Statistical Modeling to Quantitate the Central Dogma

Jingyi Jessica Li

Department of Statistics

University of California, Los Angeles

May 21, 2018

UCLA College

statistics

What is Statistics?

16th-17th Century: Probability Theory (Mathematical Foundations of Statistics)

Jerome Cardan 1501-1576

Pierre de Fermat 1607-1665

From Wikipedia

What is Statistics?

19th-20th Century: Emergence and Development of Statistics

Francis Galton 1822-1911

Karl Pearson 1857-1936

Ronald Fisher 1890-1962

From Wikipedia

What is Statistics?

21st Century: Computer Age of Statistics

From Google Images

The Junction of Statistics and Biology

My Research Overview

Change in the popularity of search terms from January, 2004 to October, 2016 based on Google Search. Numbers represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is the peak popularity for the term. A value of 50 means that the term is half as popular. Likewise a score of 0 means the term was less than 1% as popular as the peak. Created using Google Trends: https://www.google.com/trends/.

V

From http://jsb.ucla.edu

The Junction of Statistics and Biology

Our Team

From http://jsb.ucla.edu

The Central Dogma

One of the Most Fundamental Principles of Modern Biological Sciences

Quantifying the Central Dogma

High-throughput Experiments

Quantifying the Central Dogma

High-throughput Experiments

>

A4_1

Quantifying the Central Dogma

High-throughput Experiments

Important Steps that Determine Protein Levels?

Claim 1: RNA levels do not well predict protein levels

International jo	DUTCE Durnal of science		
	Altmetric: 118	Citations: 1942	More detail ≫

Article

Global quantification of mammalian gene expression control

Björn Schwanhäusser, Dorothea Busse, Na Li, Gunnar Dittmar, Johannes Schuchhardt, Jana Wolf[™], Wei Chen 🏧 & Matthias Selbach 🏁

Nature 473, 337–342 (19 May 2011) doi:10.1038/nature10098

Download Citation

Epigenetics Gene expression

Received: 16 November 2010 Accepted: 01 April 2011 Published: 18 May 2011 Corrigendum: 13 February 2013

Gene regulation Schwanhausser et al. (2011). Nature. 473: 337-342. Schwanhausser *et al.* suggest that translation is the most important

protein degradation

translation

mRNA degradation

transcription

Caution against Misuse of Statistics

Most Published Research Findings Are False?

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: August 30, 2005 • https://doi.org/10.1371/journal.pmed.0020124

Mark Biggin, LBNL

Important Steps that Determine Protein Levels?

Claim 2: RNA levels predict protein levels well

Science

PERSPECTIVE GENE EXPRESSION

Statistics requantitates the central dogma

Jingyi Jessica Li¹, Mark D. Biggin²

+ See all authors and affiliations

Science 06 Mar 2015: Vol. 347, Issue 6226, pp. 1066-1067 DOI: 10.1126/science.aaa8332

Summary Mammalian proteins are expressed at $\sim 10^3$ to 10^8 molecules per cell (1). Differences between cell types, between normal and disease states, and between individuals are largely defined by changes in the abundance of proteins, which are in turn determined by rates of transcription, messenger RNA (mRNA) degradation, translation, and protein degradation. If the rates for one of these steps differ much more than the rates of the other three, that step would be dominant in defining the variation in protein expression. Over the past decade, system-wide studies have claimed that in animals, differences in translation rates predominate (2-5). On page 1112 of this issue, Jovanovic et al. (6), as well as recent studies by Battle et al. (7) and Li et al. (1), challenge this conclusion,

suggesting that transcriptional control makes the larger contribution.

Li, Bickel and Biggin (2014). PeerJ. 2:e270.

Li and Biggin. (2015). Science. 347(6226): 1066–1067.

Altmetric

189

Li et al. suggest that transcription is the still the most important

Schwanhausser et al.

Li et al.

Measured **Protein Error**

Translation

Important Steps that Determine Protein Levels?

Claim 2: RNA levels predict protein levels well

Lodish et al. (2016). Molecular Cell Biology (Eighth Edition).

Li et al. suggest that transcription is the still the most important

Schwanhausser et al.

Li et al.

Measured Translation

The Debate: Translation vs. Transcription

Which is more important?

SPECIES

S. cerevisae (yeast)

S. pombe (yeast)

A. thaliana (plant)

D. melanogaster (fruit fly)

M. musculus (mouse)

H. sapiens (human)

The Junction of Statistics and Biology

Educational Goals

APPLIED STATISTICS

- **Data Processing**
- **Data Visualization**
 - Data Analysis
- **Computer Programming**
 - Data Interpretation

Caution against Misuse of Statistics

UC Berkeley Graduate Admission Gender Bias (1973)

Overall

By Department

	APPLICANTS	ADMITTED	DEPARTMENT	MEN		WOMEN	
				APPLICANTS	ADMITTED	APPLICANTS	ADMITTED
MEN	8442	44%	А	825	62%	108	82%
WOMEN	4321	35%	В	560	63%	25	68%
Simpson's Paradox		С	325	37%	593	34%	
		D	417	33%	375	35%	
		E	191	28%	393	24%	
			F	373	6%	341	7%

P.J. Bickel, E.A. Hammel and J.W. O'Connell (1975). "Sex Bias in Graduate Admissions: Data From Berkeley". Science. 187 (4175): 398–404.

Data from *Wikipedia* 18

"The best thing about being a statistician is that you get to play in everyone's backyard." – Dr. John W. Tukey

Thank you.

Jingyi Jessica Li **Department of Statistics** University of California, Los Angeles jli@stat.ucla.edu http://jsb.ucla.edu

