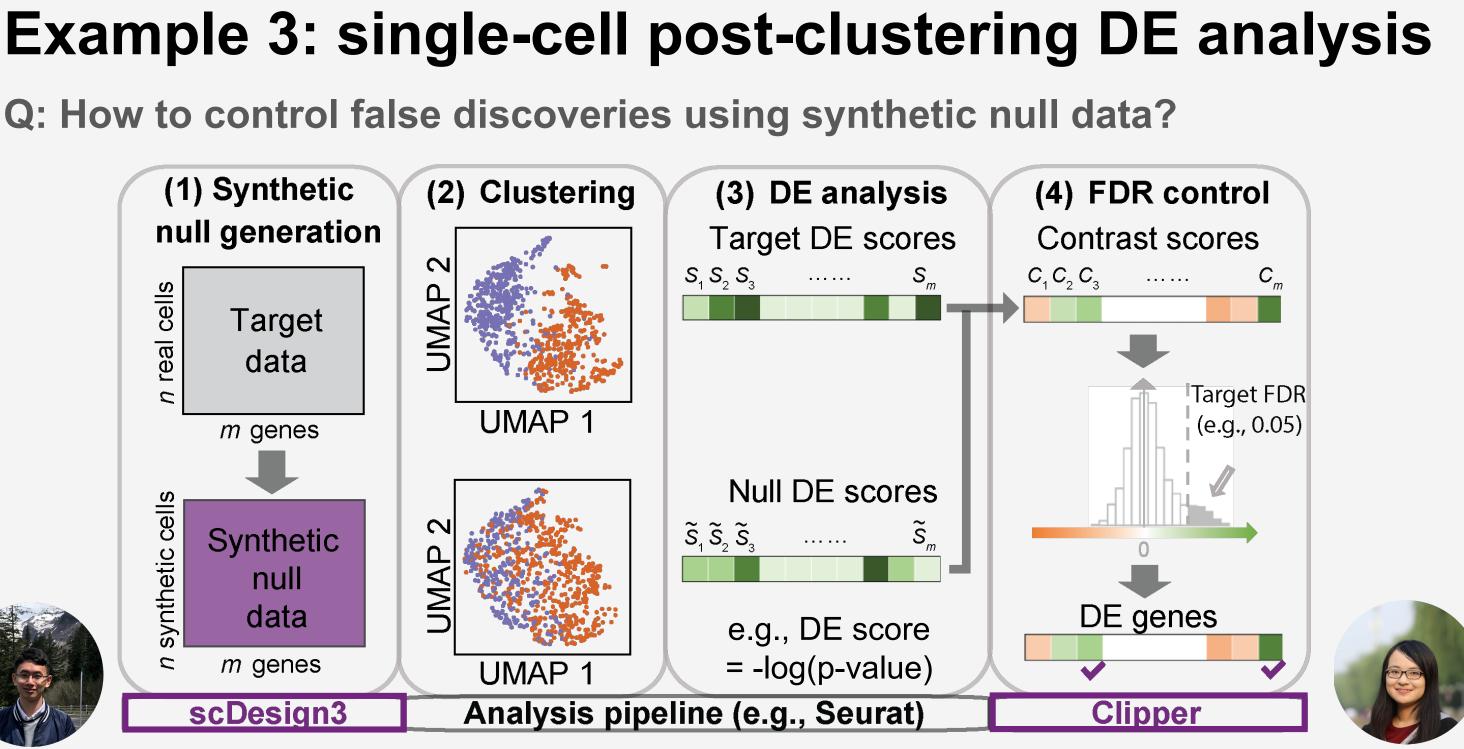
### **Question 3:**

# How to use synthetic null data to reduce false discoveries?

**Contrastive strategy** 



**Q:** How to control false discoveries using synthetic null data?



Dongyuan Song (JSB)

### **ClusterDE**

Kexin Li (JSB)

**Q: How to control false discoveries using synthetic null data?** 

A: Clipper — a contrastive strategy for p-value-free FDR control

| Genome Biology                                                                 |                                                            |
|--------------------------------------------------------------------------------|------------------------------------------------------------|
| Home About <u>Articles</u> Submission Guidelines                               | Submit manuscript 🛃                                        |
| Method   Open Access   Published: 11 Octol<br>Clipper: <i>p</i> -value-free FD |                                                            |
| data from two condition                                                        |                                                            |
|                                                                                | ns<br>ong, <u>MeiLu McDermott, Kyla Woyshner, Antigoni</u> |



### E analysis ? trol







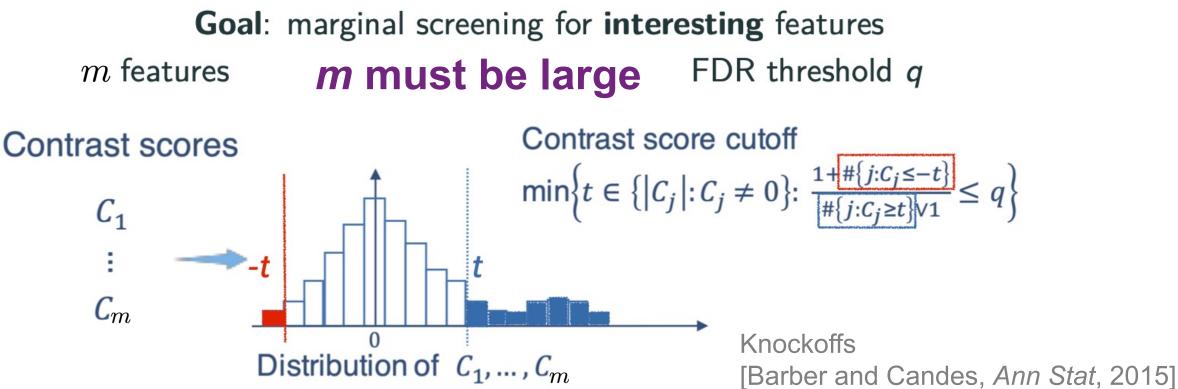
### Xinzhou Ge (JSB)

Q: How to control false discoveries using synthetic null data?

A: Clipper — a contrastive strategy for p-value-free FDR control

- NO requirement of
  - high-resolution p-values
  - parametric distributions
  - large sample sizes

- Foundation: knockoffs
- **Two components** 
  - contrast scores
  - cutoff







Q: How to control false discoveries using synthetic null data?

A: Clipper — a contrastive strategy for p-value-free FDR control

**Clipper core idea**: contrast score of feature  $j = 1, \ldots, m$ :

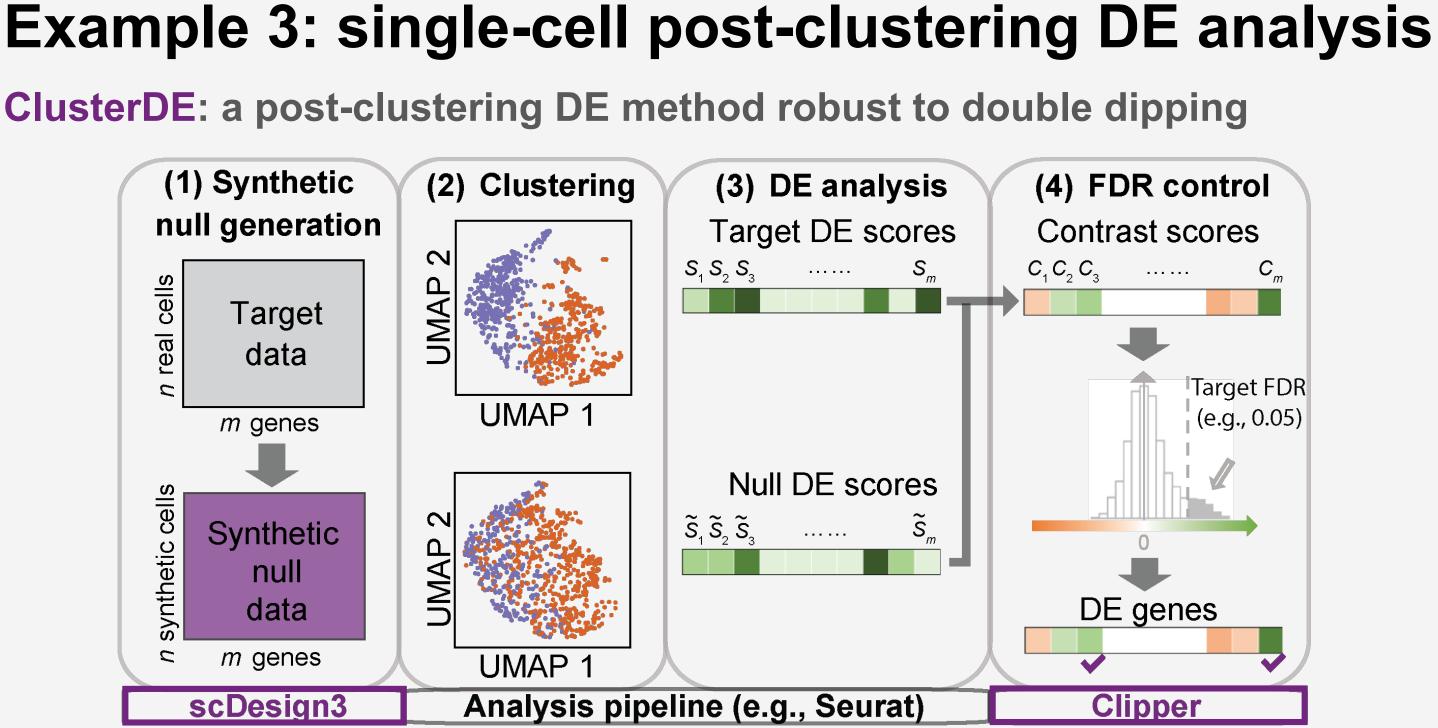
 $C_j := t(target data) - t(synthetic null data),$ 

where  $t(\cdot)$  can be a **complex pipeline** (e.g., clustering + DE)

|           | target data | synthetic null data                       |
|-----------|-------------|-------------------------------------------|
|           |             | (in silico negative control)              |
| ClusterDE | real cells  | scDesign3 synthetic cells from one "hypot |

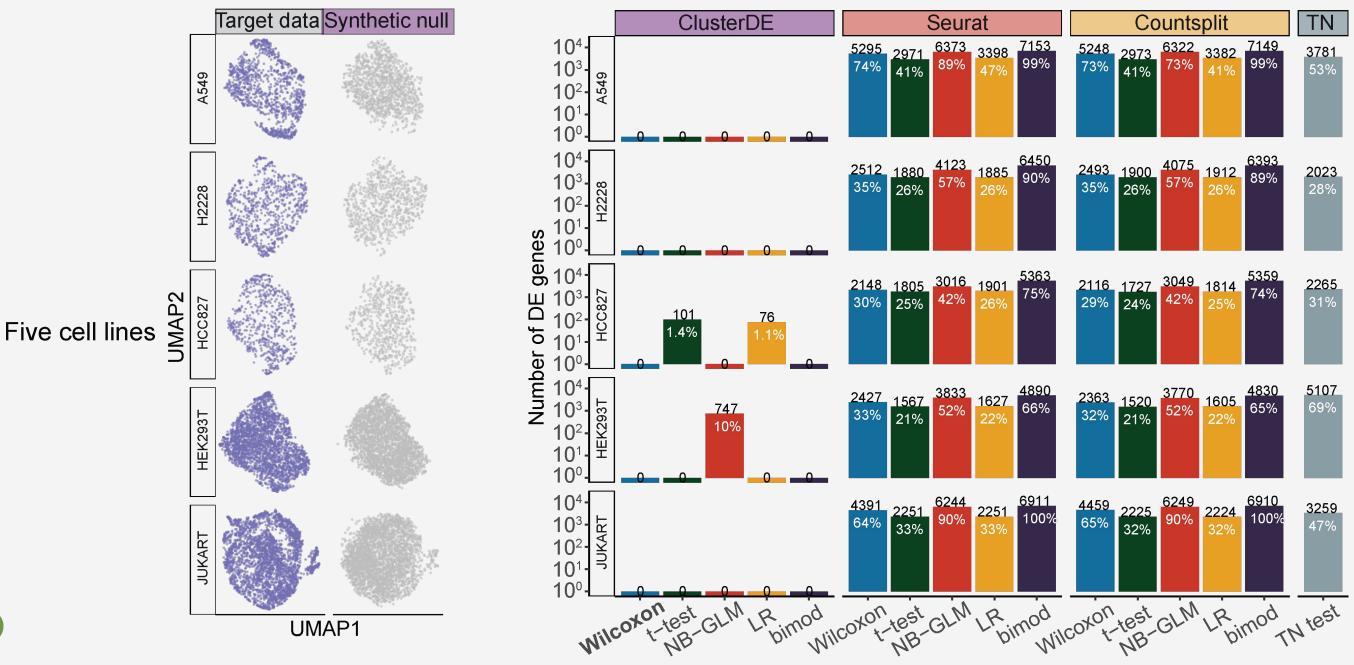
### thetical" type

**ClusterDE:** a post-clustering DE method robust to double dipping



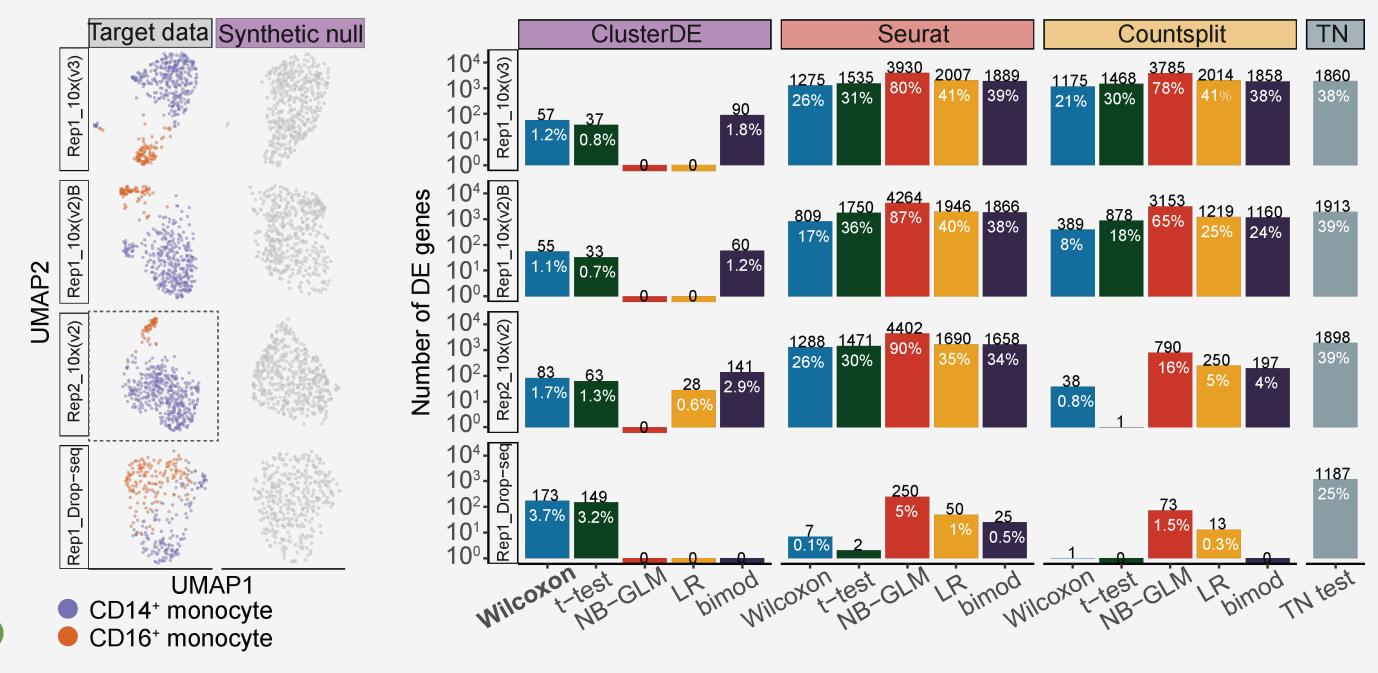


Expectation 1: No cell-type marker genes should be found from a cell line.

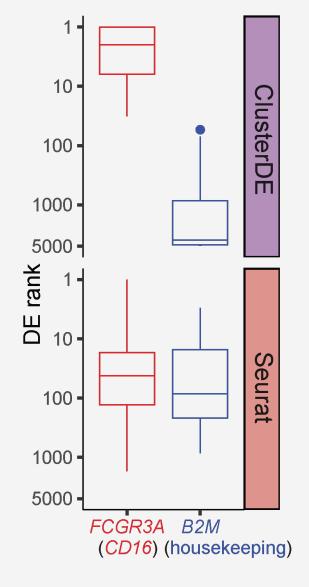


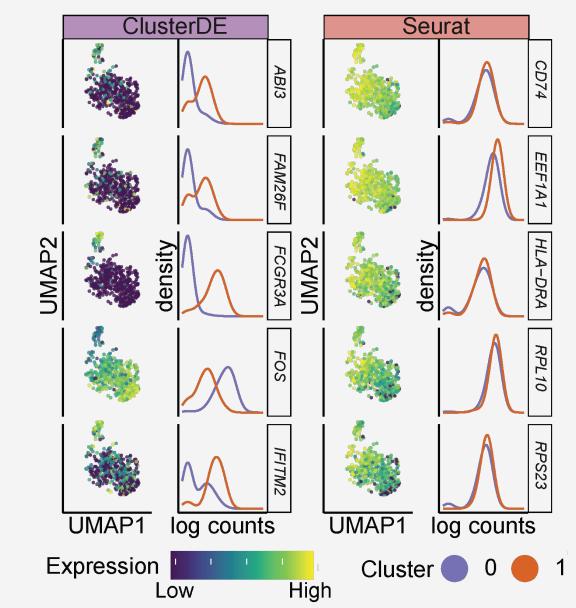
### E analysis om a cell line.

Expectation 2: Cell-type marker genes should be found as top DE genes.



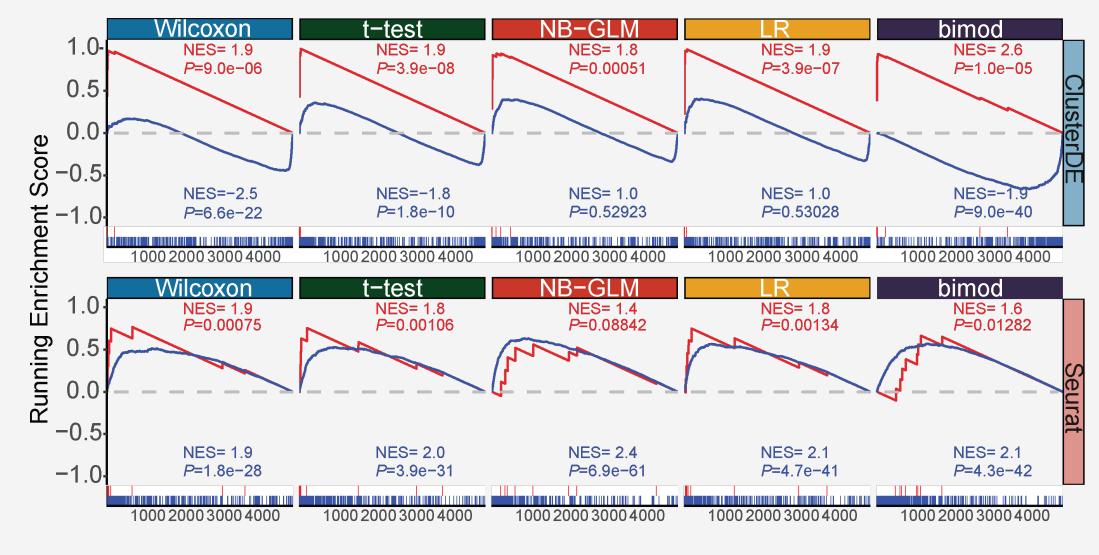
Expectation 2: Cell-type marker genes should be found as top DE genes. Expectation 3: Housekeeping genes should NOT be found as top DE genes.







Expectation 2: Cell-type marker genes should be found as top DE genes. Expectation 3: Housekeeping genes should NOT be found as top DE genes.

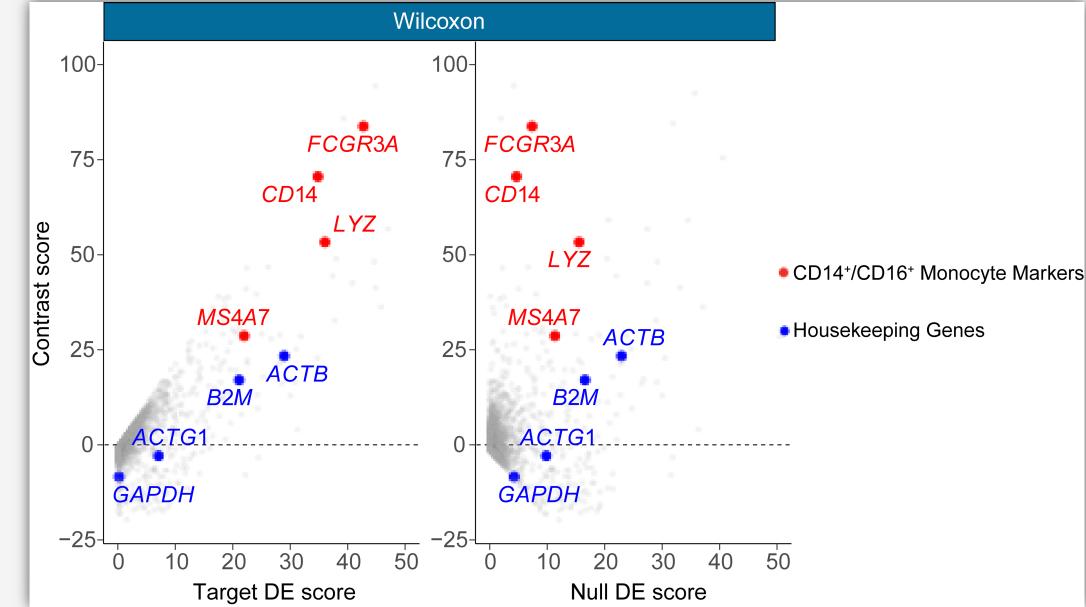




CD14<sup>+</sup>/CD16<sup>+</sup> Monocyte Markers — Housekeeping Genes

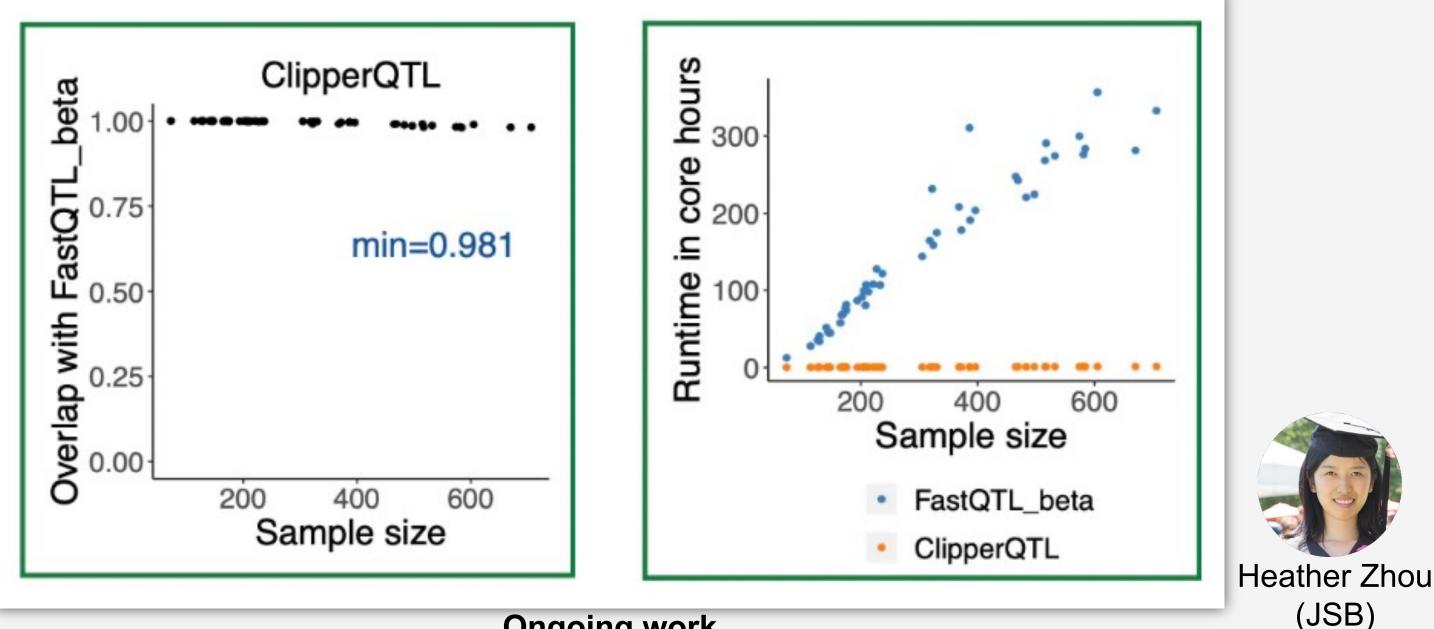
Q: Why does ClusterDE NOT identify housekeeping genes as top DE genes?

A: ClusterDE uses contrast scores (= target DE score – null DE score).



# **Contrastive strategy is computationally efficient**

**ClipperQTL** (contrastive strategy) vs. FastQTL (p-value-based strategy)



**Ongoing work** 

# Summary

- 1. What is an appropriate null hypothesis?
  - Different null hypotheses  $\rightarrow$  different discoveries/conclusions Example 1: bulk RNA-seq DE analysis: NB vs. Wilcoxon? Permutation
- 2. How to make an abstract null hypothesis concrete?
  - Synthetic null

Example 2: dubious t-SNE/UMAP embeddings? Permutation  $\rightarrow$  scDEED Example 3: single-cell post-clustering DE analysis: scDesign3

3. How to use synthetic null data to reduce false discoveries?

Contrastive strategy (Clipper) vs. p-value-based strategy: ClipperQTL

Example 3: single-cell post-clustering DE analysis:

**ClusterDE**: scDesign3  $\rightarrow$  clustering + DE  $\rightarrow$  Clipper

### Take-home message 1

# Synthetic null data can make an abstract null hypothesis concrete and enable contrastive data analysis

Synthetic null data generation is real-data-specific and problem-specific

*"Teaching someone to fish is better than"* giving them a fish" — Chinese proverb



# Take-home message/question 2

## Less is more (?)

Occam's razor: the principle of parsimony

 $\clubsuit$  Fewer but more reliable discoveries  $\rightarrow$  science



# ny science

# Acknowledgements

### Ph.D. advisors @ Berkeley

- Peter J. Bickel
- Haiyan Huang

### **Collaborators**

- Wei Li & Yumei Li @ UCI
- Lucy Xia @ HKUST
- Mark D. Biggin @ LBNL
- Xin Tong @ USC

### **Nominators**

- Wei Li @ UCI
- Shirley Liu @ GV20
- Chongzhi Zang @ UVA

### **Trainees** @ UCLA

- Xinzhou Ge (bulk DE; Clipper)
  - will join Oregon State University
- Christy Lee (scDEED)
- <u>Dongyuan Song</u> (ClusterDE; scDesign3) will be on the job market
- Tianyi Sun (scDesign2)
- Kexin Li (ClusterDE)
- Heather Zhou (ClipperQTL)
- **Former trainees**
- Wei Vivian Li @ UC Riverside
- Nan Miles Li @ Loyola Univ Chicago





